Date: Monday 27 May 2019. Time allowed: 2 hours (08:00-10:00). Answer all questions briefly.

Show all computations (including relevant critical values).

You are allowed all lecture handouts and notes, but no textbooks.

An English–French dictionary is allowed, as is a scientific calculator.

Question 1 is for 70 marks. Question 2 is for 50 marks.

You are given a cross-sectional dataset with 50 observations. It contains information on the state-by-state outcomes of the 1992 U.S. Presidential Election. (There were three major candidates: the incumbent Republican President George H. W. Bush, the Democratic Arkansas Governor Bill Clinton, and the independent Texas businessman Ross Perot. Bill Clinton won a *plurality* (43%) of the nationwide vote, i.e. the largest number of votes by any candidate, without gaining an absolute majority of 50%. He also won a large majority of electoral college votes, and was elected 42nd President of the United States.) The variables are DVOTE (the percentage of votes cast for the Democratic candidate in the 1992 election), DEM (= 1 if the Democratic candidate received a plurality of the state vote), UN (the state unemployment rate in 1992), FEDFUNDS (per capita federal spending in 1992, i.e. government expenditure by state), DEFENSE (defense contract awards per 1000 population in 1992, i.e. number of U.S. Department of Defense contracts awarded to each state), CRIME (total crime rate per 100,000 population in 1992, by state), NE (= 1 for northeastern states), S (= 1 for southern states), W (= 1 for western states). Note that the location dummies are not exhaustive. This is used in Question 1. You are also given a time-series dataset with 170 observations, on the quarterly U.S. nominal interest rate (percentage), denoted Y, from 1960Q1 to 2002Q2. This is used in Question 2.

Question 1

This question uses the 1992 U.S. Presidential Election data (refer to Figures 1–10). We will use this data to construct models to explain whether the Democratic candidate received a plurality of votes in a state.

(a) Perform a brief preliminary analysis of the variables, and explain your findings.Refer to the descriptive statistics, bivariate correlations, and histograms.

(10 marks)

(b) Discuss the output from the probit model (EQ0a) for DEM.

(10 marks)

(c) For EQ0a, compute the estimated marginal effects evaluated at the mean. You do **not** need to interpret their economic significance.

(15 marks)

(d) For EQ0a, interpret the response curves of estimated probability against UN, for (S=0 and W=0), (S=0 and W=1), and (S=1 and W=0).

(5 marks)

(e) For EQ0a, discuss the table of hits-and-misses. What would be the overall percentage of correct predictions for the "naïve" model?

(5 marks)

(f) In the logit model (EQ0b) for DEM, why are the estimated coefficients larger than those in the probit model EQ0a?

(5 marks)

(g) For EQ0b, compute the estimated odds-ratio at the mean.

(10 marks)

(h) Why is the log-likelihood always negative in a discrete choice model?

(5 marks)

(i) For EQ0c, test rigorously for first-order autocorrelation using the asymptotic distribution of the Durbin-Watson statistic. Does this agree with Breusch-Godfrey?

(5 marks)

questions continue overleaf

Question 2

• This question uses the U.S. interest rate data (refer to Figures 11-34). We use this data to construct a medium-term dynamic forecast of the nominal interest rate.

(a) Discuss the validity and quality of the ARMA(1,2) model for Y_t .

(10 marks)

(b) Discuss the validity of the MA(2) model for ΔY_t , and the quality of its forecast.

(15 marks)

(c) Write down the theoretical ACFs for the MA(1) and MA(2) in EQ04 and EQ05.Hint: You are not required to give a formal proof here.

$$(5 \text{ marks})$$

(d) Using your answer to question (2c), substitute in the estimated coefficients from EQ04 and EQ05 and simplify, giving your answers to 1 decimal place.

(5 marks)

(e) Show that the following model is nonstationary:

 $y_t = y_{t-1} + \varepsilon_t; \quad t = 1, 2, \dots, T; \quad \varepsilon_t \sim \text{i.i.d.}(0, \sigma_{\varepsilon}^2); \text{ initial value } y_0.$

(10 marks)

(f) Explain why the following model is stationary: $y_t = \alpha_0 + \varepsilon_t + \beta_1 \varepsilon_{t-1} + \beta_2 \varepsilon_{t-2}; \quad t = 1, 2, ..., T; \quad \varepsilon_t \sim \text{i.i.d.}(0, \sigma_{\varepsilon}^2); \quad \text{initial value } y_0.$ (5 marks)

	DVOTE	DEM	UN	FEDFUNDS	DEFENSE	CRIME	NE	S	W
Mean	42.16600	0.660000	6.822000	5181.140	0.434920	5221.800	0.180000	0.340000	0.160000
Median	42.60000	1.000000	6.900000	4446.000	0.317000	5116.500	0.000000	0.000000	0.000000
Maximum	84.60000	1.000000	11.30000	33974.00	2.625000	11407.00	1.000000	1.000000	1.000000
Minimum	24.70000	0.000000	3.000000	3529.000	0.046000	2610.000	0.000000	0.000000	0.000000
Std. Dev.	8.522853	0.478518	1.598633	4228.791	0.422128	1509.291	0.388088	0.478518	0.370328
Skewness	2.172037	-0.675521	-0.125485	6.497942	3.012479	1.262779	1.665853	0.675521	1.854852
Kurtosis	13.69697	1.456328	3.475150	44.76117	15.56413	7.107213	3.775068	1.456328	4.440476
Jarque-Bera	277.7002	8.767157	0.601570	3985.184	404.4950	48.43259	24.37709	8.767157	32.99349
Probability	0.000000	0.012481	0.740237	0.000000	0.000000	0.000000	0.000005	0.012481	0.000000
Sum	2108.300	33.00000	341.1000	259057.0	21.74600	261090.0	9.000000	17.00000	8.000000
Sum Sq. Dev.	3559.312	11.22000	125.2258	8.76E+08	8.731408	1.12E+08	7.380000	11.22000	6.720000
Observations	50	50	50	50	50	50	50	50	50

Figure 1: Descriptive statistics.

Correlation	DVOTE	DEM	UN	FEDFUN	DEFENSE	CRIME	NE	S	W
DVOTE	1.000000	19 19 19 19 19 19 19 19 19 19 19 19 19 1	200.00						16.76
DEM	0.564065	1.000000							
UN	0.373022	0.295434	1.000000						
FEDFUNDS	0.710951	0.085568	0.162018	1.000000					
DEFENSE	0.570452	0.068060	0.235691	0.810283	1.000000				
CRIME	0.460535	-0.003063	0.212977	0.591465	0.547270	1.000000			
NE	0.116034	0.336277	0.299407	-0.057815	0.119931	-0.279856	1.000000		
S	0.292626	-0.197861	0.171434	0.200139	0.161284	0.251050	-0.336277	1.000000	
W	-0.280157	-0.032246	-0.078459	-0.046551	-0.093259	0.156114	-0.204479	-0.313248	1.000000

Figure 2: Bivariate correlations.

Figure 3: Histograms.

Dependent Variable: DEM Method: ML - Binary Probit (Quadratic hill climbing) Date: 04/25/19 Time: 15:07 Sample: 1 50 Included observations: 50 Convergence achieved after 5 iterations Covariance matrix computed using second derivatives

Variable	Coefficient	Std. Error	z-Statistic	Prob.
C CRIME DEFENSE FEDFUNDS UN S W	-1.340666 -5.11E-05 -0.467755 8.26E-05 0.329023 -0.873189 -0.418786	1.075362 0.000183 0.864660 0.000104 0.144984 0.470434 0.585116	-1.246711 -0.279716 -0.540970 0.798126 2.269382 -1.856135 -0.715733	0.2125 0.7797 0.5885 0.4248 0.0232 0.0634 0.4742
McFadden R-squared S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. LR statistic Prob(LR statistic)	0.146585 0.478518 1.374139 1.641822 1.476075 9.396587 0.152472	Mean depen S.E. of regre Sum square Log likelihoo Restr. log lik Avg. log likel	dent var ession d resid d ælihood ihood	0.660000 0.460428 9.115751 -27.35348 -32.05177 -0.547070
Obs with Dep=0 Obs with Dep=1	17 33	Total obs		50

Figure	4:	EQ0a:	Probit	model.
0			1 10010	

	С	CRIME	DEFENSE	FEDFUNDS	UN	S	W
С	1.156403	-9.39E-05	0.254631	-1.95E-05	-0.103730	0.082223	0.062564
CRIME	-9.39E-05	3.34E-08	-1.99E-05	-4.20E-09	-5.34E-06	-2.68E-05	-3.65E-05
DEFENSE	0.254631	-1.99E-05	0.747638	-5.86E-05	-0.029943	0.025930	0.068923
FEDFUNDS	-1.95E-05	-4.20E-09	-5.86E-05	1.07E-08	2.00E-06	2.23E-07	7.25E-07
UN	-0.103730	-5.34E-06	-0.029943	2.00E-06	0.021020	-0.008980	-0.001773
S	0.082223	-2.68E-05	0.025930	2.23E-07	-0.008980	0.221308	0.120458
W	0.062564	-3.65E-05	0.068923	7.25E-07	-0.001773	0.120458	0.342360

Figure 5: EQ0a: Coefficient covariance matrix from probit model.

Dependent Variable: DEM Method: ML - Binary Logit (Quadratic hill climbing) Date: 04/25/19 Time: 15:10 Sample: 1 50 Included observations: 50 Convergence achieved after 5 iterations Covariance matrix computed using second derivatives

Variable	Coefficient	Std. Error	z-Statistic	Prob.
C CRIME DEFENSE FEDFUNDS UN S W	-2.442380 -8.02E-05 -0.818580 0.000148 0.580741 -1.538007 -0.776971	1.885387 0.000309 1.438882 0.000196 0.260394 0.819627 0.994041	-1.295426 -0.259889 -0.568900 0.756648 2.230235 -1.876472 -0.781629	0.1952 0.7949 0.5694 0.4493 0.0257 0.0606 0.4344
McFadden R-squared S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. LR statistic Prob(LR statistic)	0.150361 0.478518 1.369298 1.636981 1.471233 9.638664 0.140717	Mean depen S.E. of regre Sum square Log likelihoo Restr. log like Avg. log like	ident var ession ed resid id kelihood lihood	0.660000 0.459719 9.087688 -27.23244 -32.05177 -0.544649
Obs with Dep=0 Obs with Dep=1	17 33	Total obs		50

Figure	6:	EQ0b:	Logit	model
rigure	υ.	<u>п</u> аор.	LUgit	mouer.

