Introduction	Statistics analysis	A first equation	A second equation	Conclusion

NBA Contracts

DE ANGELIS, POUILLARD, UBERTINO

ENAC

April 25, 2022

Introduction •	Statistics analysis 00000000	A first equation	A second equation	Conclusion 000
What ab	out NBA salar	ry ?		

- Exorbitant wages of football players are not the only ones
- NBA player or businessmen ?
- NBA annual contracts

Our sample

- Sample size: 459
- Data has been cleared
- Source: https://www.basketball-reference.com

Introduction	Statistics analysis	A first equation	A second equation	Conclusion
Salary				

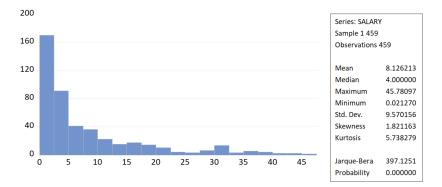
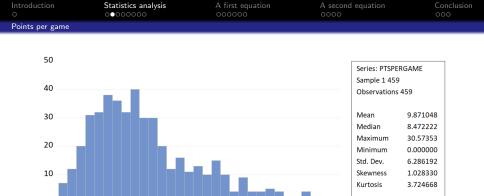



Figure 2.1: SALARY

Figure 2.2: PTSPERGAME

0

0 2

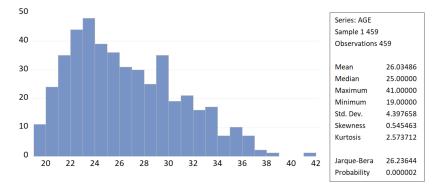
6 8 10 12 14 16 18 20 22 24 26 28 30

4

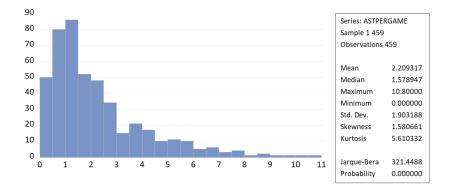
SALARY **PTSPERGAME** MINUTESPERGAME AGE ASTPERGAME TOVPERGAME RBPERGAME PFOULSPERGAME

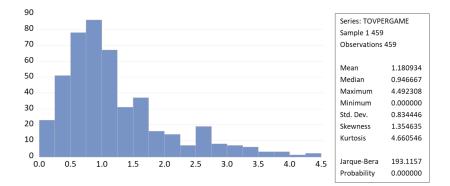
Jarque-Bera

Probability

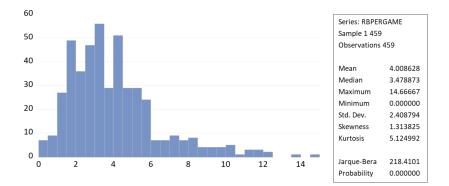

90.93934

0.000000

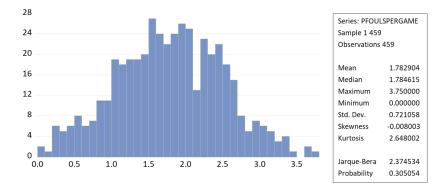

Figure 2.3: MINUTESPERGAME


Figure 2.4: AGE

Introduction	Statistics analysis	A first equation	A second equation	Conclusion
	00000000			
Assist per game				


Figure 2.5: ASTPERGAME

Introduction	Statistics analysis	A first equation	A second equation	Conclusion
	00000000			
Turnover per game				


Figure 2.6: TOVPERGAME

Introduction	Statistics analysis	A first equation	A second equation	Conclusion
	00000000			
Rebon per game				

Figure 2.7: RBPERGAME

Introduction	Statistics analysis	A first equation	A second equation	Conclusion
	0000000			
Fouls per game				

Figure 2.8: PFOULSPERGAME

Introduction O	Statistics analysis 00000000	A first equation	A second equation	Conclusion
A first regression				

- Let's do our first regression on 8 explanatory variables
- Explanatory variables chosen are the most often considered in analysis of players' performances .

