Topic: Time series modelling

- This problem set deals with estimation of univariate time series models, using the Box-Jenkins ARIMA methodology.
- We use three datasets: (1) 177 quarterly observations on log U.S. GNP from 1947Q1 to 1991Q1, available as gnp.txt on the website. (2) 60 months of bond yield (interest rate) data from 1990M1 to 1994M12, available as bond_yields.txt. (3) 288 months of total France-U.S. scheduled air passenger traffic data from 1983M1 to 2006M12, available as france_us_total_traffic_monthly.txt.

Box-Jenkins methodology

- The central idea is to fit the 'best' univariate ARIMA (integrated ARMA) model to the time series of interest. There is no reason why an ARMA(p,q) model with small p and q should adequately describe a given time series. However, as a recipe for building short-term forecasting models, it provides a useful set of theoretical tools, and a workable empirical counterpart.
- The Wold decomposition theorem states that every covariance stationary stochastic process can be expressed as an $ARMA(p, \infty)$ with white noise errors. Practically, we cannot estimate an $ARMA(p, \infty)$, and a compromise is to base the estimation on a model with a finite number of ARMA terms and choose the best ARMA(p,q)approximation that fits the data, where p and q are generally small. Part of the model building process will therefore involve determination of the lag structure.

- (step 1) Wold's decomposition theorem applies to stationary stochastic processes, and so the data y_t must first be *transformed* to stationarity (if it is not already stationary). Essentially, this implies a sample autocorrelation function (SACF) that decays 'rapidly'. Usually, the transformation involves taking first differences Δy_t or second differences $\Delta^2 y_t$. Simply, this choice can be made by a visual assessment of the SACF, or by fitting an AR(1) with constant to the data and checking whether the AR parameter is 'close to' 1 (a 'unit root'). Rigorously, unit root tests must be used to decide whether a variable is stationary or nonstationary (not considered).
- (step 2) Next, we must estimate the parameters of a variety of (usually low-order) ARMA(p,q) models, by nonlinear least squares or maximum likelihood. The most parsimonious model (the best fit, subject to not having 'too many' parameters) is selected by use of an information criterion such as the Schwarz Information Criterion (SIC). It is also important to check the usual diagnostics (e.g. significance of variables), and also to compare the SACF and sample partial ACF (SPACF) of the data with those implied by the model (the ACF and PACF).
- (step 3) Once a model has been selected, the *model residuals* must be analyzed, to check whether they resemble white noise (using the *Ljung-Box Q-statistic*, which is based upon the ACF of the estimated residuals).
- (step 4) Once a parsimonious ARMA model has been specified and estimated, it can be used for *forecasting*, and the quality of the forecasts can be checked using formal tests (these tests are not considered here).
- Ljung-Box Q-statistic: This test uses the ACF ρ_k to test H_0 : there is no significant autocorrelation up to and including lag s, against the two-sided alternative H_1 : at least one autocorrelation is significant, up to and including lag s. The statistic is

given by

Q = T(T+2)
$$\sum_{k=1}^{s} \frac{\rho_k^2}{T-k} \sim \chi^2(s-h),$$

where T is the effective sample size, s is the maximum lag, ρ_k is either the ACF or the SACF, and h = 0 for raw data, and h = p + q for ARMA(p, q) model residuals. Under H_0 , all ρ_k will be close to 0, and so Q will be small.

• Schwarz Information Criterion (SIC): How well does an estimated model fit the data? There is a trade-off between *improving model fit* by including an additional ARMA parameter (p+q increases), against *parsimony* of the model (inclusion of too many coefficients can lead to over-fitting and poor forecasting performance). The SIC is asymptotically consistent for ARMA(p,q) models, i.e. given a 'large enough' sample and consideration of a set of p and q that *includes the true* p,q, the SIC will select the correct lag-order. The 'best' ARMA model is chosen by minimizing the SIC across various ARMA(p,q) models, e.g. p,q = 0, 1, 2, 3, 4.

Illustration of Box-Jenkins methodology using GNP data

- 1. Import the log GNP data into a dated (quarterly) workfile as y_t .
- 2. Examine the SACF and the SPACF of y_t . Note that the SACF decays slowly, while the SPACF is close to zero for lag greater than 1. This is strongly suggestive of an AR(1) with positive coefficient (the SACF is always positive): see the lecture notes.
- 3. Without transforming the data, fit an AR(1) model with constant to y_t , and examine the AR parameter. If this is 'close to' 1 (roughly, $|\hat{\alpha}_1| > 0.95$), then the data may be considered to be nonstationary, and will need to be transformed. Also examine the roots of the inverse polynomial associated with the AR lag polynomial. What do you notice? Then, compare the data and model ACF/PACF (the SACF and model

ACF, and the SPACF and model PACF). What do you see? Finally, check whether the estimated residuals are white noise.

- 4. Again without transforming the data, fit an AR(2) model with constant to y_t . As for the AR(1), assess the quality of the model, and check for nonstationarity of y_t .
- 5. Now transform y_t by taking the first-difference, i.e. $\Delta y_t := y_t y_{t-1}$. Plot the series (which can be interpreted as the quarterly growth rate of GNP), and fit an AR(1) model with constant to Δy_t . Assess the quality of the model fit.
- 6. Fit an MA(2) model with constant to Δy_t . Assess the quality of the model fit. Compare the SIC from the MA(2) model to the SIC from the AR(1) model. What do you see?
- 7. Fit an ARMA(2,2) model with constant to Δy_t . Assess the quality of the model fit, and in particular the data/model ACF and PACF. Compare the SIC from the ARMA(2,2) model to the SIC from the ARMA(p,q) models with p,q = 0,1,2 (all combinations). What do you see? Note that minimizing SIC is less important than finding a parsimonious model with good properties, and that captures the ACF and PACF dependence structure...
- 8. Finally, note that an ARMA(p,q) model fitted to transformed (differenced) data is known as an ARIMA (integrated ARMA) model. For instance, an ARMA(2,2) fitted to Δy_t is an ARIMA(2,1,2) model, where the second parameter in brackets refers to the degree of differencing of the data (to transform it to stationarity). Likewise, an ARMA(p,q) model fitted to Δ^dy_t is an ARIMA(p,d,q) model.

An ARIMA model for interest rates

- 1. (There are no figures to help you in this section: the method is as above)
- 2. Import the bond yield data into a dated (monthly) workfile as y_t . Plot the series, and examine the SACF and SPACF. Does the series y_t appear to be stationary? What ARMA model do the SACF and SPACF suggest might be appropriate for y_t ? Do you notice anything unusual in the SACF?!
- 3. Compute (manually) the Ljung-Box Q statistic (this is also reported by EViews) for the autocorrelations of y_t, and test that there is no jointly significant autocorrelation up to and including (i) lag s = 1, (ii) lag s = 2, and (iii) lag s = 3, at the 95% level of significance. Based on these results, is the series y_t a white noise process y_t ~ ARMA(0,0)?
- 4. Fit an AR(1) model with constant to y_t , with White's standard errors, and interpret the estimation output. Check whether the estimated model (and hence the data) seems to be stationary, by examining the roots of the inverse polynomial. (Note that you cannot rigorously test whether the data is nonstationary, i.e. root = 1 against stationary, i.e. |root| < 1 using a standard t statistic, since this statistic will not have its usual asymptotic normal distribution if the data is actually nonstationary).
- 5. Assuming that y_t is not stationary, create and plot the series Δy_t . Fit an AR(1) model with constant to the Δy_t . What do you notice about the regression output?
- 6. Fit ARMA(p,q) models to Δy_t , for all combinations of p, q = 0, 1, 2, 3. You do not need to use robust standard errors. Based on the SIC, which ARMA model provides the best fit to the transformed data?
- 7. For the best model from part 6 above, re-estimate the model over the sample period

1990M1 to 1994M5, using White's standard errors, and specifying the dependent variable in the equation as 'd(y)' (this syntax is needed for forecasting applications, if you wish to be able to forecast y_t (which is usually the case) rather than Δy_t). Carefully interpret the regression output. Plot and interpret the actual and fitted series, the roots of the inverse polynomials, the residual SACF and SPACF and Ljung-Box Q-statistics, and the data/model ACF/SACF and PACF/SPACF. Check for normality of the estimated residuals.