Dependent Variable: DVOTE Method: Least Squares Date: 04/25/19 Time: 15:12 Sample: 1 50 Included observations: 50

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C CRIME DEFENSE FEDFUNDS UN S W	24.88061 0.000546 -3.040407 0.001448 1.317571 0.516183 -5.693668	4.196474 0.000698 3.268673 0.000333 0.511752 1.828294 2.356125	5.928934 0.782597 -0.930166 4.353515 2.574629 0.282330 -2.416539	0.0000 0.4382 0.3575 0.0001 0.0136 0.7790 0.0200
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.639370 0.589050 5.463608 1283.594 -152.0818 12.70598 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		42.16600 8.522853 6.363273 6.630956 6.465208 1.587490

Figure 7: EQ0c: Linear model for DVOTE.

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	2.623201	Prob. F(2,41)	0.0847
Obs*R-squared	5.672227	Prob. Chi-Square(2)	0.0587

Test Equation:
Dependent Variable: RESID
Method: Least Squares
Date: 04/25/19 Time: 17:58
Sample: 1 50
Included observations: 50
Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C CRIME DEFENSE FEDFUNDS UN S W RESID(-1) RESID(-2)	-0.720123 0.000109 0.104377 2.68E-05 0.004252 -0.227405 -0.017812 0.106647 -0.334117	4.013664 0.000662 3.103269 0.000315 0.484245 1.744465 2.244846 0.150560 0.147816	-0.179418 0.164518 0.033635 0.085038 0.008782 -0.130358 -0.007935 0.708337 -2.260359	0.8585 0.8701 0.9733 0.9326 0.9930 0.8969 0.9937 0.4827 0.0292
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.113445 -0.010261 5.144374 1137.977 -149.0715 0.687790 0.699852	Mean depen S.D. depend Akaike info d Schwarz crit Hannan-Qui Durbin-Wats	dent var lent var terion nn criter. son stat	-6.04E-16 5.118182 6.322862 6.667026 6.453921 1.683441

Figure 8: EQ0c: Breusch-Godfrey test results.

Figure 9: EQ0a: Probability response curves from probit: DEM_S0_W0 corresponds to (S=0 and W=0); DEM_S0_W1 corresponds to (S=0 and W=1); DEM_S1_W0 corresponds to (S=1 and W=0); UN_PLOT corresponds to the unemployment rate.

Success cutoff: C = 0.5

	Estimated Equation				
	Dep=0	Dep=1	Total		
P(Dep=1)<=C	9	5	14		
P(Dep=1)>C	8	28	36		
Total	17	33	50		
Correct	9	28	37		
% Correct	52.94	84.85	74.00		
% Incorrect	47.06	15.15	26.00		

Figure 10: EQ0a: Table of hits-and-misses from probit model.

Figure 11: Interest rate Y_t .

Figure 12: Descriptive statistics.

Correlogram of Y

Date: 04/25/19 Time: 16:34 Sample: 1960Q1 2002Q2 Included observations: 170

Figure 13: Correlogram.

Dependent Variable: Y Method: Least Squares Date: 04/25/19 Time: 16:36 Sample (adjusted): 1960Q2 2002Q2 Included observations: 169 after adjustments Convergence achieved after 4 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1)	6.172535 0.961042	1.626258 0.022821	3.795544 42.11165	0.0002 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.913935 0.913420 0.817501 111.6073 -204.7405 1773.391 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		6.497554 2.778294 2.446634 2.483674 2.461665 1.609609
Inverted AR Roots	.96			

Figure 14: EQ01: AR(1) model.

Figure 15: EQ01: AR(1) estimated root λ .

Figure 16: EQ01: AR(1) estimated correlograms.

Correlogram of Residuals					
Date: 04/25/19 Tim Sample: 1960Q2 20 Included observation Q-statistic probabilit	ne: 16:40 102Q2 ns: 169 ies adjusted for 1 AF	RMA term(s)			
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 0.193 2 -0.182 3 0.139 4 0.095 5 -0.010 6 -0.037 7 -0.196 8 -0.022 9 0.063 10 -0.026 11 -0.042 12 0.001 13 -0.041 14 0.066 15 -0.016 16 -0.146 17 0.010 18 0.083 19 -0.071 20 -0.064 23 0.070 24 -0.018 25 -0.021 26 0.091 27 0.003 28 -0.051 29 -0.081 30 -0.031 31 0.109 32 0.041 33 -0.079 34 0.000 35 -0.023 <td>0.193 -0.227 0.247 -0.053 0.071 -0.082 -0.200 0.078 -0.045 0.073 -0.040 0.073 -0.040 0.077 0.081 -0.081 -0.088 -0.069 0.044 0.006 -0.032 -0.065 0.085 -0.065 0.085 -0.065 0.085 -0.069 0.050 0.050 0.050 0.050 0.050 0.057 0.057 0.037 -0.154 0.035 0.032 -0.027 0.027 0.004 -0.027 0.004 -0.0116 -0.011</td> <td>6.3756 12.094 15.446 17.012 17.031 17.269 24.109 24.193 24.918 25.038 25.368 25.368 25.368 25.368 25.368 25.368 25.368 25.368 30.573 30.573 30.573 31.908 32.887 34.114 34.596 35.397 36.355 36.417 36.507 38.172 38.175 38.699 40.047 40.245 42.749 43.103 44.418 44.531 44.720</td> <td>0.001 0.002 0.004 0.002 0.004 0.000 0.001 0.002 0.003 0.005 0.008 0.012 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.022 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.045 0.049 0.045 0.058 0.065 0.080 0.065 0.080 0.065 0.080 0.065 0.080 0.065 0.080 0.065 0.080 0.065 0.080 0.065 0.080 0.065 0.080 0.065 0.080 0.065 0.080 0.073 0.071 0.073 0.071</td>	0.193 -0.227 0.247 -0.053 0.071 -0.082 -0.200 0.078 -0.045 0.073 -0.040 0.073 -0.040 0.077 0.081 -0.081 -0.088 -0.069 0.044 0.006 -0.032 -0.065 0.085 -0.065 0.085 -0.065 0.085 -0.069 0.050 0.050 0.050 0.050 0.050 0.057 0.057 0.037 -0.154 0.035 0.032 -0.027 0.027 0.004 -0.027 0.004 -0.0116 -0.011	6.3756 12.094 15.446 17.012 17.031 17.269 24.109 24.193 24.918 25.038 25.368 25.368 25.368 25.368 25.368 25.368 25.368 25.368 30.573 30.573 30.573 31.908 32.887 34.114 34.596 35.397 36.355 36.417 36.507 38.172 38.175 38.699 40.047 40.245 42.749 43.103 44.418 44.531 44.720	0.001 0.002 0.004 0.002 0.004 0.000 0.001 0.002 0.003 0.005 0.008 0.012 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.022 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.045 0.049 0.045 0.058 0.065 0.080 0.065 0.080 0.065 0.080 0.065 0.080 0.065 0.080 0.065 0.080 0.065 0.080 0.065 0.080 0.065 0.080 0.065 0.080 0.065 0.080 0.073 0.071 0.073 0.071

