Topic: Discrete choice modelling (exam style)

- You are given cross-sectional data on the characteristics of T = 595 individuals from the 1982 U.S. Panel Study of Income Dynamics (PSID). The variables are: union membership (union= 1: union member, union= 0: not union member), years of full-time work experience (ex), weeks worked during year (wks), occupation (occ= 1: manual work, occ= 0: non-manual work), industry (ind= 1: manufacturing, ind= 0: non-manufacturing), residence (south= 1: southern U.S., south= 0: non-southern U.S.), residence (smsa= 1: city, smsa= 0: non-city), marital status (ms= 1: married, ms= 0: not married), sex (fem= 1: female, fem= 0: male), years of education (ed), race (blk= 1: black, blk= 0: non-black), and log wage (lwage).
- Under exam conditions, questions (a) to (h) would be expected to take 60 minutes, for a total of 50 marks. For the in-class work, three additional questions have been added: (i), (j), and (k). In an exam, these would be awarded extra marks. Questions (j) and (k) require additional EViews manipulation, and this is not given in the handout.

(a) Perform a brief preliminary analysis of the variables, and explain your findings, in no more than one paragraph. In addition: How many individuals are union members? What percentage of individuals are manual workers? What percentage of individuals are not in a manufacturing industry? What do you notice about the sample distribution of years of education?

(8 marks)

(b) The following probit equation has been estimated (probit_eqn):

$$Prob(union = 1) = \Phi(\beta_0 + \beta_1 ex + \beta_2 wks + \beta_3 occ + \beta_4 ind + \beta_5 south + \beta_6 smsa + \beta_7 ms + \beta_8 fem + \beta_9 ed + \beta_{10} blk) + error$$

What are the estimated coefficients? Briefly interpret the regression output.

(4 marks)

(c) Let x denote the vector of explanatory variables (including a constant), in the same order as listed in the probit model given in part (b) above. Compute the following:

$$\frac{\partial \operatorname{Prob}(\operatorname{union} = 1)}{\partial x} \quad \text{given} \quad \beta = \widehat{\beta}, x = \overline{x}$$

where $\widehat{\beta}$ are the estimated coefficients, and \overline{x} is the sample mean of x.

(10 marks)

(d) Interpret your result on $\partial \widehat{\text{Prob}}(\text{union} = 1)/\partial x$ in part (c) above, for the explanatory variables occ (occupation) and ed (years of education).

(4 marks)

(e) Test $H_0: \beta_6 = 0$ against $H_1: \beta_6 \neq 0$, using t and Wald tests (perform the t test manually, and refer to the EViews output for the Wald test), at the 90% level. In each case, explain your choice of critical value.

(8 marks)

(f) Compute the likelihood-ratio (LR) statistic, and test the null that the restricted model is true (all coefficients except the constant are zero), against the alternative hypothesis that the null is not true, at the 99% level.

(6 marks)

(g) Compute McFadden's R^2 manually.

(2 marks)

(h) You are given probability response curves of $\widehat{\text{Prob}}(\text{union} = 1)$ against ex_plot (years of experience), for occ = 0 (non-manual worker) and occ = 1 (manual worker): these curves are labelled union_0 and union_1 respectively. The explanatory variables wks and ed are set to their sample means, while ind, south, smsa and ms are set to 1, and fem and blk are set to 0. Interpret the curves, with emphasis on the impact of occupation and years of experience.

(8 marks)

(i) Additional question for class exercise: Consider the logit model logit_eqn. Find the estimated odds-ratio evaluated at the sample mean, and interpret.

(0 marks)

(j) Additional question for class exercise: Estimate a model for the log wage, and interpret your results briefly.

(0 marks)

(k) Additional question for class exercise: Build a 2×2 table of hits and misses for probit eqn, and use this to further assess the quality of the model.

(0 marks)

Figure 1: Histograms.