8. For the model estimated in part 7 above, perform (i) a dynamic forecast of the series y_t over the period 1994M6 to 1994M12 (save the forecast as 'yf' and the forecast standard error as 'yf_se'), and (ii) a static forecast of the series y_t over the period 1994M6 to 1994M12 (save the forecast as 'yf2'). Plot the original series y_t against 'yf', 'yf+2yf_se', 'yf-2yf_se' and 'yf2', and compare. (Note that a static forecast computes a sequence of one-step-ahead forecasts of the dependent variable, replacing any right-hand-side lagged dependent variables with their actual values, or with actual estimated values for MA terms. A dynamic forecast, on the other hand, will replace right-hand-side lagged dependent variables with their previously forecasted values). The plot for the best model is given below.

An ARIMA model for passenger traffic (the final step!)

1. (There are no figures to help you in this section. Import the passenger traffic data over 1983M1 to 2006M12 as y_t . Using all appropriate techniques, construct both dynamic and static forecasts for the out-of-sample period 2006M1 to 2006M12. **Hint**: before attempting Box-Jenkins modelling, first *remove* any strong linear time trends and/or deterministic seasonality from y_t , e.g. of the form $\theta_1 t$ and/or $\theta_2 \cos(2\pi/M)(t - \theta_3)$, where M determines the period of the seasonality, and is to be fixed (chosen, not estimated) in advance. Also, account for any structural breaks that may be relevant. Interpret all of your results carefully. How well do your forecasts track the actual 2006 total passenger numbers? (**Advanced**: you may also consider seasonal ARMA models: see the EViews manual for details!)

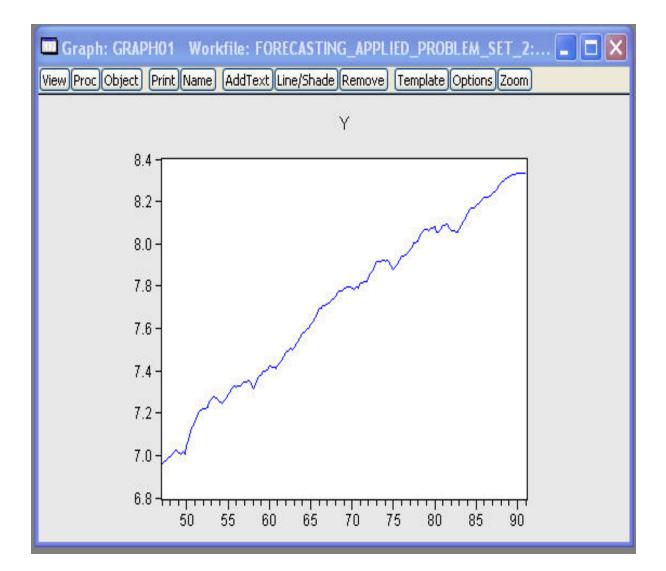


Figure 1: Log of quarterly U.S. GNP, y_t , from 1947Q1 to 1991Q1.

Series: Y Workfile: FORECASTING_APPLIED_PROBLEM_SET View Proc Object Properties Print Name Freeze Sample Genr Sheet Graph Stats Ident											
View Proc Object Prope				Genr Sh	eet Graph	Stats	dent				
Correlogram of Y											
Date: 01/14/10 Time: 11:47 Sample: 1947Q1 1991Q1 Included observations: 177											
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob						
		1 2 3 4 5 6 7 8 9 10 11 12 13 14	0.946 0.928 0.910 0.891 0.873 0.855 0.836 0.836 0.816 0.797	0.983 -0.027 -0.025 -0.009 -0.013 -0.012 -0.012 -0.011 -0.026 -0.018 -0.011 -0.025 0.018 0.010	173.86 342.43 505.55 663.30 815.69 962.89 1104.9 1241.9 1373.6 1500.0 1621.4 1737.4 1848.7 1955.3	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000					
		15 16 17 18 20 21 22 23 24 25 26 27 28	0.646 0.631 0.616 0.601 0.586 0.572 0.558 0.543	0.019 0.009 0.001 0.008 -0.000 -0.014 -0.015 -0.011 -0.008 0.004 -0.001 -0.004 -0.0018 -0.019	2057.8 2156.3 2251.0 2342.1 2429.9 2514.2 2595.1 2672.6 2746.9 2818.0 2886.1 2951.3 3013.7 3073.1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Caste				

Figure 2: SACF and SPACF of y_t , which suggests a low-order AR process, e.g. an AR(1).

Equation: EQ01 View Proc Object Print		and the second	and the second	sids						
Dependent Variable: Y Method: Least Squares Date: 01/14/10 Time: 11:53 Sample (adjusted): 1947Q2 1991Q1 Included observations: 176 after adjustments Convergence achieved after 4 iterations										
	Coefficient	Std. Error	t-Statistic	Prob.						
С	9.762822	1.122667	8.696101	0.0000						
AR(1)	0.996230	0.002024	492.3002	0.0000						
R-squared	0.999283	Mean depend	ent var	7.717105						
Adjusted R-squared	0.999278	S.D. depende	nt var	0.396573						
S.E. of regression	0.010653	Akaike info cri	terion	-6.234724						
Sum squared resid	0.019745	Schwarz criter	rion	-6.198696						
Log likelihood	550.6557	Hannan-Quin	n criter.	-6.220111						
F-statistic	242359.5	Durbin-Watso	in stat	1.256012						
Prob(F-statistic)	0.000000									
	La terra de Acalanda									

Figure 3: AR(1) regression $y_t = \alpha_0 + \alpha_1 y_{t-1} + \varepsilon_t$ for log U.S. GNP, with very high R^2 , significant coefficients, a low Durbin-Watson statistic, and a near unit root ($\widehat{\alpha_1} \approx 1$).

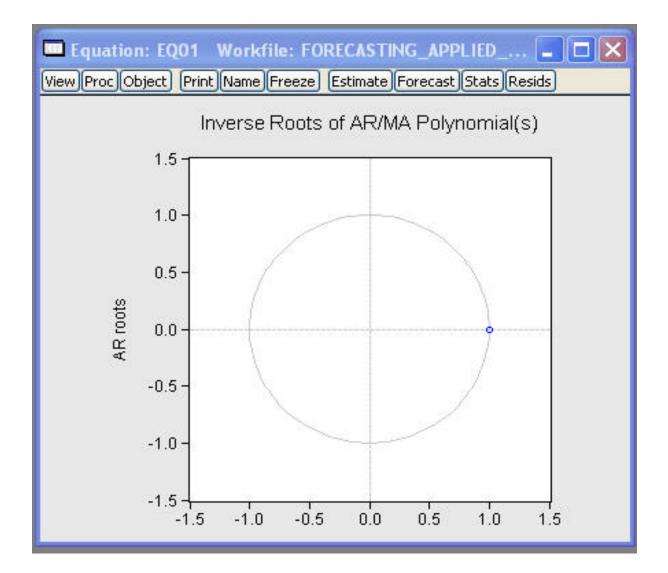


Figure 4: Root of AR(1) inverse polynomial $\alpha^{\star}(\lambda)$, indicating nonstationarity.

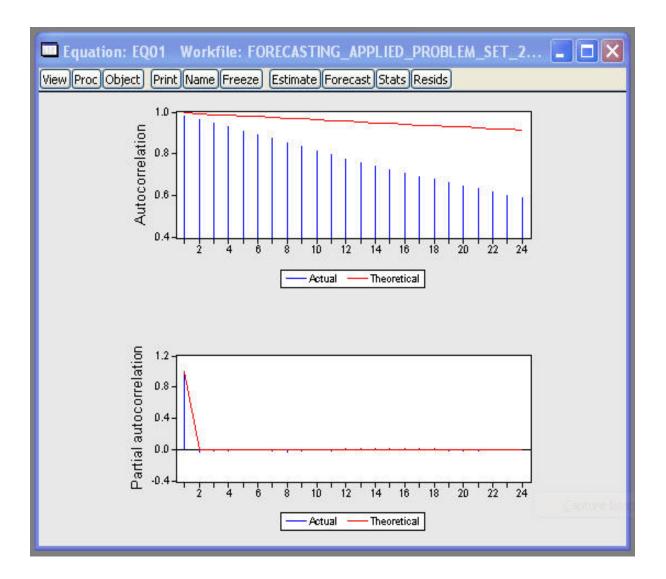


Figure 5: The AR(1) model ACF/data SACF and model PACF/data SPACF, which show that autocorrelation decays more rapidly in the data than the model would suggest. It is likely that the near nonstationarity of y_t is obscuring the underlying dependence in the data.

Equation: EQ01 Workfile: FORECASTING_APPLIED_PROBLEM											
Correlogram of Residuals											
Date: 01/14/10 Time Sample: 1947Q2 199 Included observations Q-statistic probabilitie	1Q1	۱ term(s)				<					
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob						
		8 -0.092 9 -0.087 10 -0.006 11 -0.043 12 -0.113 13 -0.116 14 -0.126 15 -0.083 16 0.023 17 0.058 18 0.091 19 0.033 20 0.025 21 -0.042	0.125 -0.147 -0.106 -0.026 0.026 0.005 -0.122 -0.054 0.089 -0.050 -0.163 -0.063 -0.063 -0.026 -0.022 0.047 -0.022 -0.027 -0.022 -0.067 0.029 -0.091 -0.042 0.036 -0.046	24.237 34.910 36.762 39.435 40.330 40.493 42.079 43.515 43.521 43.864 46.317 48.888 51.976 53.330 53.438 54.112 55.754 55.971 56.093 56.453 56.576 58.272 59.404 59.541 59.685 59.718 59.865	0.000 0.000						

Figure 6: ACF and PACF and Q-statistics for estimated residuals from the AR(1) model fitted to y_t , indicating that the residuals are not white noise.

	Name Freeze	Estimate Forec	ast Stats Res	sids
Dependent Variable: Y Method: Least Square Date: 01/14/10 Time: Sample (adjusted): 19 Included observations Convergence achieved	s 12:44 47Q3 1991Q1 : 175 after adju			
	Coefficient	Std. Error	t-Statistic	Prob.
С	9.413386	1.168754	8.054208	0.0000
AR(1)	1.367027	0.071069	19.23511	0.0000
AR(2)	-0.369884	0.070846	-5.220928	0.0000
R-squared	0.999368	Mean depend	lent var	7.721380
Adjusted R-squared	0.999361	S.D. depende	ent var	0.393623
S.E. of regression	0.009950	Akaike info cr	iterion	-6.365508
Sum squared resid	0.017028	Schwarz crite	rion	-6.311254
Log likelihood	559.9819	Hannan-Quin	in criter.	-6.343501
	136071.3	Durbin-Watso	on stat	2.091968
· · · · · · · · · · · · · · · · · · ·				
F-statistic Prob(F-statistic)	0.000000			

Figure 7: AR(2) regression $y_t = \alpha_0 + \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \varepsilon_t$ for log U.S. GNP, with very high R^2 , significant coefficients, and a 'good' Durbin-Watson statistic. Has the nonstationary behaviour disappeared? (See the roots of the inverse polynomial below).

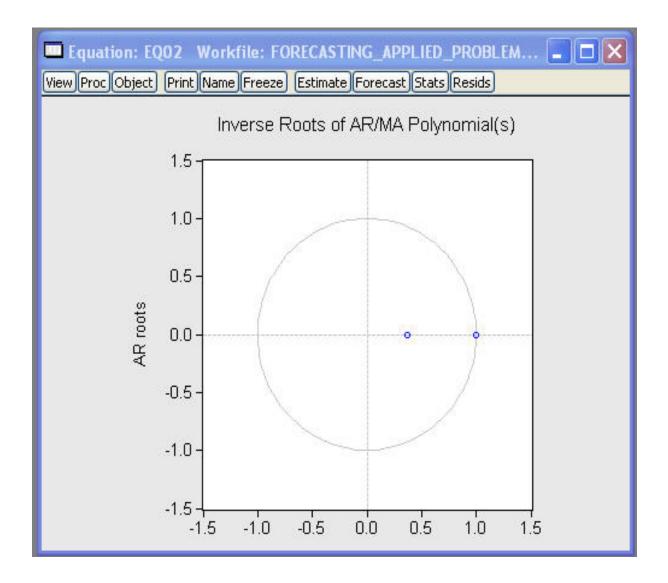


Figure 8: Roots of AR(2) inverse polynomial $\alpha^*(\lambda)$, indicating that the nonstationary behaviour is still present! (While one root is less than 1 in absolute value, the other is very close to 1).