Figure 17: EQ01: AR(1) residual correlograms.

Dependent Variable: Y Method: Least Squares Date: 04/25/19 Time: 16:43 Sample (adjusted): 1960Q2 2002Q2 Included observations: 169 after adjustments Convergence achieved after 13 iterations MA Backcast: 1959Q4 1960Q1

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) MA(1) MA(2)	6.222825 0.955346 0.320221 -0.190454	1.508775 0.027124 0.082711 0.082529	4.124421 35.22087 3.871557 -2.307712	0.0001 0.0000 0.0002 0.0223
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.924632 0.923262 0.769633 97.73530 -193.5254 674.7545 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		6.497554 2.778294 2.337578 2.411659 2.367642 2.006687
Inverted AR Roots Inverted MA Roots	.96 .30	62		

Figure 18: EQ02: ARMA(1,2) model.

Figure 19: EQ02: ARMA(1,2) estimated roots λ .

Figure 20: EQ02: ARMA(1,2) estimated correlograms.

Figure 21: Plot of ΔY_t .

Dependent Variable: D(Y) Method: Least Squares Date: 04/25/19 Time: 16:50 Sample (adjusted): 1960Q2 2002Q2 Included observations: 169 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-0.013176	0.063242	-0.208336	0.8352
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 0.822145 113.5549 -206.2024 1.644728	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui	dent var lent var criterion terion nn criter.	-0.013176 0.822145 2.452099 2.470619 2.459615

Figure 22: EQ03: ARMA(0,0) model for ΔY_t .

Dependent Variable: D(Y) Method: Least Squares Date: 04/25/19 Time: 16:53 Sample (adjusted): 1960Q2 2002Q2 Included observations: 169 after adjustments Convergence achieved after 8 iterations MA Backcast: 1960Q1

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MA(1)	-0.013914 0.403445	0.085804 0.070865	-0.162162 5.693162	0.8714 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.068728 0.063152 0.795762 105.7505 -200.1857 12.32462 0.000575	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-0.013176 0.822145 2.392730 2.429770 2.407761 2.218397
Inverted MA Roots	40			i i i i i i i i i i i i i i i i i i i

Figure 23: EQ04: ARMA(0,1) model for ΔY_t .

Dependent Variable: D(Y) Method: Least Squares Date: 04/25/19 Time: 16:54 Sample (adjusted): 1960Q2 2002Q2 Included observations: 169 after adjustments Convergence achieved after 12 iterations MA Backcast: 1959Q4 1960Q1

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.012715	0.064473	-0.197221	0.8439
MA(1)	0.293512	0.075920	3.866090	0.0002
MA(2)	-0.212582	0.075931	-2.799673	0.0057
R-squared	0.122726	Mean dependent var		-0.013176
Adjusted R-squared	0.112157	S.D. depend	lent var	0.822145
S.E. of regression	0.774670	Akaike info o	riterion	2.344832
Sum squared resid	99.61876	Schwarz cri	terion	2.400392
Log likelihood	-195.1383	Hannan-Quinn criter.		2.367379
F-statistic	11.61129	Durbin-Watson stat		2.003572
Prob(F-statistic)	0.000019			· · · · · · · · · · · · · · · · · · ·
Inverted MA Roots	.34	63		, i i i i i i i i i i i i i i i i i i i

Figure 24: EQ05: ARMA(0,2) model for ΔY_t .

Dependent Variable: D(Y) Method: Least Squares Date: 04/25/19 Time: 16:55 Sample (adjusted): 1960Q3 2002Q2 Included observations: 168 after adjustments Convergence achieved after 3 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1)	-0.008170 0.175556	0.076034 0.076245	-0.107459 2.302522	0.9146 0.0225
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.030949 0.025111 0.812480 109.5807 -202.4882 5.301608 0.022547	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-0.009087 0.822878 2.434384 2.471574 2.449477 1.918333
Inverted AR Roots	.18			

Figure 25: EQ06: ARMA(1,0) model for ΔY_t .

Dependent Variable: D(Y) Method: Least Squares Date: 04/25/19 Time: 16:55 Sample (adjusted): 1960Q3 2002Q2 Included observations: 168 after adjustments Convergence achieved after 15 iterations MA Backcast: 1960Q2

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) MA(1)	-0.010358 -0.348812 0.676648	0.074892 0.169965 0.133341	-0.138308 -2.052263 5.074559	0.8902 0.0417 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.108358 0.097550 0.781712 100.8272 -195.4950 10.02593 0.000078	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-0.009087 0.822878 2.363036 2.418821 2.385676 2.095406
Inverted AR Roots Inverted MA Roots	35 68			

Figure 26: EQ07: ARMA(1,1) model for ΔY_t .

Dependent Variable: D(Y) Method: Least Squares Date: 04/25/19 Time: 16:56 Sample (adjusted): 1960Q3 2002Q2 Included observations: 168 after adjustments Convergence achieved after 18 iterations MA Backcast: 1960Q1 1960Q2

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) MA(1) MA(2)	-0.009593 -0.032117 0.321024 -0.202164	0.065132 0.363522 0.356771 0.151291	-0.147287 -0.088350 0.899804 -1.336260	0.8831 0.9297 0.3695 0.1833
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.121874 0.105811 0.778126 99.29885 -194.2120 7.587106 0.000088	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-0.009087 0.822878 2.359666 2.434046 2.389853 2.006587
Inverted AR Roots Inverted MA Roots	03 .32	64		

Figure 27: EQ08: ARMA(1,2) model for ΔY_t .

Dependent Variable: D(Y) Method: Least Squares Date: 04/25/19 Time: 16:57 Sample (adjusted): 1960Q4 2002Q2 Included observations: 167 after adjustments Convergence achieved after 3 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) AR(2)	-0.005609 0.214356 -0.243233	0.059498 0.075567 0.075411	-0.094265 2.836639 -3.225406	0.9250 0.0051 0.0015
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.087456 0.076327 0.791038 102.6215 -196.3027 7.858644 0.000551	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-0.004371 0.823072 2.386858 2.442870 2.409592 1.886421
Inverted AR Roots	.11+.48i	.1148i		

Figure 28: EQ09: ARMA(2,0) model for ΔY_t .

Dependent Variable: D(Y) Method: Least Squares Date: 04/25/19 Time: 16:57 Sample (adjusted): 1960Q4 2002Q2 Included observations: 167 after adjustments Convergence achieved after 14 iterations MA Backcast: 1960Q3

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) AR(2) MA(1)	-0.007273 -0.259665 -0.195673 0.539483	0.063268 0.177386 0.096088 0.173288	-0.114949 -1.463844 -2.036402 3.113223	0.9086 0.1452 0.0433 0.0022
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.132030 0.116055 0.773839 97.60880 -192.1211 8.264821 0.000038	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-0.004371 0.823072 2.348755 2.423438 2.379067 1.972602
Inverted AR Roots Inverted MA Roots	13+.42i 54	1342i		

Figure 29: EQ10: ARMA(2,1) model for ΔY_t .

Dependent Variable: D(Y) Method: Least Squares Date: 04/25/19 Time: 16:58 Sample (adjusted): 1960Q4 2002Q2 Included observations: 167 after adjustments Convergence achieved after 23 iterations MA Backcast: 1960Q2 1960Q3

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) AR(2) MA(1) MA(2)	-0.006457 -1.042607 -0.537606 1.372371 0.642513	0.069115 0.207530 0.119335 0.210920 0.162743	-0.093420 -5.023878 -4.505015 6.506582 3.948028	0.9257 0.0000 0.0000 0.0000 0.0000 0.0001
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.157962 0.137170 0.764541 94.69261 -189.5884 7.597565 0.000012	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	-0.004371 0.823072 2.330399 2.423753 2.368289 2.031619	
Inverted AR Roots Inverted MA Roots	5252i 6941i	52+ .52i 69+ .41i		

Figure 30: EQ11: ARMA(2,2) model for ΔY_t .

Figure 31: EQ05: ARMA(0,2) estimated inverse roots λ .

Figure 32: EQ05: ARMA(0,2) estimated correlograms.

	Correlogr	am of Resi	duals		
Date: 04/25/19 Tim Sample: 1960Q2 20 Included observation Q-statistic probabilit	ie: 17:04 02Q2 is: 169 ies adjusted for 2 AF	RMA term(s)	1		
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 -0.004 2 -0.025 3 0.102 4 0.078 5 -0.072 6 0.035 7 -0.238 8 0.024 9 -0.005 10 -0.007 11 -0.077 12 0.038 13 -0.091 14 0.067 15 -0.027 16 -0.128 17 0.002 18 0.057 19 -0.065 20 -0.069 21 0.057 22 0.022 23 0.068 24 -0.005 25 -0.041 26 0.100 27 -0.036 28 -0.021 29 -0.064 30 -0.033 31 0.078 32 0.040 33 -0.032 <td>-0.004 -0.025 0.102 0.079 -0.067 0.028 -0.262 0.037 -0.016 0.043 -0.039 0.001 -0.085 0.019 -0.012 -0.012 -0.012 -0.019 -0.012 -0.019 -0.012 -0.019 -0.027 -0.001 -0.069 0.001 0.069 0.001 0.058 -0.048 -0.047 0.021 -0.043 -0.021 -0.043 -0.044 -0.091</td> <td>0.0032 0.1080 1.9086 2.9699 3.8757 4.0971 14.188 14.293 14.293 14.306 15.379 15.649 17.174 18.018 18.150 21.224 21.225 21.844 22.651 23.587 24.216 24.308 25.217 25.222 25.653 27.856 27.946 28.796 29.021 30.296 30.628 32.501 32.501 32.947</td> <td>0.167 0.227 0.275 0.393 0.014 0.027 0.046 0.074 0.081 0.110 0.103 0.115 0.152 0.096 0.130 0.148 0.161 0.169 0.188 0.229 0.238 0.287 0.287 0.322 0.238 0.287 0.322 0.238 0.287 0.322 0.238 0.287 0.322 0.278 0.361 0.371 0.361 0.371 0.399 0.434 0.398 0.442 0.481 0.519</td>	-0.004 -0.025 0.102 0.079 -0.067 0.028 -0.262 0.037 -0.016 0.043 -0.039 0.001 -0.085 0.019 -0.012 -0.012 -0.012 -0.019 -0.012 -0.019 -0.012 -0.019 -0.027 -0.001 -0.069 0.001 0.069 0.001 0.058 -0.048 -0.047 0.021 -0.043 -0.021 -0.043 -0.044 -0.091	0.0032 0.1080 1.9086 2.9699 3.8757 4.0971 14.188 14.293 14.293 14.306 15.379 15.649 17.174 18.018 18.150 21.224 21.225 21.844 22.651 23.587 24.216 24.308 25.217 25.222 25.653 27.856 27.946 28.796 29.021 30.296 30.628 32.501 32.501 32.947	0.167 0.227 0.275 0.393 0.014 0.027 0.046 0.074 0.081 0.110 0.103 0.115 0.152 0.096 0.130 0.148 0.161 0.169 0.188 0.229 0.238 0.287 0.287 0.322 0.238 0.287 0.322 0.238 0.287 0.322 0.238 0.287 0.322 0.278 0.361 0.371 0.361 0.371 0.399 0.434 0.398 0.442 0.481 0.519

Figure 33: EQ05: ARMA(0,2) residual correlograms.

Figure 34: EQ05: ARMA(0,2) dynamic forecast (out-of-sample) for 1988Q2 to 2002Q2 (Y is the data, YF is the model forecast, and YF_SE is the forecast standard error).

-	~	m :•	-	~	T 1	7	~	T 14	7	~		7	~	m 14
Z	Cump	Tail p	2	Cump	Tail p	2	Cump	Tail p	<u>Z</u>	Cum p	Tail p	<u>Z</u>	Cum p	Tail p
0.00	0,5000	0,5000	0.40	0,6554	0,3446	0.80	0,7881	0,2119	1,20	0,8849	0,1151	1,60	0.9452	0.0548
0.01	0.5040	0,4960	0.41	0.6591	0.3409	0,81	0,7910	0,2090	1,21	0,8869	0,1131	1.61	0,9463	0.0537
0.02	0.5080	0.4920	0.42	0,6628	0.3372	0.82	0,7939	0,2061	1.22	0,8888	0.1112	1.62	0.9474	0.0526
0.03	0,5120	0.4880	0.43	0,6664	0.3336	0,83	0,7967	0,2033	1.23	0,8907	0,1093	1.63	0.9484	0.0516
0.04	0,5160	0.4840	0.44	0,6700	0,3300	0,84	0,7995	0,2005	1.24	0,8925	0,1075	1.64	0.9495	0.0505
0.05	0.5199	0.4801	0.45	0,6736	0.3264	0.85	0,8023	0.1977	1.25	0,8944	0,1056	1.65	0,9505	0.0495
0.06	0,5239	0.4761	0.46	0,6772	0.3228	0,86	0,8051	0.1949	1.26	0,8962	0,1038	1,66	0.9515	0.0485
0,07	0,5279	0.4721	0,47	0,6808	0.3192	0,87	0,8078	0,1922	1.27	0,8980	0,1020	1,67	0.9525	0.0475
0,08	0,5319	0,4681	0.48	0.6844	0.3156	0,88	0,8106	0.1894	1.28	0,8997	0,1003	1,68	0,9535	0.0465
0.09	0,5359	0,4641	0.49	0.6879	0,3121	0,89	0.8133	0.1867	1,29	0,9015	0,0985	1,69	0.9545	0.0455
0,10	0.5398	0.4602	0,50	0.6915	0,3085	0,90	0.8159	0.1841	1,30	0.9032	0,0968	1.70	0.9554	0.0446
0.11	0,5438	0.4562	0.51	0,6950	0.3050	0,91	0,8186	0.1814	1.31	0,9049	0.0951	1.71	0.9564	0.0436
0.12	0,5478	0.4522	0.52	0.6985	0.3015	0.92	0.8212	0.1788	1.32	0,9066	0.0934	1.72	0.9573	0.0427
0,13	0,5517	0.4483	0,53	0,7019	0.2981	0,93	0,8238	0.1762	1.33	0,9082	0,0918	1,73	0,9582	0.0418
0.14	0.5557	0.4443	0,54	0.7054	0,2946	0,94	0.8264	0.1736	1.34	0,9099	0,0901	1,74	0.9591	0.0409
0.15	0.5596	0.4404	0,55	0,7088	0.2912	0,95	0,8289	0.1711	1,35	0,9115	0.0885	1,75	0.9599	0.0401
0.16	0,5636	0.4364	0.56	0.7123	0,2877	0,96	0.8315	0.1685	1,36	0.9131	0.0869	1.76	0.9608	0.0392
0.17	0,5675	0.4325	0.57	0.7157	0,2843	0.97	0.8340	0,1660	1,37	0.9147	0.0853	1,77	0.9616	0.0384
0.18	0.5714	0.4286	0.58	0.7190	0.2810	0,98	0.8365	0.1635	1.38	0,9162	0,0838	1,78	0.9625	0.0375
0.19	0.5753	0.4247	0.59	0.7224	0.2776	0,99	0.8389	0.1611	1.39	0.9177	0.0823	1.79	0.9633	0.0367
0.20	0,5793	0.4207	0,60	0.7257	0.2743	1.00	0.8413	0.1587	1.40	0.9192	0,0808	1.80	0.9641	0.0359
0.21	0.5832	0.4168	0.61	0.7291	0.2709	1.01	0.8438	0.1562	1.41	0,9207	0.0793	1.81	0.9649	0.0351
0.22	0.5871	0.4129	0.62	0.7324	0.2676	1.02	0.8461	0.1539	1.42	0.9222	0.0778	1.82	0.9656	0.0344
0.23	0.5910	0.4090	0.63	0.7357	0.2643	1.03	0.8485	0.1515	1.43	0.9236	0.0764	1.83	0.9664	0.0336
0.24	0.5948	0.4052	0.64	0.7389	0.2611	1.04	0.8508	0.1492	1.44	0.9251	0.0749	1.84	0.9671	0.0329
0.25	0,5987	0.4013	0.65	0.7422	0.2578	1.05	0.8531	0.1469	1.45	0.9265	0.0735	1.85	0.9678	0.0322
0.26	0,6026	0.3974	0,66	0.7454	0.2546	1.06	0.8554	0.1446	1.46	0.9279	0.0721	1,86	0,9686	0.0314
0.27	0.6064	0,3936	0.67	0.7486	0.2514	1.07	0.8577	0.1423	1.47	0.9292	0,0708	1.87	0.9693	0.0307
0,28	0.6103	0.3897	0.68	0.7517	0.2483	1.08	0.8599	0.1401	1.48	0,9306	0.0694	1.88	0.9699	0.0301
0.29	0.6141	0.3859	0.69	0.7549	0.2451	1.09	0.8621	0.1379	1.49	0.9319	0,0681	1.89	0,9706	0.0294
0.30	0.6179	0.3821	0,70	0,7580	0.2420	1.10	0.8643	0.1357	1.50	0,9332	0,0668	1.90	0.9713	0.0287
0.31	0.6217	0.3783	0.71	0.7611	0.2389	1.11	0.8665	0.1335	1.51	0.9345	0.0655	1.91	0.9719	0.0281
0.32	0.6255	0.3745	0.72	0.7642	0.2358	1.12	0.8686	0.1314	1.52	0.9357	0.0643	1.92	0.9726	0.0274
0.33	0.6293	0.3707	0.73	0.7673	0.2327	1.13	0.8708	0.1292	1.53	0.9370	0.0630	1.93	0.9732	0.0268
0.34	0.6331	0.3669	0.74	0.7704	0.2296	1.14	0.8729	0.1271	1.54	0.9382	0.0618	1.94	0.9738	0.0262
0.35	0.6368	0.3632	0.75	0.7734	0.2266	1.15	0.8749	0.1251	1.55	0.9394	0.0606	1.95	0.9744	0.0256
0.36	0.6406	0.3594	0.76	0.7764	0.2236	1.16	0.8770	0.1230	1.56	0,9406	0.0594	1.96	0,9750	0.0250
0.37	0.6443	0.3557	0.77	0.7794	0.2206	1.17	0.8790	0.1210	1.57	0.9418	0.0582	1.97	0.9756	0.0244
0.38	0.6480	0.3520	0.78	0.7823	0.2177	1.18	0.8810	0.1190	1.58	0.9429	0.0571	1.98	0.9761	0.0239
0.39	0,6517	0,3483	0.79	0,7852	0,2148	1.19	0.8830	0.1170	1.59	0.9441	0.0559	1,99	0.9767	0.0233

Areas Under the Normal Curve

Figure 35: Statistical table for N(0, 1).

	2-	tailed testin	ıg	1-tailed testing				
df								
	0.1	0.05	0.01	0.1	0.05	0.01		
5	2.015	2.571	4.032	1.476	2.015	3.365		
6	1.943	2.447	3.707	1.440	1.943	3.143		
7	1.895	2.365	3.499	1.415	1.895	2.998		
8	1.860	2.306	3.355	1.397	1.860	2.896		
9	1.833	2.262	3.250	1.383	1.833	2.821		
10	1.812	2.228	3.169	1.372	1.812	2.764		
11	1.796	2.201	3.106	1.363	1.796	2.718		
12	1.782	2.179	3.055	1.356	1.782	2.681		
13	1.771	2.160	3.012	1.350	1.771	2.650		
14	1.761	2.145	2.977	1.345	1.761	2.624		
15	1.753	2.131	2.947	1.341	1.753	2.602		
16	1.746	2.120	2.921	1.337	1.746	2.583		
17	1.740	2.110	2.898	1.333	1.740	2.567		
18	1.734	2.101	2.878	1.330	1.734	2.552		
19	1.729	2.093	2.861	1.328	1.729	2.539		
20	1.725	2.086	2.845	1.325	1.725	2.528		
21	1.721	2.080	2.831	1.323	1.721	2.518		
22	1.717	2.074	2.819	1.321	1.717	2.508		
23	1.714	2.069	2.807	1.319	1.714	2.500		
24	1.711	2.064	2.797	1.318	1.711	2.492		
25	1.708	2.060	2.787	1.316	1.708	2.485		
26	1.706	2.056	2.779	1.315	1.706	2.479		
27	1.703	2.052	2.771	1.314	1.703	2.473		
28	1.701	2.048	2.763	1.313	1.701	2.467		
29	1.699	2.045	2.756	1.311	1.699	2.462		
30	1.697	2.042	2.750	1.310	1.697	2.457		
40	1.684	2.021	2.704	1.303	1.684	2.423		
50	1.676	2.009	2.678	1.299	1.676	2.403		
60	1.671	2.000	2.660	1.296	1.671	2.390		
80	1.664	1.990	2.639	1.292	1.664	2.374		
100	1.660	1.984	2.626	1.290	1.660	2.364		
120	1.658	1.980	2.617	1.289	1.658	2.358		
	1.645	1.960	2.576	1.282	1.645	2.327		

Critical Values of the <u>t</u> Distribution

Figure 36: Statistical table for Student's t(r).

Critical Values of the <u>F</u> Distribution ($\alpha = .05$)

df	df between										
within	1	2	3	4	5	6	7	8	12	24	8
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.68	4.53	4.37
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.00	3.84	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.57	3.41	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.28	3.12	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.07	2.90	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	2.91	2.74	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.79	2.61	2.41
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.69	2.51	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.60	2.42	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.53	2.35	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.48	2.29	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.42	2.24	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.38	2.19	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.34	2.15	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.31	2.11	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.28	2.08	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.25	2.05	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.23	2.03	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.20	2.01	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.18	1.98	1.73
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.16	1.96	1.71
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.15	1.95	1.69
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.13	1.93	1.67
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.12	1.91	1.66
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.10	1.90	1.64
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.09	1.89	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.00	1.79	1.51
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	1.92	1.70	1.39
80	3.96	3.11	2.72	2.49	2.33	2.21	2.13	2.06	1.88	1.65	1.33
100	3.94	3.09	2.70	2.46	2.31	2.19	2.10	2.03	1.85	1.63	1.28
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.83	1.61	1.26
8	3.84	3.00	2.61	2.37	2.22	2.10	2.01	1.94	1.75	1.52	1.00

Figure 37: Statistical table for F(m, n) at the 5% level.

Critical Values of the <u>F</u> Distribution ($\alpha = .01$)

df	df between										
within	1	2	3	4	5	6	7	8	12	24	8
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	9.89	9.47	9.02
6	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.72	7.31	6.88
7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.47	6.07	5.65
8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.67	5.28	4.86
9	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.11	4.73	4.31
10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.71	4.33	3.91
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.40	4.02	3.60
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.16	3.78	3.36
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	3.96	3.59	3.17
14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	3.80	3.43	3.01
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.67	3.29	2.87
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.55	3.18	2.75
17	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.46	3.08	2.65
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.37	3.00	2.57
19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.30	2.92	2.49
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.23	2.86	2.42
21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.17	2.80	2.36
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.12	2.75	2.31
23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.07	2.70	2.26
24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.03	2.66	2.21
25	7.77	5.57	4.68	4.18	3.85	3.63	3.46	3.32	2.99	2.62	2.17
26	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	2.96	2.58	2.13
27	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	2.93	2.55	2.10
28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	2.90	2.52	2.07
29	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	2.87	2.49	2.04
30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	2.84	2.47	2.01
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.66	2.29	1.81
60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.50	2.12	1.60
80	6.96	4.88	4.04	3.56	3.26	3.04	2.87	2.74	2.42	2.03	1.50
100	6.90	4.82	3.98	3.51	3.21	2.99	2.82	2.69	2.37	1.98	1.43
120	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.34	1.95	1.38
00	6.64	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.19	1.79	1.00

Figure 38: Statistical table for F(m,n) at the 1% level.

36	Area in the Upper Tail										
ai .	0.99	0.95	0.9	0.1	0.05	0.01					
1	0.000	0.004	0.016	2.706	3.841	6.635					
2	0.020	0.103	0.211	4.605	5.991	9.210					
3	0.115	0.352	0.584	6.251	7.815	11.345					
4	0.297	0.711	1.064	7.779	9.488	13.277					
5	0.554	1.145	1.610	9.236	11.070	15.086					
6	0.872	1.635	2.204	10.645	12.592	16.812					
7	1.239	2.167	2.833	12.017	14.067	18.475					
8	1.646	2.733	3.490	13.362	15.507	20.090					
9	2.088	3.325	4.168	14.684	16.919	21.666					
10	2.558	3.940	4.865	15.987	18.307	23.209					
11	3.053	4.575	5.578	17.275	19.675	24.725					
12	3.571	5.226	6.304	18.549	21.026	26.217					
13	4.107	5.892	7.042	19.812	22.362	27.688					
14	4.660	6.571	7.790	21.064	23.685	29.141					
15	5.229	7.261	8.547	22.307	24.996	30.578					
16	5.812	7.962	9.312	23.542	26.296	32.000					
17	6.408	8.672	10.085	24.769	27.587	33.409					
18	7.015	9.390	10.865	25.989	28.869	34.805					
19	7.633	10.117	11.651	27.204	30.144	36.191					
20	8.260	10.851	12.443	28.412	31.410	37.566					
21	8.897	11.591	13.240	29.615	32.671	38.932					
22	9.542	12.338	14.041	30.813	33.924	40.289					
23	10.196	13.091	14.848	32.007	35.172	41.638					
24	10.856	13.848	15.659	33.196	36.415	42.980					
25	11.524	14.611	16.473	34.382	37.652	44.314					

Critical Values of the χ^2 Distribution

Figure 39: Statistical table for $\chi^2(q)$.