The impact of GDP, Population and FDI on Life expectancy in Africa

What economic data drives life expectancy in Africa? Is there a link between life expectancy, GDP, Foreign direct investments, the population

CHENG Haoran, DOMINIQUE Le'O, LI Feng

ENAC, Toulouse

AMPHI BREGUET, 18/01/2024 Soutenance de Project Fundamental Economy

Contents

- Background
- Introduction
- Questions of interests and assumptions
- Oata
- Tests
- Occurrence
 Occurrenc

Background

Figure: Would you like to live longer?

Background

"Improved health and life expectancy were not the cause of England's economic success but one of the fruits of its previous political and economic changes."

NATIONS

Maddad on, but one, b

Figure: Daron Acemoglu, Why Nations Fail, the origins of Power, Prosperity and Poverty

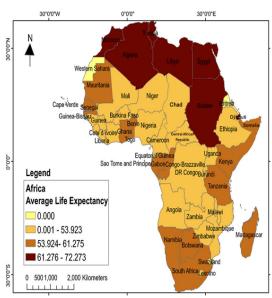
Background

"We are living longer, and we need to live better."

Figure: Donna Shalala, The former US Secretary of Health and Social Services

Introduction

Human life expectancy is a statistical measure of the estimate of the average remaining years of life at a given age. The most commonly used measure is life expectancy at birth (LEB).


72.6-73.2 years on a world average level and Africa 64.38 years in 2020

Methodology:

- Collecting data.
- Data analysis
- Data pre-processing
- