
IENAC22 / Forecasting / Applied Problem Set 3

Topic: Time series modelling

• This problem set deals with estimation of univariate time series models, using the

Box-Jenkins ARIMA methodology.

• We use three datasets: (1) 177 quarterly observations on log U.S. GNP from 1947Q1

to 1991Q1, available as gnp.txt on the website. (2) 60 months of bond yield (interest

rate) data from 1990M1 to 1994M12, available as bond_yields.txt. (3) 288 months

of total France-U.S. scheduled air passenger tra�c data from 1983M1 to 2006M12,

available as france_us_total_traffic_monthly.txt.

Box-Jenkins methodology

• The central idea is to �t the `best' univariate ARIMA (integrated ARMA) model to

the time series of interest. There is no reason why an ARMA(p, q) model with small

p and q should adequately describe a given time series. However, as a recipe for

building short-term forecasting models, it provides a useful set of theoretical tools,

and a workable empirical counterpart.

• The Wold decomposition theorem states that every covariance stationary stochastic

process can be expressed as an ARMA(p,∞) with white noise errors. Practically,

we cannot estimate an ARMA(p,∞), and a compromise is to base the estimation

on a model with a �nite number of ARMA terms and choose the best ARMA(p, q)

approximation that �ts the data, where p and q are generally small. Part of the

model building process will therefore involve determination of the lag structure.
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• (step 1) Wold's decomposition theorem applies to stationary stochastic processes,

and so the data yt must �rst be transformed to stationarity (if it is not already

stationary). Essentially, this implies a sample autocorrelation function (SACF) that

decays `rapidly'. Usually, the transformation involves taking �rst di�erences ∆yt or

second di�erences ∆2yt. Simply, this choice can be made by a visual assessment of

the SACF, or by �tting an AR(1) with constant to the data and checking whether

the AR parameter is `close to' 1 (a `unit root'). Rigorously, unit root tests must be

used to decide whether a variable is stationary or nonstationary (not considered).

• (step 2) Next, we must estimate the parameters of a variety of (usually low-order)

ARMA(p, q) models, by nonlinear least squares or maximum likelihood. The most

parsimonious model (the best �t, subject to not having `too many' parameters) is

selected by use of an information criterion such as the Schwarz Information Crite-

rion (SIC). It is also important to check the usual diagnostics (e.g. signi�cance of

variables), and also to compare the SACF and sample partial ACF (SPACF) of the

data with those implied by the model (the ACF and PACF).

• (step 3) Once a model has been selected, the model residuals must be analyzed, to

check whether they resemble white noise (using the Ljung-Box Q-statistic, which is

based upon the ACF of the estimated residuals).

• (step 4) Once a parsimonious ARMA model has been speci�ed and estimated, it

can be used for forecasting, and the quality of the forecasts can be checked using

formal tests (these tests are not considered here).

• Ljung-Box Q-statistic: This test uses the ACF ρk to testH0 : there is no signi�cant

autocorrelation up to and including lag s, against the two-sided alternative H1 : at

least one autocorrelation is signi�cant, up to and including lag s. The statistic is
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given by

Q = T (T + 2)
s∑

k=1

ρ2k
T − k

∼ χ2(s− h),

where T is the e�ective sample size, s is the maximum lag, ρk is either the ACF or

the SACF, and h = 0 for raw data, and h = p + q for ARMA(p, q) model residuals.

Under H0, all ρk will be close to 0, and so Q will be small.

• Schwarz Information Criterion (SIC): How well does an estimated model �t the

data? There is a trade-o� between improving model �t by including an additional

ARMA parameter (p+ q increases), against parsimony of the model (inclusion of too

many coe�cients can lead to over-�tting and poor forecasting performance). The

SIC is asymptotically consistent for ARMA(p, q) models, i.e. given a `large enough'

sample and consideration of a set of p and q that includes the true p, q, the SIC will

select the correct lag-order. The `best' ARMA model is chosen by minimizing the

SIC across various ARMA(p, q) models, e.g. p, q = 0, 1, 2, 3, 4.

Illustration of Box-Jenkins methodology using GNP data

1. Import the log GNP data into a dated (quarterly) work�le as yt.

2. Examine the SACF and the SPACF of yt. Note that the SACF decays slowly, while

the SPACF is close to zero for lag greater than 1. This is strongly suggestive of an

AR(1) with positive coe�cient (the SACF is always positive): see the lecture notes.

3. Without transforming the data, �t an AR(1) model with constant to yt, and examine

the AR parameter. If this is `close to' 1 (roughly, |α̂1| > 0.95), then the data may

be considered to be nonstationary, and will need to be transformed. Also examine

the roots of the inverse polynomial associated with the AR lag polynomial. What do

you notice? Then, compare the data and model ACF/PACF (the SACF and model
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ACF, and the SPACF and model PACF). What do you see? Finally, check whether

the estimated residuals are white noise.

4. Again without transforming the data, �t an AR(2) model with constant to yt. As

for the AR(1), assess the quality of the model, and check for nonstationarity of yt.

5. Now transform yt by taking the �rst-di�erence, i.e. ∆yt := yt − yt−1. Plot the series

(which can be interpreted as the quarterly growth rate of GNP), and �t an AR(1)

model with constant to ∆yt. Assess the quality of the model �t.

6. Fit an MA(2) model with constant to ∆yt. Assess the quality of the model �t.

Compare the SIC from the MA(2) model to the SIC from the AR(1) model. What

do you see?

7. Fit an ARMA(2,2) model with constant to ∆yt. Assess the quality of the model

�t, and in particular the data/model ACF and PACF. Compare the SIC from the

ARMA(2,2) model to the SIC from the ARMA(p, q) models with p, q = 0, 1, 2 (all

combinations). What do you see? Note that minimizing SIC is less impor-

tant than �nding a parsimonious model with good properties, and that

captures the ACF and PACF dependence structure. . .

8. Finally, note that an ARMA(p, q) model �tted to transformed (di�erenced) data is

known as an ARIMA (integrated ARMA) model. For instance, an ARMA(2,2) �tted

to ∆yt is an ARIMA(2,1,2) model, where the second parameter in brackets refers to

the degree of di�erencing of the data (to transform it to stationarity). Likewise, an

ARMA(p, q) model �tted to ∆dyt is an ARIMA(p, d, q) model.
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An ARIMA model for interest rates

1. (There are no �gures to help you in this section: the method is as above)

2. Import the bond yield data into a dated (monthly) work�le as yt. Plot the series, and

examine the SACF and SPACF. Does the series yt appear to be stationary? What

ARMA model do the SACF and SPACF suggest might be appropriate for yt? Do

you notice anything unusual in the SACF?!

3. Compute (manually) the Ljung-Box Q statistic (this is also reported by EViews) for

the autocorrelations of yt, and test that there is no jointly signi�cant autocorrelation

up to and including (i) lag s = 1, (ii) lag s = 2, and (iii) lag s = 3, at the 95%

level of signi�cance. Based on these results, is the series yt a white noise process

yt ∼ ARMA(0, 0)?

4. Fit an AR(1) model with constant to yt, with White's standard errors, and interpret

the estimation output. Check whether the estimated model (and hence the data)

seems to be stationary, by examining the roots of the inverse polynomial. (Note that

you cannot rigorously test whether the data is nonstationary, i.e. root = 1 against

stationary, i.e. |root| < 1 using a standard t statistic, since this statistic will not

have its usual asymptotic normal distribution if the data is actually nonstationary).

5. Assuming that yt is not stationary, create and plot the series ∆yt. Fit an AR(1)

model with constant to the ∆yt. What do you notice about the regression output?

6. Fit ARMA(p, q) models to ∆yt, for all combinations of p, q = 0, 1, 2, 3. You do not

need to use robust standard errors. Based on the SIC, which ARMA model provides

the best �t to the transformed data?

7. For the best model from part 6 above, re-estimate the model over the sample period
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1990M1 to 1994M5, using White's standard errors, and specifying the dependent

variable in the equation as `d(y)' (this syntax is needed for forecasting applications,

if you wish to be able to forecast yt (which is usually the case) rather than ∆yt).

Carefully interpret the regression output. Plot and interpret the actual and �tted

series, the roots of the inverse polynomials, the residual SACF and SPACF and

Ljung-Box Q-statistics, and the data/model ACF/SACF and PACF/SPACF. Check

for normality of the estimated residuals.

8. For the model estimated in part 7 above, perform (i) a dynamic forecast of the series

yt over the period 1994M6 to 1994M12 (save the forecast as `yf' and the forecast

standard error as `yf_se'), and (ii) a static forecast of the series yt over the period

1994M6 to 1994M12 (save the forecast as `yf2'). Plot the original series yt against

`yf', `yf+2yf_se', `yf−2yf_se' and `yf2', and compare. (Note that a static forecast

computes a sequence of one-step-ahead forecasts of the dependent variable, replac-

ing any right-hand-side lagged dependent variables with their actual values, or with

actual estimated values for MA terms. A dynamic forecast, on the other hand, will

replace right-hand-side lagged dependent variables with their previously forecasted

values). The plot for the best model is given below.

An ARIMA model for passenger tra�c (the �nal step!)

1. (There are no �gures to help you in this section. Import the passenger tra�c data over

1983M1 to 2006M12 as yt. Using all appropriate techniques, construct both dynamic

and static forecasts for the out-of-sample period 2006M1 to 2006M12. Hint: before

attempting Box-Jenkins modelling, �rst remove any strong linear time trends and/or

deterministic seasonality from yt, e.g. of the form θ1t and/or θ2 cos(2π/M)(t − θ3),

where M determines the period of the seasonality, and is to be �xed (chosen, not
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estimated) in advance. Also, account for any structural breaks that may be relevant.

Interpret all of your results carefully. How well do your forecasts track the actual

2006 total passenger numbers? (Advanced: you may also consider seasonal ARMA

models: see the EViews manual for details!)
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Figure 1: Log of quarterly U.S. GNP, yt, from 1947Q1 to 1991Q1.
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Figure 2: SACF and SPACF of yt, which suggests a low-order AR process, e.g. an AR(1).
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Figure 3: AR(1) regression yt = α0 + α1yt−1 + εt for log U.S. GNP, with very high R2,
signi�cant coe�cients, a low Durbin-Watson statistic, and a near unit root (α̂1 ≈ 1).
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Figure 4: Root of AR(1) inverse polynomial α?(λ), indicating nonstationarity.
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Figure 5: The AR(1) model ACF/data SACF and model PACF/data SPACF, which show
that autocorrelation decays more rapidly in the data than the model would suggest. It is
likely that the near nonstationarity of yt is obscuring the underlying dependence in the
data.
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Figure 6: ACF and PACF and Q-statistics for estimated residuals from the AR(1) model
�tted to yt, indicating that the residuals are not white noise.
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Figure 7: AR(2) regression yt = α0 +α1yt−1 +α2yt−2 +εt for log U.S. GNP, with very high
R2, signi�cant coe�cients, and a `good' Durbin-Watson statistic. Has the nonstationary
behaviour disappeared? (See the roots of the inverse polynomial below).
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Figure 8: Roots of AR(2) inverse polynomial α?(λ), indicating that the nonstationary
behaviour is still present! (While one root is less than 1 in absolute value, the other is
very close to 1).
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Figure 9: The AR(2) model ACF/data SACF and model PACF/data SPACF, which show
that autocorrelation still decays more rapidly in the data than the model would suggest.
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Figure 10: ACF and PACF and Q-statistics for estimated residuals from the AR(2) model
�tted to yt, indicating that the residuals are approximately white noise. However, the near
nonstationarity of yt means that the model is still not satisfactory.
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Figure 11: Quarterly U.S. GNP growth, ∆yt, from 1947Q2 to 1991Q1.
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Figure 12: AR(1) regression ∆yt = α0 +α1∆yt−1 + εt, with low R2 (is this unexpected?!),
signi�cant coe�cients, `good' Durbin-Watson statistic, and stationary characteristics. It
is unusual to go beyond ∆2 in applied work.
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Figure 13: Roots of AR(1) inverse polynomial α?(λ), indicating that the model is station-
ary.
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Figure 14: The AR(1) model ACF/data SACF and model PACF/data SPACF, which
show that the data autocorrelation decays much more rapidly than before transformation.
However, the model-implied ACF and PACF do not successfully capture the dependence
in the data.
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Figure 15: ACF and PACF and Q-statistics for estimated residuals from the AR(1) model
�tted to ∆yt, indicating that the residuals are approximately white noise. However, the
poor �t of the oscillatory decay in the ACF/PACF suggests that a better model can be
found.
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Figure 16: MA(2) regression ∆yt = α0 + εt + β1εt−1 + β2εt−2, with low R2, signi�cant
coe�cients, `good' Durbin-Watson statistic, and stationary characteristics (of course!).
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Figure 17: Roots of MA(2) inverse polynomial β?(λ), indicating that the model is invert-
ible. Note that all MA models are stationary, and that invertibility has no impact on
stationarity (however, a non-invertible model often indicates numerical problems in the
estimation, and should be checked carefully).
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Figure 18: The MA(2) model ACF/data SACF and model PACF/data SPACF. The
model-implied ACF and PACF do not successfully capture the dependence in the data.
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Figure 19: ACF and PACF and Q-statistics for estimated residuals from the MA(2) model
�tted to ∆yt, indicating that the residuals are approximately white noise. However, the
poor �t of the oscillatory decay in the ACF/PACF again suggests that a better model
can be found.
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Figure 20: ARMA(2,2) regression ∆yt = α0 + α1∆yt−1 + α2∆yt−2 + εt + β1εt−1 + β2εt−2,
with R2 ≈ 0.19, generally signi�cant coe�cients, `good' Durbin-Watson statistic, and
stationary characteristics.
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Figure 21: Roots of ARMA(2,2) inverse polynomials, indicating that the model is sta-
tionary and invertible.
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Figure 22: The ARMA(2,2) model ACF/data SACF and model PACF/data SPACF. The
model-implied ACF and PACF capture the dependence in the data reasonably well (and
this is as important as the model minimizing SIC across p, q).
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Figure 23: ACF and PACF and Q-statistics for estimated residuals from the ARMA(2,2)
model �tted to ∆yt, indicating that the residuals are approximately white noise. This
model could be used for simple short-term forecasting.
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Figure 24: ARIMA(1,1,2) short-term forecasts (dynamic forecast and error bands, and
static forecast) for yt (bond yields).
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Figure 25: Statistical table for N(0, 1).
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Figure 26: Statistical table for Student's t(r).
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Figure 27: Statistical table for F (m,n) at the 5% level.



IENAC22 / Forecasting / Applied Problem Set 3 35

Figure 28: Statistical table for F (m,n) at the 1% level.
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Figure 29: Statistical table for χ2(q).