			<	1								111	1			1.15
				-				-								
		LWAGE	6.950745	6.984720	8.537000	5.676750	0.438403	-0.114001	3.393651	5.130525	0.076899		4135.693	114,1663	969	
		BLK	0.072269	0000000	1.00000	0000000	0.259151	3.303802	11.91511	3052.835	0000000		43.00000	39.89244	969	
		ස	12.84538	12.00000	17.0000	4.00000	2.790006	-0.258116	2.712730	8.662780	0.013215		7643.000	4623.775	595	-
		NOIN	0.366387	0000000	1.00000	0.000000	0.482222	0.554623	1.307607	101.5125	0000000		218.0000	138.1277	969	
		ME	0.112605	0000000	1.00000	0.00000.0	0.316375	2.451018	7.007491	993.8966	0.00000.0		000007/9	59.45546	969	
		SN SN	0.805042	1.00000	1.00000	0.00000	0.396502	-1.539962	3.371482	238.5931	0.00000.0		479.0000	93.38487	969	_
		SMSA	0.642017	1.00000	1.00000	0000000	0.479811	-0.592468	1.351019	102.2214	0000000		382.0000	136.7496	989	
		HIUOS	0.292437	000000	1.00000	0.00000	0.455265	0.912602	1.832842	116.3628	0.00000		174.0000	123.1160	969	
		2	0.405042	000000	1.00000	0.00000	0.491313	0.386873	1.149671	99.72203	000000		241.0000	143.3849	595	
	eet Stats Spec	300	0.512605	1.00000	000001	0000000	0.500262	-0.050436	1.002544	99.16683	000000		305.0000	148.6555	595	
e: PSID::Psid	eze Sample Sh	WKS	46.45210	48.00000	52,00000	5.00000	5.185025	-2.730880	13.77787	3619.416	0000000		27639.00	15969.38	989	
01 Workfil	rint Name Free	ы	22.85378	21.0000	51.00000	7.00000	10.79018	0.420826	2.008578	41.93007	000000		13598.00	69158.28	595	

憂 Ē

Figure 2: Descriptive statistics.

(urtosis

Skewness

Aaximum mumi Std. Dev.

Median Mean

Jarque-Bera

Probability

Sum Sum Sq. Dev.

Observations

Figure 3: Boxplots.

Figure 4: Correlations.

Equation: PROBIT_	EQN Workfi	le: PSID::Psid	n.	
View Proc Object Print	Jame Freeze) (B	Estimate Forecas	st Stats Resid	ds
Dependent Variable: UN Method: ML - Binary Prof Date: 12/07/10 Time: 1 Sample: 1 595 Included observations: 5 Convergence achieved a QML (Huber/White) stan	IION oit (Quadratic F 4:38 595 after 5 iteration dard errors & c	nill climbing) Is covariance		
Variable	Coefficient	Std. Error	z-Statistic	Prob.
C EX WKS OCC IND SOUTH SMSA MS FEM ED BLK	2.516784 -0.006932 -0.060829 0.955490 0.092827 -0.592739 0.260700 0.350520 -0.407026 -0.057382 0.226482	0.828929 0.005515 0.013903 0.157012 0.119774 0.137469 0.127454 0.209560 0.295710 0.028359 0.241118	3.036187 -1.256974 -4.375431 6.085444 0.775022 -4.311799 2.045454 1.672644 -1.376437 -2.023381 0.939302	0.0024 0.2088 0.0000 0.4383 0.0000 0.0408 0.0944 0.1687 0.0430 0.3476
McFadden R-squared S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. LR statistic Prob(LR statistic) Obs with Dep=0	0.198349 0.482222 1.090351 1.171484 1.121947 155.0763 0.000000 377	Mean depend S.E. of regres Sum squared Log likelihood Restr. log like Avg. log likelih Total obs	0.366387 0.420828 103.4242 -313.3795 -390.9177 -0.526688	
Obs with Dep=1	218			

Figure 5: Regression results for probit_eqn.

Figure 6: Estimated residuals from probit_eqn.

Equation: PROBIT_EQN_Workfile: PSID::Psid\

View Proc Object Print Name Freeze Estimate Forecast Stats Resids

	Coefficient Covariance Matrix												
	C	EX	WKS	000	IND	SOUTH	SMSA	MS	FEM	ED	BLK		
C	0.687124	-0.001199	-0.009248	-0.038402	-0.010335	-0.025981	-0.005981	-0.022893	-0.057471	-0.012682	-0.003814		
EX	-0.001199	3.04E-05	8.24E-06	1.96E-05	-7.55E-05	-2.98E-06	-4.14E-05	-0.000122	3.20E-05	2.17E-05	-9.97E-05		
WKS	-0.009248	8.24E-06	0.000193	-0.000250	-2.04E-05	0.000370	5.52E-06	-0.000196	0.000314	1.47E-05	0.000142		
000	-0.038402	1.96E-05	-0.000250	0.024653	-0.000215	-0.001885	0.002537	0.000805	-0.000574	0.002646	-0.003257		
IND	-0.010335	-7.55E-05	-2.04E-05	-0.000215	0.014346	0.001120	6.15E-05	-0.000485	0.003432	0.000495	0.002013		
SOUTH	-0.025981	-2.98E-06	0.000370	-0.001885	0.001120	0.018898	0.001391	-0.000655	-0.002075	0.000376	-0.001474		
SMSA	-0.005981	-4.14E-05	5.52E-06	0.002537	6.15E-05	0.001391	0.016244	0.000551	-0.002499	-0.000455	-0.004384		
MS	-0.022893	-0.000122	-0.000196	0.000805	-0.000485	-0.000655	0.000551	0.043916	0.037533	-0.000419	-0.001596		
FEM	-0.057471	3.20E-05	0.000314	-0.000574	0.003432	-0.002075	-0.002499	0.037533	0.087444	0.000479	-0.017808		
ED	-0.012682	2.17E-05	1.47E-05	0.002646	0.000495	0.000376	-0.000455	-0.000419	0.000479	0.000804	0.000183		
BLK	-0.003814	-9.97E-05	0.000142	-0.003257	0.002013	-0.001474	-0.004384	-0.001596	-0.017808	0.000183	0.058138		

Figure 7: Estimated covariance matrix from probit_eqn.

Equation: PROBIT_EQN Workfile: PSID::Psid\										
View Proc Object Print Name Freeze Estimate Forecast Stats Resids										
Wald Test: Equation: PROBIT_	EQN									
Test Statistic	Value	df	Probability							
F-statistic Chi-square	4.183881 4.183881	(1, 584) 1	0.0413 0.0408							
Null Hypothesis Su	Null Hypothesis Summary:									
Normalized Restric	tion (= 0)	Value	Std. Err.							
C(7)		0.260700	0.127454							
Restrictions are lin	ear in coefficients	3.								

Figure 8: Wald test output for probit_eqn.

🛃 EViews

File Edit Object View Proc Quick Options Window Help series ex_plot=7+(51-7)*@trend/(@obs(@trend)-1)

Figure 9: Variable definition: ex plot.

Figure 10: Probability response curves from probit_eqn.

Equation: LOGIT_E	QN Workfile	: PSID::Psid						
View Proc Object Print I	Name Freeze	Estimate Forecas	st Stats Resid	ls				
Dependent Variable: UNION Method: ML - Binary Logit (Quadratic hill climbing) Date: 12/07/10 Time: 14:58 Sample: 1 595 Included observations: 595 Convergence achieved after 5 iterations QML (Huber/White) standard errors & covariance								
Variable	Coefficient	Std. Error	z-Statistic	Prob.				
C EX WKS OCC IND SOUTH SOUTH SMSA MS FEM ED BLK	4.380828 -0.011143 -0.108126 1.658222 0.181818 -1.044332 0.448389 0.604999 -0.772222 -0.090799 0.355706	1.500746 0.009359 0.25875 0.277676 0.200410 0.243292 0.214601 0.360747 0.540173 0.048437 0.424359	2.919099 -1.190503 -4.178779 5.971787 0.907232 -4.292500 2.089405 1.677074 -1.429583 -1.874576 0.838219	0.0035 0.2338 0.0000 0.3643 0.0000 0.0367 0.0367 0.0935 0.1528 0.0609 0.4019				
McFadden R-squared S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. LR statistic Prob(LR statistic)	0.201017 0.482222 1.086846 1.167979 1.118442 157.1619 0.000000	Mean dependent var S.E. of regression Sum squared resid Log likelihood Restr. log likelihood Avg. log likelihood		0.366387 0.419664 102.8529 -312.3367 -390.9177 -0.524936				
Obs with Dep=0 Obs with Dep=1	377 218	Total obs		595				

Figure 11: Regression results for logit_eqn.

7 0 11 7 0 11 7			T 11 T	о т 1
<u>Z Cump Talip</u> <u>Z Cump Talip</u> <u>Z</u>		<u> Z Cump</u>		Cump Tailp
0.00 0.5000 0.5000 0.40 0.6554 0.3446 0.80	0 0,7881 0,21	119 1,20 0,8849	0,1151 1,60	0,9452 0,0548
0.01 0.5040 0.4960 0.41 0.6591 0.3409 0.8	0,7910 0,20	1,21 0,8869	0,1131 1,61	0,9463 0,0537
0,02 0,5080 0,4920 0,42 0,6628 0,3372 0,82	2 0,7939 0,20	061 1,22 0,8888	0,1112 1,62	0,9474 0,0526
0.03 0.5120 0.4880 0.43 0.6664 0.3336 0.8	3 0,7967 0,20	1,23 0,8907	0,1093 1,63	0,9484 0,0516
0,04 0,5160 0,4840 0,44 0,6700 0,3300 0,8	4 0,7995 0,20	005 1.24 0.8925	0,10/5 1,64	0.9495 0.0505
0.05 0.5199 0.4801 0.45 0.6736 0.3264 0.8	5 0.8023 0.19	977 1.25 0.8944	0.1056 1.65	0.9505 0.0495
0,06 0,5239 0,4761 0,46 0,6772 0,3228 0,80	6 0,8051 0,19	949 1,26 0,8962	0,1038 1,66	0,9515 0,0485
0,07 0,5279 0,4721 0,47 0,6808 0,3192 0,8	0,8078 0,19	922 1.27 0.8980	0,1020 1,67	0.9525 0.0475
0.08 0.5319 0.4681 0.48 0.6844 0.3156 0.8	8 0,8106 0,18	394 1.28 0.8997	0,1003 1,68	0.9535 0.0465
0.09 0.5359 0.4641 0.49 0.6879 0.3121 0.89	9 0.8133 0.18	367 1.29 0,9015	0,0985 1,69	0.9545 0.0455
0.10 0.5398 0.4602 0.50 0.6915 0.3085 0.90	0 0.8159 0.18	341 1,30 0,9032	0,0968 1,70	0.9554 0.0446
0.11 0.5438 0.4562 0.51 0.6950 0.3050 0.9	0.8186 0.18	314 1.31 0.9049	0.0951 1.71	0.9564 0.0436
0.12 0.5478 0.4522 0.52 0.6985 0.3015 0.92	0.8212 0.17	788 1.32 0.9066	0.0934 1.72	0.9573 0.0427
0.13 0.5517 0.4483 0.53 0.7019 0.2981 0.99	03 0.8238 0.17	1.33 0.9082	0.0918 1.73	0.9582 0.0418
0.14 0.5557 0.4443 0.54 0.7054 0.2946 0.94	4 0.8264 0.17	736 1,34 0,9099	0.0901 1.74	0.9591 0.0409
0.15 0.5596 0.4404 0.55 0.7088 0.2912 0.92	5 0.8289 0.17	711 1.35 0.9115	0,0885 1,75	0.9599 0.0401
0.16 0.5636 0.4364 0.56 0.7123 0.2877 0.9	6 0.8315 0.16	585 1.36 0.9131	0.0869 1.76	0.9608 0.0392
0.17 0.5675 0.4325 0.57 0.7157 0.2843 0.9	07 0.8340 0.16	560 1.37 0.9147	0.0853 1.77	0.9616 0.0384
0.18 0.5714 0.4286 0.58 0.7190 0.2810 0.99	0.8365 0.16	535 1.38 0.9162	0.0838 1.78	0.9625 0.0375
0.19 0.5753 0.4247 0.59 0.7224 0.2776 0.99	9 0.8389 0.16	511 1.39 0.9177	0.0823 1.79	0.9633 0.0367
0.20 0.5793 0.4207 0.60 0.7257 0.2743 1.00	0 0.8413 0.15	587 1.40 0.9192	0.0808 1.80	0.9641 0.0359
0.21 0.5832 0.4168 0.61 0.7291 0.2709 1.0	0.8438 0.15	562 1.41 0.9207	0.0793 1.81	0.9649 0.0351
0.22 0.5871 0.4129 0.62 0.7324 0.2676 1.0	2 0.8461 0.15	539 1.42 0.9222	0.0778 1.82	0.9656 0.0344
0.23 0.5910 0.4090 0.63 0.7357 0.2643 1.0	3 0.8485 0.15	515 1.43 0.9236	0.0764 1.83	0.9664 0.0336
0.24 0.5948 0.4052 0.64 0.7389 0.2611 1.0	4 0.8508 0.14	1.44 0.9251	0.0749 1.84	0.9671 0.0329
0.25 0.5987 0.4013 0.65 0.7422 0.2578 1.0	5 0.8531 0.14	469 1.45 0.9265	0.0735 1.85	0.9678 0.0322
0.26 0.6026 0.3974 0.66 0.7454 0.2546 1.04	6 0.8554 0.14	1.46 0.9279	0.0721 1.86	0.9686 0.0314
0.27 0.6064 0.3936 0.67 0.7486 0.2514 1.0	0.8577 0.14	1.47 0.9292	0.0708 1.87	0.9693 0.0307
0.28 0.6103 0.3897 0.68 0.7517 0.2483 1.0	0.8599 0.14	1.48 0.9306	0.0694 1.88	0.9699 0.0301
0.29 0.6141 0.3859 0.69 0.7549 0.2451 1.0	9 0.8621 0.13	379 1.49 0.9319	0.0681 1.89	0.9706 0.0294
0.30 0.6179 0.3821 0.70 0.7580 0.2420 1.10	0 0.8643 0.13	1.50 0.9332	0.0668 1.90	0.9713 0.0287
0.31 0.6217 0.3783 0.71 0.7611 0.2389 1.1	1 0.8665 0.13	335 1.51 0.9345	0.0655 1.91	0.9719 0.0281
0.32 0.6255 0.3745 0.72 0.7642 0.2358 1.1	2 0.8686 0.13	1.52 0.9357	0.0643 1.92	0.9726 0.0274
0.33 0.6293 0.3707 0.73 0.7673 0.2327 1.11	3 0.8708 0.12	1.53 0.9370	0.0630 1.93	0.9732 0.0268
0.34 0.6331 0.3669 0.74 0.7704 0.2296 1.1	4 0.8729 0.12	154 0.9382	0.0618 1.94	0.9738 0.0262
0.35 0.6368 0.3632 0.75 0.7734 0.2256 1.17	5 0.8749 0.12	251 155 0.0304	0.0606 1.95	0.9744 0.0256
0.36 0.6406 0.3594 0.76 0.7764 0.2266 1.16	6 0.8770 0.12	230 156 0.9406	0.0594 1.96	0.9750 0.0250
0.37 0.6443 0.3557 0.77 0.7794 0.2206 1.17	7 0.8790 0.12	210 1.57 0.9400	0.0582 1.07	0.9756 0.0244
	8 0.8810 0.11	100 158 0.0420	0.0571 1.97	0.9761 0.0239
0.39 0.6517 0.3483 0.79 0.7852 0.2148 1.10	9 0.8830 0.11	170 1.59 0.9441	0.0559 1.99	0.9767 0.0233

Areas Under the Normal Curve

Figure 12: Statistical table for N(0,1). These tables are taken from http://fsweb.berry.edu/academic/education/vbissonnette/tables/tables.html.

	2-	tailed testir	ıg	1-tailed testing				
df								
	0.1	0.05	0.01	0.1	0.05	0.01		
5	2.015	2.571	4.032	1.476	2.015	3.365		
6	1.943	2.447	3.707	1.440	1.943	3.143		
7	1.895	2.365	3.499	1.415	1.895	2.998		
8	1.860	2.306	3.355	1.397	1.860	2.896		
9	1.833	2.262	3.250	1.383	1.833	2.821		
10	1.812	2.228	3.169	1.372	1.812	2.764		
11	1.796	2.201	3.106	1.363	1.796	2.718		
12	1.782	2.179	3.055	1.356	1.782	2.681		
13	1.771	2.160	3.012	1.350	1.771	2.650		
14	1.761	2.145	2.977	1.345	1.761	2.624		
15	1.753	2.131	2.947	1.341	1.753	2.602		
16	1.746	2.120	2.921	1.337	1.746	2.583		
17	1.740	2.110	2.898	1.333	1.740	2.567		
18	1.734	2.101	2.878	1.330	1.734	2.552		
19	1.729	2.093	2.861	1.328	1.729	2.539		
20	1.725	2.086	2.845	1.325	1.725	2.528		
21	1.721	2.080	2.831	1.323	1.721	2.518		
22	1.717	2.074	2.819	1.321	1.717	2.508		
23	1.714	2.069	2.807	1.319	1.714	2.500		
24	1.711	2.064	2.797	1.318	1.711	2.492		
25	1.708	2.060	2.787	1.316	1.708	2.485		
26	1.706	2.056	2.779	1.315	1.706	2.479		
27	1.703	2.052	2.771	1.314	1.703	2.473		
28	1.701	2.048	2.763	1.313	1.701	2.467		
29	1.699	2.045	2.756	1.311	1.699	2.462		
30	1.697	2.042	2.750	1.310	1.697	2.457		
40	1.684	2.021	2.704	1.303	1.684	2.423		
50	1.676	2.009	2.678	1.299	1.676	2.403		
60	1.671	2.000	2.660	1.296	1.671	2.390		
80	1.664	1.990	2.639	1.292	1.664	2.374		
100	1.660	1.984	2.626	1.290	1.660	2.364		
120	1.658	1.980	2.617	1.289	1.658	2.358		
••	1.645	1.960	2.576	1.282	1.645	2.327		

Critical Values of the <u>t</u> Distribution

Figure 13: Statistical table for Student's t(r).

Critical Values of the <u>F</u> Distribution ($\alpha = .05$)

df	df between										
within	1	2	3	4	5	6	7	8	12	24	8
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.68	4.53	4.37
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.00	3.84	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.57	3.41	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.28	3.12	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.07	2.90	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	2.91	2.74	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.79	2.61	2.41
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.69	2.51	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.60	2.42	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.53	2.35	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.48	2.29	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.42	2.24	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.38	2.19	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.34	2.15	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.31	2.11	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.28	2.08	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.25	2.05	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.23	2.03	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.20	2.01	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.18	1.98	1.73
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.16	1.96	1.71
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.15	1.95	1.69
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.13	1.93	1.67
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.12	1.91	1.66
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.10	1.90	1.64
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.09	1.89	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.00	1.79	1.51
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	1.92	1.70	1.39
80	3.96	3.11	2.72	2.49	2.33	2.21	2.13	2.06	1.88	1.65	1.33
100	3.94	3.09	2.70	2.46	2.31	2.19	2.10	2.03	1.85	1.63	1.28
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.83	1.61	1.26
8	3.84	3.00	2.61	2.37	2.22	2.10	2.01	1.94	1.75	1.52	1.00

Figure 14: Statistical table for F(m, n) at the 5% level.

Critical Values of the <u>F</u> Distribution ($\alpha = .01$)

df	df between											
within	1	2	3	4	5	6	7	8	12	24	8	
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	9.89	9.47	9.02	
6	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.72	7.31	6.88	
7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.47	6.07	5.65	
8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.67	5.28	4.86	
9	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.11	4.73	4.31	
10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.71	4.33	3.91	
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.40	4.02	3.60	
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.16	3.78	3.36	
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	3.96	3.59	3.17	
14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	3.80	3.43	3.01	
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.67	3.29	2.87	
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.55	3.18	2.75	
17	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.46	3.08	2.65	
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.37	3.00	2.57	
19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.30	2.92	2.49	
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.23	2.86	2.42	
21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.17	2.80	2.36	
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.12	2.75	2.31	
23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.07	2.70	2.26	
24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.03	2.66	2.21	
25	7.77	5.57	4.68	4.18	3.85	3.63	3.46	3.32	2.99	2.62	2.17	
26	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	2.96	2.58	2.13	
27	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	2.93	2.55	2.10	
28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	2.90	2.52	2.07	
29	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	2.87	2.49	2.04	
30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	2.84	2.47	2.01	
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.66	2.29	1.81	
60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.50	2.12	1.60	
80	6.96	4.88	4.04	3.56	3.26	3.04	2.87	2.74	2.42	2.03	1.50	
100	6.90	4.82	3.98	3.51	3.21	2.99	2.82	2.69	2.37	1.98	1.43	
120	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.34	1.95	1.38	
00	6.64	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.19	1.79	1.00	

Figure 15: Statistical table for F(m,n) at the 1% level.

36	Area in the Upper Tail										
ai .	0.99	0.95	0.9	0.1	0.05	0.01					
1	0.000	0.004	0.016	2.706	3.841	6.635					
2	0.020	0.103	0.211	4.605	5.991	9.210					
3	0.115	0.352	0.584	6.251	7.815	11.345					
4	0.297	0.711	1.064	7.779	9.488	13.277					
5	0.554	1.145	1.610	9.236	11.070	15.086					
6	0.872	1.635	2.204	10.645	12.592	16.812					
7	1.239	2.167	2.833	12.017	14.067	18.475					
8	1.646	2.733	3.490	13.362	15.507	20.090					
9	2.088	3.325	4.168	14.684	16.919	21.666					
10	2.558	3.940	4.865	15.987	18.307	23.209					
11	3.053	4.575	5.578	17.275	19.675	24.725					
12	3.571	5.226	6.304	18.549	21.026	26.217					
13	4.107	5.892	7.042	19.812	22.362	27.688					
14	4.660	6.571	7.790	21.064	23.685	29.141					
15	5.229	7.261	8.547	22.307	24.996	30.578					
16	5.812	7.962	9.312	23.542	26.296	32.000					
17	6.408	8.672	10.085	24.769	27.587	33.409					
18	7.015	9.390	10.865	25.989	28.869	34.805					
19	7.633	10.117	11.651	27.204	30.144	36.191					
20	8.260	10.851	12.443	28.412	31.410	37.566					
21	8.897	11.591	13.240	29.615	32.671	38.932					
22	9.542	12.338	14.041	30.813	33.924	40.289					
23	10.196	13.091	14.848	32.007	35.172	41.638					
24	10.856	13.848	15.659	33.196	36.415	42.980					
25	11.524	14.611	16.473	34.382	37.652	44.314					

Critical Values of the χ^2 Distribution

Figure 16: Statistical table for $\chi^2(q)$.