 $\begin{aligned} SALARY &= C + \beta_0 \text{PTSPERGAME} + \beta_1 \text{MINUTESPERGAME} + \\ \beta_2 \text{MINUTESPERGAME}^2 + \beta_3 \text{AGE} + \beta_4 \text{ASTPERGAME} + \\ \beta_5 \text{TOVPERGAME} + \beta_6 \text{RBPERGAME} + \beta_7 \text{PFOULSPERGAME} \end{aligned}$

Introduction	Statistics analysis	A first equation	A second equation	Conclusion
		00000		
A first regression				

Dependent Variable: SALARY Method: Least Squares Date: 04/16/22 Time: 14:35 Sample: 1 459 Included observations: 459

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PTSPERGAME MINUTESPERGAME MINUTESPERGAME AGE ASTPERGAME TOVPERGAME RPPERGAME PFOULSPERGAME	-13.77649 0.898527 -0.684546 0.015060 0.696452 0.540871 -0.147541 0.626845 -1.140277	2.035531 0.117813 0.161815 0.003872 0.063543 0.335879 0.957217 0.165971 0.617767	-6.768010 7.626693 -4.230420 3.889765 10.96031 1.610316 -0.154135 3.776841 -1.845803	0.0000 0.0000 0.0000 0.0001 0.0000 0.1080 0.8776 0.0002 0.0656
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.638635 0.632211 5.803884 15158.28 -1453.912 99.40969 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion ın criter.	8.126213 9.570156 6.374345 6.455306 6.406229 1.922102

Figure 3.1: First regression

- $R^2 = 0.638635$
- *Fstatistic* = 99.40969[0.00000]

Introduction 0	Statistics analysis 00000000	A first equation ○○●○○○	A second equation	Conclusion
Test for heteroscer	lasticity			
	kedasticity Test: White			
Null hyp	othesis: Homoskedasticity			
E_etatiet	ic	5 970/01	Prob. E(42,415)	0.0000

F-statistic	5.870491	Prob. F(43,415)	0.0000
Obs*R-squared	173.5998	Prob. Chi-Square(43)	0.0000
Scaled explained SS	318.3586	Prob. Chi-Square(43)	0.0000

 $\begin{cases} H_0: {\rm Homosked a sticity} \\ H_1: {\rm Heterosked a sticity} \end{cases}$

(1)

- $nR^2 = 173.5998$
- *Prob* = 0.0000
- We reject H_0 , we have **heteroskedasticity**.

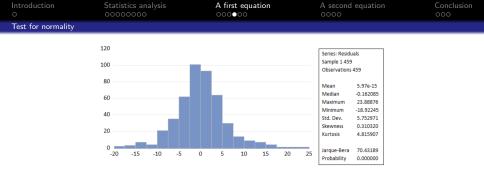
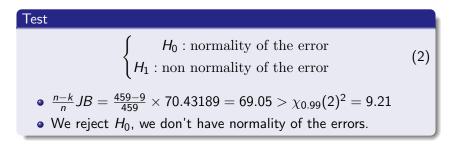



Figure 3.2: Residuals from first regression

Introduction	Statistics analysis	A first equation	A second equation	Conclusion
		000000		
Results				

Results

- Non normality of the errors suggests that **inference will need to be asymptotic**.
- Heteroskedasticity means we will need to **use White's standard errors**, not ordinary least squares standard errors.