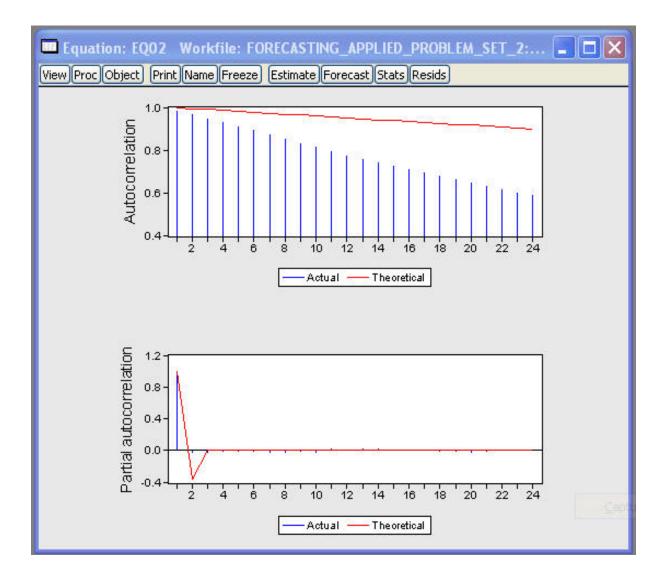


Figure 9: The AR(2) model ACF/data SACF and model PACF/data SPACF, which show that autocorrelation still decays more rapidly in the data than the model would suggest.

ew Proc Object Print Name Freeze Estimate Forecast Stats Resids Correlogram of Residuals											
ate: 01/14/10 Time: 12:45											
ample: 1947Q3 1991Q1 ncluded observations: 175											
		A torr	n(c)								
Q-statistic probabilities adjusted for 2 ARMA term(s)											
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob					
i d i	1 10	1	-0.049	-0.049	0.4249						
· 🗖 ·		2	0.167		5.4178						
10	1 10			-0.050	6.1409	0.013					
10	י ד י ו			-0.112	7.2023	0.027					
1 1 1	יםי			-0.078	8.5577						
1	1 1			-0.004							
1 🛛 1	1 1	7		0.045							
' <u>"</u> '	' <u>P'</u>			-0.086	9.7743	0.134					
יםי	' <u></u> '	100000		-0.116	10.768						
· • •	· P'	10		0.060	11.115						
	<u>"</u> "	11	0.005		11.119						
<u>'</u> ¶ !	<u>'</u> <u></u>			-0.124	12.311	0.265					
<u>!</u> <u>!</u> !	1 19 1	100000		-0.098							
·	1 1	1.000		-0.061	13.920						
<u>'</u> ¶.'	1 !%!			-0.040		0.325					
		16	0.045	0.046							
		18	0.029	-0.010 0.027	15.288						
; P';				-0.003	16.519	0.417					
i ni	1 11	20	0.005			0.487					
id i	ig i			-0.069							
i hi	1 11	22	0.029	0.018	17.618	0.613					
id i	l idi			-0.066	18.805	0.598					
	1 181			-0.076	19.246	0.630					
i li	1 11	25	0.005	0.025	19.251	0.687					
i i i	l ifi			-0.017							
	id i			-0.069	19.418						
SI3 12											

Figure 10: ACF and PACF and Q-statistics for estimated residuals from the AR(2) model fitted to y_t , indicating that the residuals are approximately white noise. However, the near nonstationarity of y_t means that the model is still not satisfactory.

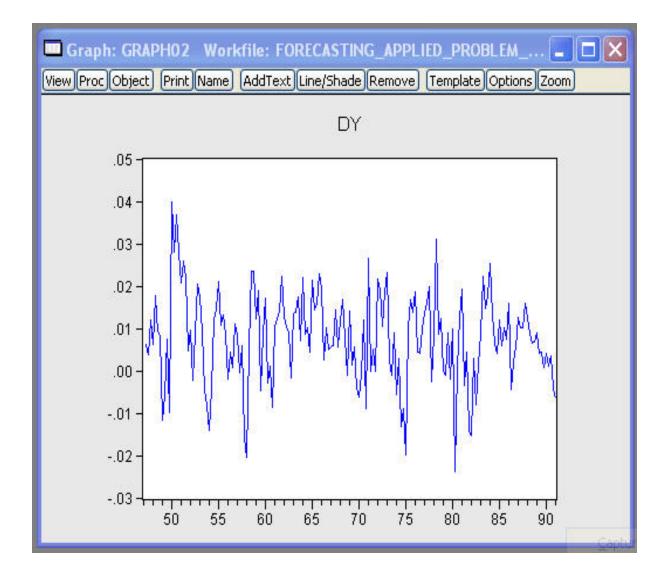


Figure 11: Quarterly U.S. GNP growth, Δy_t , from 1947Q2 to 1991Q1.

	Name Freeze	Estimate Foreca	ast Stats Res	sids
Dependent Variable: D Method: Least Square Date: 01/14/10 Time: Sample (adjusted): 19 Included observations Convergence achieved	s 13:13 47Q3 1991Q1 : 175 after adju			
2 2	Coefficient	Std. Error	t-Statistic	Prob.
С	0.007704	0.001219	6.320839	0.0000
AR(1)	0.380721	0.070718	5.383637	0.0000
R-squared	0.143495	Mean depend	0.007749	
Adjusted R-squared	0.138544	S.D. depende	nt var	0.010758
S.E. of regression	0.009985	Akaike info cri	terion	-6.364143
Sum squared resid	0.017247	Schwarz criter	rion	-6.327974
Log likelihood	558.8625	Hannan-Quin	n criter.	-6.349472
	28.98355	Durbin-Watso	in stat	2.095356
F-statistic				
이 가 같은 그가 이 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같이 가지?	0.000000			

Figure 12: AR(1) regression $\Delta y_t = \alpha_0 + \alpha_1 \Delta y_{t-1} + \varepsilon_t$, with low R^2 (is this unexpected?!), significant coefficients, 'good' Durbin-Watson statistic, and stationary characteristics. It is unusual to go beyond Δ^2 in applied work.

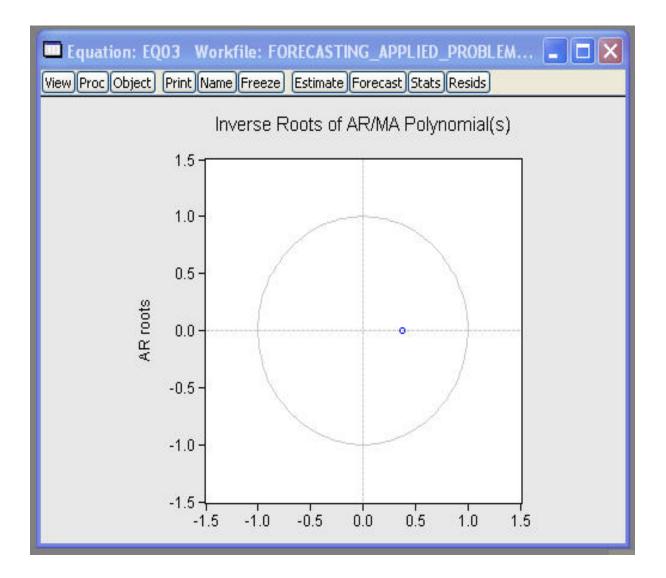


Figure 13: Roots of AR(1) inverse polynomial $\alpha^{\star}(\lambda)$, indicating that the model is stationary.

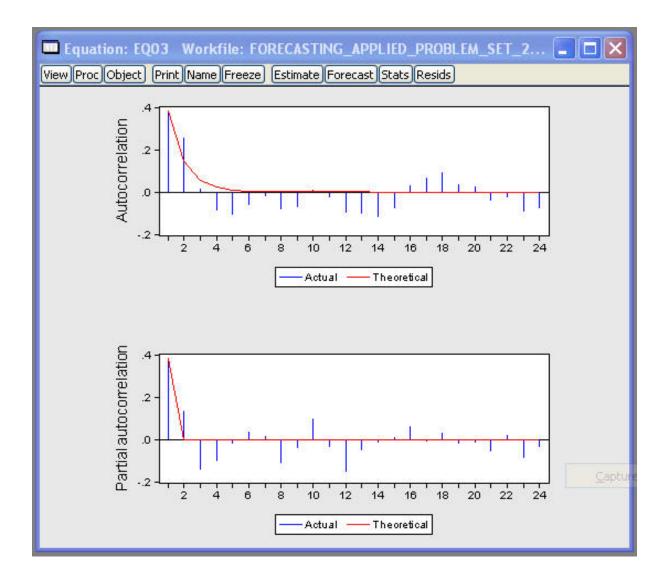


Figure 14: The AR(1) model ACF/data SACF and model PACF/data SPACF, which show that the data autocorrelation decays much more rapidly than before transformation. However, the model-implied ACF and PACF do not successfully capture the dependence in the data.