Introduction 0	Statist 0000	ics analysis 2000	A first	equation)●		A second e 0000	equation	Conclusion 000
A second regression								
		Variable	Coefficient	Std. Error	t-Statistic	Prob.		
		С	-13.77649	2.102127	-6.553596	0.0000		
		PTSPERGAME MINUTESPERGAME	0.898527 -0.684546	0.163511 0.163897	5.495210 -4.176681	0.0000 0.0000		
		MINUTESPERGAME*2	0.015060	0.004840	3.111505	0.0020		
		AGE ASTPERGAME	0.696452 0.540871	0.073859 0.375731	9.429542 1.439517	0.0000 0.1507		
		TOVPERGAME	-0.147541	1.146628	-0.128674	0.8977		
		RBPERGAME PFOULSPERGAME	0.626845 -1.140277	0.201252 0.655172	3.114729 -1.740423	0.0020 0.0825		
		R-squared	0.638635	Mean depend	dent var	8.126213		
		Adjusted R-squared S.E. of regression	0.632211 5.803884	S.D. depende Akaike info cr		9.570156 6.374345		
		Sum squared resid	15158.28	Schwarz crite		6.455306		
		Log likelihood	-1453.912	Hannan-Quir		6.406229		
		F-statistic	99.40969	Durbin-Wats		1.922102		
		Prob(F-statistic) Prob(Wald F-statistic)	0.000000 0.000000	Wald F-statis	uc	69.59011		

Figure 3.3: Second regression with heteroskedasticity-consistent standard errors and covariance

- $m.e_{MPG} = -0.684546 + 20.015060MPG$
- turningpoint $_{MPG} = 22.7$
- TOV and AST are not significant

Introduction 0	Statistics analysis	A first equation 000000	A second equation	Conclusion 000		
Four new explanatory variables						

• Let's do a second equation with 4 additional explanatory variables

	EFGPERC	STLPERGAME	BLKPERGAME	GAMESSTARTED
Mean	0.529103	0.687538	0.433921	26.35590
Median	0.530000	0.629101	0.333333	14.50000
Maximum	1.000000	2.161290	2.809524	82.00000
Minimum	0.156000	0.000000	0.000000	0.000000
Std. Dev.	0.078839	0.387066	0.386763	26.77326
Skewness	0.407888	0.676984	2.153778	0.697839
Kurtosis	10.09091	3.503662	9.716580	1.948821
Jarque-Bera	972.2290	39.82509	1214.988	58.25938
Probability	0.000000	0.000000	0.000000	0.000000
Sum	242.3290	314.8922	198.7359	12071.00
Sum Sq. Dev.	2.840526	68.46781	68.36068	327581.0
Observations	458	458	458	458

Figure 4.1: 4 new additional statistics

 $\begin{aligned} & SALARY = C + ... + \beta_8 \text{STLPERGAME} + \beta_9 \text{BLKPERGAME} + \\ & \beta_{10} \text{GAMESSTARTED} + \beta_{11} \text{EFGPERC} \end{aligned}$

Introduction 0	Statistics a		A first e 00000	equation		A second equation $\circ \bullet \circ \circ$	Conclusion 000
Regression							
	-	Variable	Coefficient	Std. Error	t-Statistic	Prob.	
	-	С	-11.11403	2.722889	-4.081706	0.0001	
		PTSPERGAME MINUTESPERGAME	0.942900	0.119273 0.169707	7.905398	0.0000	
		MINUTESPERGAME ²	0.014171	0.004135	3.427109	0.0007	
		AGE ASTPERGAME	0.716788	0.063612 0.351688	11.26821 1.261788	0.0000 0.2077	
		TOVPERGAME	-0.043907	0.959983	-0.045737	0.9635	
		RBPERGAME PFOULSPERGAME	0.404019	0.198089 0.647544	2.039586 -2.612904	0.0420 0.0093	
		STLPERGAME	1.388533	1.128850	1.230043	0.2193	
		BLKPERGAME GAMESSTARTED	2.613014 0.013710	1.039814 0.017992	2.512961 0.762046	0.0123 0.4464	
		EFGPERC	-5.606442	3.820038	-1.467640	0.1429	
	=	R-squared	0.646481	Mean depend	dent var	8.143191	
		Adjusted R-squared S.E. of regression	0.636948 5.768519	S.D. depende Akaike info cri		9.573698 6.370681	
		Sum squared resid Log likelihood	14807.73 -1445.886	Schwarz criter Hannan-Quin		6.487820 6.416816	
		F-statistic	67.81433	Durbin-Watso		1.896736	

Figure 4.2: A first regression

0.000000

Prob(F-statistic)

Tests• $nR^2 = 202.9172[0.0000] \implies$ Heteroskedasticity.• $\frac{n-k}{n}JB = 80.729 \implies$ Non normality of the errors.

Introduction O	Statisti 00000	ics analysis 2000	A first 00000	equation		A second equ ○○●○	ation	Conclusion 000
A second regression								
		Variable	Coefficient	Std. Error	t-Statistic	Prob.		
		с	-11.11403	2.316193	-4.798406	0.0000		
		PTSPERGAME	0.942900	0.164113	5.745417	0.0000		
		MINUTESPERGAME	-0.714067	0.170258	-4.194034	0.0000		
		MINUTESPERGAME ²	0.014171	0.005662	2.502686	0.0127		
		AGE	0.716788	0.074476	9.624407	0.0000		
		ASTPERGAME	0.443755	0.403665	1.099317	0.2722		
		TOVPERGAME	-0.043907	1.136467	-0.038634	0.9692		
		RBPERGAME	0.404019	0.228574	1.767562	0.0778		
		PFOULSPERGAME	-1.691969	0.699181	-2.419930	0.0159		
		STLPERGAME	1.388533	1.190526	1.166320	0.2441		
		BLKPERGAME	2.613014	1.081855	2.415308	0.0161		
		GAMESSTARTED	0.013710	0.024167	0.567313	0.5708		
		EFGPERC	-5.606442	2.692893	-2.081940	0.0379		
		R-squared	0.646481	Mean depend	dent var	8.143191		
		Adjusted R-squared	0.636948	S.D. depende		9.573698		
		S.E. of regression	5,768519	Akaike info cr		6.370681		
		Sum squared resid	14807.73	Schwarz crite	rion	6.487820		
		Log likelihood	-1445.886	Hannan-Quir	n criter.	6.416816		
		F-statistic	67.81433	Durbin-Wats	on stat	1.896736		
		Prob(F-statistic)	0.000000	Wald F-statis	tic	50.88754		
		Prob(Wald F-statistic)	0.000000					

Figure 4.3: Second regression with heteroskedasticity-consistent standard errors and covariance

- $R^2 = 0.646481$
- *Fstatistic* = 67.81433[0.00000]

Introduction	Statistics analysis	A first equation	A second equation	Conclusion		
	0000000	000000	0000	000		
Can we reduce equation 2 ?						

• Can the second equation be reduced into the first one ?

Test

$$\begin{cases} H_0: \beta_8 = \beta_9 = \beta_{10} = \beta_{11} = 0\\ H_1: \overline{H_0} \end{cases}$$

•
$$qF = 10.6 < \chi_{0.99}(4)^2 = 13.27$$

• We do not reject *H*₀, equation 2 **can be reduced** into the first one.

(3)

Introduction	Statistics analysis	A first equation	A second equation	Conclusion
	0000000	000000	0000	000
What we learnt ?				

Conclusion

- We examined impact of NBA players' performance on their salary.
- Performance plays an important role in the variation of the value of the annual contracts of NBA players
- Parts of the game that are hard to achieve in a basketball game have the biggest impact on salary. e.g. a block
- What about position of all the players, the bonuses, the status of superstar, the level of fame ?
- Both models explain more than 60% of the variation in SALARY.

Introduction	Statistics analysis	A first equation	A second equation	Conclusion
				000
Acknowledgement				

We would like to thank Steve Lawford for offering us the possibility to carry out our study thanks to all kind of methods and analysis learned through the econometrics and forecasting course that he is teaching.

Introduction	Statistics analysis	A first equation	A second equation	Conclusion
				000
Questions				

Any questions ?