	Correlogram of I sted for 1 ARMA ter al Correlation	Residual				<									
Sample: 1947Q3 1991Q1 Included observations: 175 Q-statistic probabilities adjus Autocorrelation Partia	sted for 1 ARMA ter al Correlation		PAC			~									
		AC	PAC	Sample: 1947Q3 1991Q1 Included observations: 175 Q-statistic probabilities adjusted for 1 ARMA term(s)											
	·]= 2	Section and a section of the section	2022/03	Q-Stat	Prob										
	I I 4 I I 5 I I 6 I I 7 I I 7 I I 9 I I 10 I I 11 I I 12 I I 13 I I 14 I I 16 I I 17 I I 17 I I 19 I I 120 I I 20 I I 20	1 0.011 2 -0.073 3 -0.040 4 -0.077 5 -0.062 6 0.046 7 0.028 8 0.079 9 -0.005 0 0.039 1 -0.055 2 0.029 3 -0.077 4 -0.047	0.168 -0.043 -0.106 -0.072 0.003 0.054 -0.074 -0.106 0.072 0.053 -0.115 -0.090 -0.051 -0.030 0.054 -0.004 0.034 0.034 0.014 -0.063 0.024 -0.059 -0.070 0.032 -0.008	0.4593 5.6361 6.2347 7.1299 8.2742 8.3432 8.5643 9.3026 10.070 10.621 10.645 11.665 11.971 13.098 13.840 14.244 14.394 15.624 15.629 15.928 16.544 16.715 17.910 18.354 18.363 18.427 18.480	0.018 0.044 0.068 0.082 0.138 0.200 0.232 0.260 0.303 0.386 0.389 0.448 0.440 0.462 0.507 0.569 0.551 0.618 0.662 0.652 0.728 0.711 0.738 0.785 0.824 0.858										

Figure 15: ACF and PACF and Q-statistics for estimated residuals from the AR(1) model fitted to Δy_t , indicating that the residuals are approximately white noise. However, the poor fit of the oscillatory decay in the ACF/PACF suggests that a better model can be found.

/iew Proc Object Print	Name Freeze	Estimate Foreca	ast Stats Res	ids	
Dependent Variable: D Method: Least Square Date: 01/14/10 Time: Sample (adjusted): 19 Included observations Convergence achieved MA Backcast: 1946Q4	s 13:25 47Q2 1991Q1 : 176 after adju 3 after 9 iteratio				
	Coefficient	Std. Error	t-Statistic	Prob.	
С	0.007688	0.001174	6.547759	0.0000	
MA(1)	0.313387	0.073318	4.274373	0.0000	
MA(2)	0.274145	0.073443	3.732739	0.0003	
R-squared	0.169512	Mean depend	ent var	0.007741	
Adjusted R-squared	0.159911	S.D. depende	nt var	0.010728	
S.E. of regression	0.009832	Akaike info cri	terion	-6.389353	
o.e. of logicoolon	0.016725	Schwarz criter	rion	-6.335311	
Sum squared resid	FOF OOOI	Hannan-Quin	n criter.	-6.367434	
집에 다 집에서는 이 사람이 가 구매한 지하는 것 같아요.	565.2631		n otot	1.941726	
Sum squared resid	17.65559	Durbin-Watso	n stat		
Sum squared resid Log likelihood	않는 문어님 강하는 것 같은	Durbin-Watso	in Stat	2	

Figure 16: MA(2) regression $\Delta y_t = \alpha_0 + \varepsilon_t + \beta_1 \varepsilon_{t-1} + \beta_2 \varepsilon_{t-2}$, with low R^2 , significant coefficients, 'good' Durbin-Watson statistic, and stationary characteristics (of course!).

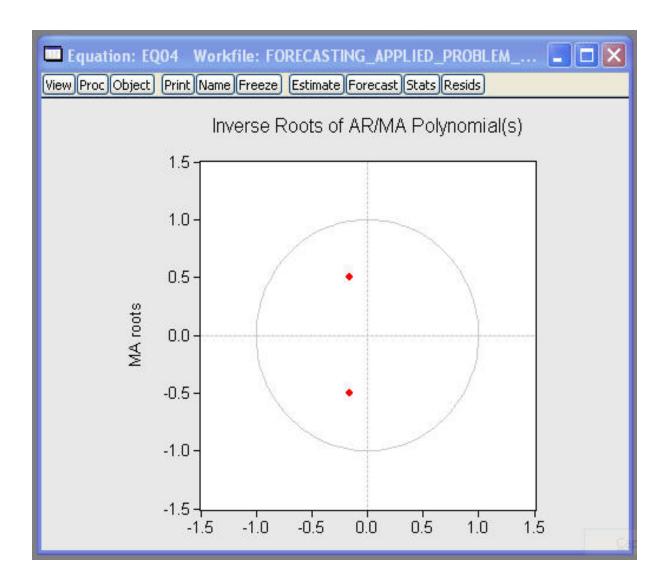


Figure 17: Roots of MA(2) inverse polynomial $\beta^{\star}(\lambda)$, indicating that the model is *invert-ible*. Note that all MA models are stationary, and that invertibility has no impact on stationarity (however, a non-invertible model often indicates numerical problems in the estimation, and should be checked carefully).

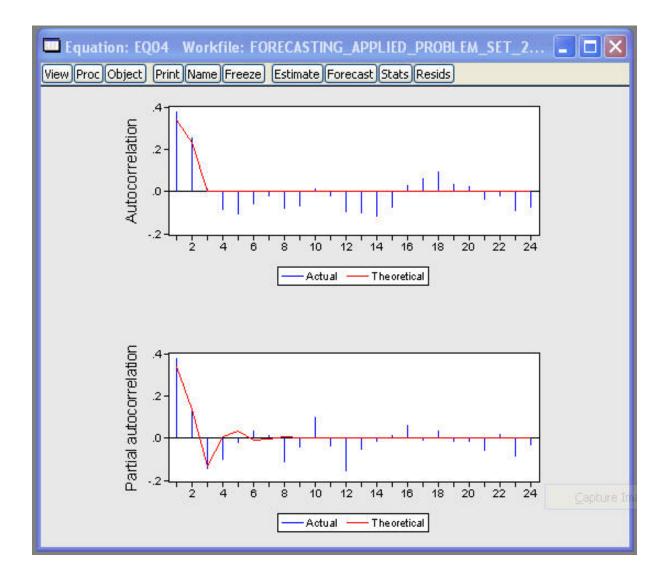


Figure 18: The MA(2) model ACF/data SACF and model PACF/data SPACF. The model-implied ACF and PACF do not successfully capture the dependence in the data.

Equation: EQ04 Workfile: FORECASTING_APPLIED_PROBLEM											
Correlogram of Residuals											
·	1Q1 s: 176 es adjusted for 2 ARM/	A term(s)				<					
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob						
		6 -0.003 7 0.058 8 -0.086 9 -0.085 10 0.078 11 0.011 12 -0.091 13 -0.036 14 -0.073 15 -0.068 16 0.042 17 0.040 18 0.063 19 0.009 20 0.019 21 -0.040 22 0.026 23 -0.077 24 -0.059	 0.022 0.050 -0.074 -0.108 0.003 -0.084 -0.084 -0.072 0.036 -0.093 -0.079 -0.079 -0.079 -0.079 -0.020 -0.052 -0.040 0.002 -0.058 -0.055 -0.055 -0.038 	0.1190 0.2134 0.6945 1.5990 3.7487 3.7504 4.3803 5.7626 7.1307 8.2756 8.2986 9.8875 10.119 11.157 12.065 12.404 12.719 13.502 13.519 13.591 13.591 13.910 14.052 15.278 15.278 15.2994 16.159 16.287	0.405 0.450 0.290 0.441 0.496 0.450 0.415 0.407 0.504 0.520 0.516 0.522 0.574 0.624 0.636 0.701 0.755 0.789 0.828 0.809 0.816 0.848 0.877						

Figure 19: ACF and PACF and Q-statistics for estimated residuals from the MA(2) model fitted to Δy_t , indicating that the residuals are approximately white noise. However, the poor fit of the oscillatory decay in the ACF/PACF again suggests that a better model can be found.

		Estimate Forec	ast Stats Res	sids
Dependent Variable: D				
Method: Least Square: Date: 01/14/10 Time:				
Sample (adjusted): 19				
Included observations		istments		
Convergence achieved				
MA Backcast: 1947Q2				
	Coefficient	Std. Error	t-Statistic	Prob.
С	0.007729	0.001138	6.792296	0.0000
AR(1)	0.608871	0.202694	3.003894	0.0031
AR(2)	-0.468378	0.163630	-2.862424	0.0047
MA(1)	-0.300251	0.183816	-1.633430	0.1042
MA(2)	0.618708	0.116469	5.312199	0.0000
R-squared	0.192135	Mean depend	lent var	0.007773
Adjusted R-squared	0.173014	S.D. depende	ent var	0.010784
S.E. of regression	0.009807	Akaike info cr	iterion	-6.383099
Sum squared resid	0.016254	Schwarz crite	rion	-6.292321
Log likelihood	560.3296	Hannan-Quin	in criter.	-6.346274
F-statistic	10.04832	Durbin-Watso	on stat	1.940559
Prob(F-statistic)	0.000000			
Inverted AR Roots	.30+.611	.3061i		
	.15+.77i	.1577i		

Figure 20: ARMA(2,2) regression $\Delta y_t = \alpha_0 + \alpha_1 \Delta y_{t-1} + \alpha_2 \Delta y_{t-2} + \varepsilon_t + \beta_1 \varepsilon_{t-1} + \beta_2 \varepsilon_{t-2}$, with $R^2 \approx 0.19$, generally significant coefficients, 'good' Durbin-Watson statistic, and stationary characteristics.

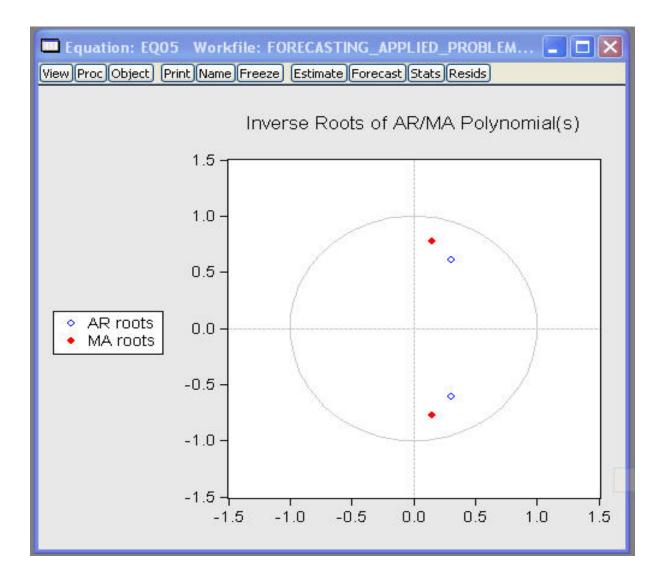


Figure 21: Roots of ARMA(2,2) inverse polynomials, indicating that the model is stationary and invertible.

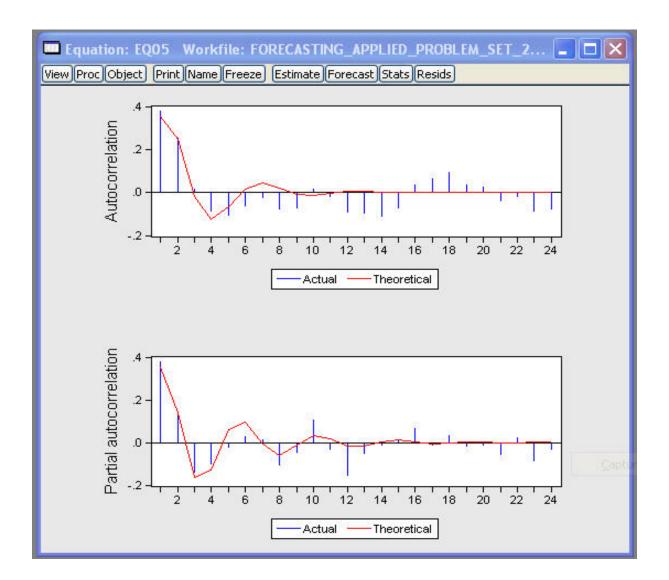


Figure 22: The ARMA(2,2) model ACF/data SACF and model PACF/data SPACF. The model-implied ACF and PACF capture the dependence in the data reasonably well (and this is as important as the model minimizing SIC across p, q).

Equation: EQ05 Workfile: FORECASTING_APPLIED_PROBLEM C											
Correlogram of Residuals											
Date: 01/14/10 Time: 13:41 Sample: 1947Q4 1991Q1 Included observations: 174 Q-statistic probabilities adjusted for 4 ARMA term(s)											
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob						
		11 0.019 12 -0.091 13 -0.048 14 -0.056 15 -0.046 16 0.039 17 0.028 18 0.051 19 -0.011	0.021 0.048 -0.054 -0.038 0.018 -0.091 -0.073 0.078 0.010 -0.080 -0.046 -0.080 -0.041 0.054 0.055 -0.003 -0.003 -0.055 0.003 -0.055 0.016 -0.090 -0.025 0.044	2.9755 4.2848 5.3079 5.3730 6.9232 7.3575 7.9585 8.3628 8.6588 8.8151 9.3281 9.3513 9.5193 9.6185 9.6835 11.035 11.314	0.479 0.673 0.562 0.509 0.505 0.615 0.645 0.600 0.633 0.680 0.732 0.787 0.809 0.858 0.890 0.919 0.942 0.923 0.938 0.953						
101 101 101	1011 1011 1011	STREET AND	-0.060		0.960						

Figure 23: ACF and PACF and Q-statistics for estimated residuals from the ARMA(2,2) model fitted to Δy_t , indicating that the residuals are approximately white noise. This model could be used for simple short-term forecasting.

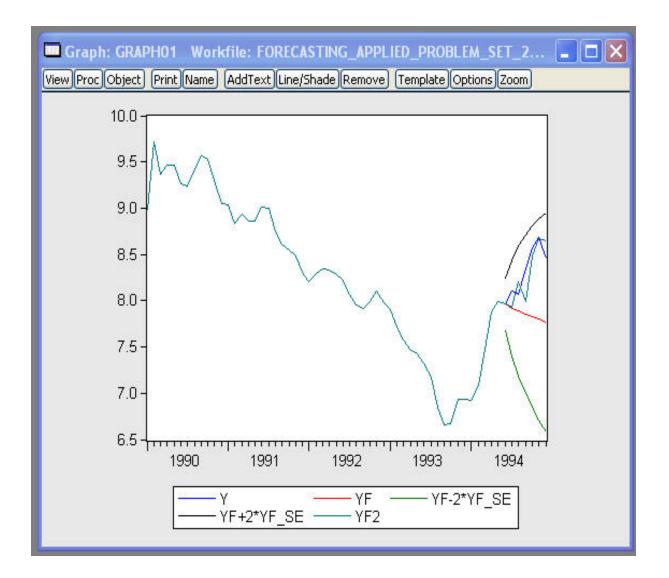


Figure 24: ARIMA(1,1,2) short-term forecasts (dynamic forecast and error bands, and static forecast) for y_t (bond yields).

Areas Under the Normal Curve

Z	Cum p	Tail p	Z	Cump	Tail p	Z	Cum p	Tail p	Z	Cum p	Tail p	2	Z Cum r	Tail p
0.00	0.5000	0.5000	0.40	0.6554	0.3446	0.80	0.7881	0.2119	1.20	0.8849	0.1151	1.	60 0.945	2 0.0548
0.01	0.5040		0.41		0.3409	0.81	0.7910		1.21		0.1131	1.		3 0.0537
0.02	0.5080		0.42		0.3372	0.82		0.2061	1.22		0.1112	1.		0.0526
0.03	0.5120	0.4880	0.43	0.6664	0.3336	0.83	0.7967	0.2033	1.23		0.1093	1.		0.0516
0.04	0.5160	0.4840	0.44		0.3300	0.84	0.7995	0.2005	1.24	0.8925	0.1075	1.	64 0.949	5 0.0505
0.05	0.5199	0.4801	0.45	0.6736	0.3264	0.85	0.8023	0.1977	1.25	0.8944	0.1056	1.	65 0,9505	0.0495
0.06	0,5239	0.4761	0.46	0.6772	0,3228	0.86	0.8051	0.1949	1.26	0,8962	0,1038	1,	66 0,9513	5 0.0485
0.07	0,5279	0.4721	0.47	0.6808	0.3192	0,87	0.8078	0.1922	1.27	0,8980	0.1020	1,	67 0,952	5 0.0475
0.08	0,5319	0,4681	0.48	0.6844	0,3156	0.88	0.8106	0.1894	1.28	0.8997	0.1003	1,	68 0,953	5 0.0465
0.09	0.5359	0.4641	0.49	0.6879	0,3121	0.89	0.8133	0,1867	1.29	0,9015	0.0985	1.	69 0.9543	5 0.0455
0.10	0.5398	0.4602	0.50	0.6915	0,3085	0,90	0.8159	0,1841	1.30	0.9032	0,0968	1.	70 0.9554	0.0446
0.11	0.5438	0.4562	0.51	0,6950	0,3050	0.91	0.8186	0,1814	1.31	0,9049	0.0951	1,	71 0.9564	0.0436
0.12	0.5478	0.4522	0.52	0,6985	0,3015	0.92	0.8212	0,1788	1.32	0,9066	0.0934	1,	72 0,9573	3 0.0427
0.13	0,5517	0.4483	0,53	0.7019	0,2981	0.93	0,8238	0,1762	1.33	0,9082	0,0918	1,	73 0,9582	2 0.0418
0.14	0.5557		0.54	0,7054	0,2946	0.94	0.8264	0,1736	1.34	0,9099	0,0901	1,	74 0,959	0.0409
0.15	0.5596	0.4404	0.55	0,7088		0.95	0.8289	0.1711	1.35	0.9115	0,0885	1,	75 0,9599	0.0401
0.16	0,5636	0.4364	0,56	0.7123	0,2877	0.96	0.8315	0,1685	1.36	0.9131	0,0869	1.	76 0,9608	3 0.0392
0.17	0,5675	0.4325	0.57	0.7157	0,2843	0.97	0.8340	0,1660	1.37	0,9147	0,0853	1.		5 0.0384
0.18	0.5714	0,4286	0,58	0.7190	0,2810	0.98	0,8365	0,1635	1.38	0,9162	0,0838	1,	78 0,962	5 0.0375
0,19	0,5753	0,4247	0.59	0,7224		0,99	0,8389	0,1611	1.39	0,9177	0,0823	1,		3 0.0367
0,20	0,5793		0,60	0.7257		1.00	0.8413		1.40		0,0808	1,		0.0359
0.21	0,5832	0,4168	0,61		0,2709	1.01	0,8438	0,1562	1.41		0.0793	1,	81 0,9649	0.0351
0.22	0.5871		0.62		0,2676	1.02	0.8461		1.42	0,9222		1.		5 0.0344
0.23	0,5910		0.63		0,2643	1.03	0.8485		1.43		0.0764	1.		0.0336
0.24	0,5948		0.64	0,7389		1.04	0.8508		1.44		0.0749	1.		0.0329
0.25		0.4013	0,65	0,7422		1.05	0.8531		1.45		0.0735	1,		3 0.0322
0.26	0,6026		0,66		0,2546	1.06	0.8554		1.46		0.0721	1,		5 0.0314
0.27	0,6064		0,67	0.7486		1.07	0.8577		1.47		0.0708	1,		3 0.0307
0.28	0.6103		0,68	0.7517		1.08	0.8599		1.48		0.0694	1.		0.0301
0.29	0.6141		0,69	0.7549		1.09	0,8621		1.49		0,0681	1,		5 0.0294
0,30	0.6179		0,70		0,2420	1,10	0,8643		1,50		0,0668	1,		3 0.0287
0.31	0.6217		0.71		0,2389	1.11	0,8665		1,51	0,9345		1,		0.0281
0.32	0.6255		0.72	0.7642		1.12	0,8686		1.52		0.0643	1,		5 0.0274
0.33	0.6293		0.73	0,7673		1.13	0.8708		1,53		0,0630	1,		2 0.0268
0.34	0.6331		0.74	0,7704		1,14	0.8729		1.54		0,0618	1.		3 0.0262
0.35	0.6368		0.75	0.7734		1.15	0.8749		1.55		0.0606	1.		0.0256
0.36	0.6406		0.76		0.2236	1.16	0,8770		1.56		0.0594			0.0250
0.37	0.6443		0.77	0.7794		1.17	0.8790		1.57		0.0582	1,		5 0.0244
0.38	0.6480		0.78	0.7823		1.18	0.8810		1.58		0.0571	1.		0.0239
0,39	0,6517	0,3483	0,79	0,7852	0,2148	1.19	0,8830	0,1170	1.59	0,9441	0,0559	1,	99 0,976	0.0233

Figure 25: Statistical table for N(0, 1).

	2-	tailed testi	ıg	1-tailed testing			
df							
	0.1	0.05	0.01	0.1	0.05	0.01	
5	2.015	2.571	4.032	1.476	2.015	3.365	
6	1.943	2.447	3.707	1.440	1.943	3.143	
7	1.895	2.365	3.499	1.415	1.895	2.998	
8	1.860	2.306	3.355	1.397	1.860	2.896	
9	1.833	2.262	3.250	1.383	1.833	2.821	
10	1.812	2.228	3.169	1.372	1.812	2.764	
11	1.796	2.201	3.106	1.363	1.796	2.718	
12	1.782	2.179	3.055	1.356	1.782	2.681	
13	1.771	2.160	3.012	1.350	1.771	2.650	
14	1.761	2.145	2.977	1.345	1.761	2.624	
15	1.753	2.131	2.947	1.341	1.753	2.602	
16	1.746	2.120	2.921	1.337	1.746	2.583	
17	1.740	2.110	2.898	1.333	1.740	2.567	
18	1.734	2.101	2.878	1.330	1.734	2.552	
19	1.729	2.093	2.861	1.328	1.729	2.539	
20	1.725	2.086	2.845	1.325	1.725	2.528	
21	1.721	2.080	2.831	1.323	1.721	2.518	
22	1.717	2.074	2.819	1.321	1.717	2.508	
23	1.714	2.069	2.807	1.319	1.714	2.500	
24	1.711	2.064	2.797	1.318	1.711	2.492	
25	1.708	2.060	2.787	1.316	1.708	2.485	
26	1.706	2.056	2.779	1.315	1.706	2.479	
27	1.703	2.052	2.771	1.314	1.703	2.473	
28	1.701	2.048	2.763	1.313	1.701	2.467	
29	1.699	2.045	2.756	1.311	1.699	2.462	
30	1.697	2.042	2.750	1.310	1.697	2.457	
40	1.684	2.021	2.704	1.303	1.684	2.423	
50	1.676	2.009	2.678	1.299	1.676	2.403	
60	1.671	2.000	2.660	1.296	1.671	2.390	
80	1.664	1.990	2.639	1.292	1.664	2.374	
100	1.660	1.984	2.626	1.290	1.660	2.364	
120	1.658	1.980	2.617	1.289	1.658	2.358	
	1.645	1.960	2.576	1.282	1.645	2.327	

Critical Values of the <u>t</u> Distribution

Figure 26: Statistical table for Student's t(r).

Critical Values of the <u>F</u> Distribution ($\alpha = .05$)

df		df between									
within	1	2	3	4	5	6	7	8	12	24	00
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.68	4.53	4.37
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.00	3.84	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.57	3.41	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.28	3.12	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.07	2.90	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	2.91	2.74	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.79	2.61	2.41
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.69	2.51	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.60	2.42	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.53	2.35	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.48	2.29	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.42	2.24	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.38	2.19	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.34	2.15	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.31	2.11	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.28	2.08	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.25	2.05	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.23	2.03	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.20	2.01	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.18	1.98	1.73
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.16	1.96	1.71
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.15	1.95	1.69
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.13	1.93	1.67
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.12	1.91	1.66
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.10	1.90	1.64
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.09	1.89	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.00	1.79	1.51
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	1.92	1.70	1.39
80	3.96	3.11	2.72	2.49	2.33	2.21	2.13	2.06	1.88	1.65	1.33
100	3.94	3.09	2.70	2.46	2.31	2.19	2.10	2.03	1.85	1.63	1.28
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.83	1.61	1.26
00	3.84	3.00	2.61	2.37	2.22	2.10	2.01	1.94	1.75	1.52	1.00

Figure 27: Statistical table for F(m, n) at the 5% level.

Critical Values of the <u>F</u> Distribution ($\alpha = .01$)

df	df between										
within	1	2	3	4	5	6	7	8	12	24	00
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	9.89	9.47	9.02
6	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.72	7.31	6.88
7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.47	6.07	5.65
8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.67	5.28	4.86
9	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.11	4.73	4.31
10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.71	4.33	3.91
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.40	4.02	3.60
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.16	3.78	3.36
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	3.96	3.59	3.17
14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	3.80	3.43	3.01
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.67	3.29	2.87
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.55	3.18	2.75
17	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.46	3.08	2.65
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.37	3.00	2.57
19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.30	2.92	2.49
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.23	2.86	2.42
21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.17	2.80	2.36
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.12	2.75	2.31
23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.07	2.70	2.26
24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.03	2.66	2.21
25	7.77	5.57	4.68	4.18	3.85	3.63	3.46	3.32	2.99	2.62	2.17
26	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	2.96	2.58	2.13
27	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	2.93	2.55	2.10
28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	2.90	2.52	2.07
29	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	2.87	2.49	2.04
30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	2.84	2.47	2.01
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.66	2.29	1.81
60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.50	2.12	1.60
80	6.96	4.88	4.04	3.56	3.26	3.04	2.87	2.74	2.42	2.03	1.50
100	6.90	4.82	3.98	3.51	3.21	2.99	2.82	2.69	2.37	1.98	1.43
120	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.34	1.95	1.38
00	6.64	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.19	1.79	1.00

Figure 28: Statistical table for F(m,n) at the 1% level.

df	Area in the Upper Tail									
ar	0.99	0.95	0.9	0.1	0.05	0.01				
1	0.000	0.004	0.016	2.706	3.841	6.635				
2	0.020	0.103	0.211	4.605	5.991	9.210				
3	0.115	0.352	0.584	6.251	7.815	11.345				
4	0.297	0.711	1.064	7.779	9.488	13.277				
5	0.554	1.145	1.610	9.236	11.070	15.086				
6	0.872	1.635	2.204	10.645	12.592	16.812				
7	1.239	2.167	2.833	12.017	14.067	18.475				
8	1.646	2.733	3.490	13.362	15.507	20.090				
9	2.088	3.325	4.168	14.684	16.919	21.666				
10	2.558	3.940	4.865	15.987	18.307	23.209				
11	3.053	4.575	5.578	17.275	19.675	24.725				
12	3.571	5.226	6.304	18.549	21.026	26.217				
13	4.107	5.892	7.042	19.812	22.362	27.688				
14	4.660	6.571	7.790	21.064	23.685	29.141				
15	5.229	7.261	8.547	22.307	24.996	30.578				
16	5.812	7.962	9.312	23.542	26.296	32.000				
17	6.408	8.672	10.085	24.769	27.587	33.409				
18	7.015	9.390	10.865	25.989	28.869	34.805				
19	7.633	10.117	11.651	27.204	30.144	36.191				
20	8.260	10.851	12.443	28.412	31.410	37.566				
21	8.897	11.591	13.240	29.615	32.671	38.932				
22	9.542	12.338	14.041	30.813	33.924	40.289				
23	10.196	13.091	14.848	32.007	35.172	41.638				
24	10.856	13.848	15.659	33.196	36.415	42.980				
25	11.524	14.611	16.473	34.382	37.652	44.314				

Critical Values of the χ^2 Distribution

Figure 29: Statistical table for $\chi^2(q)$.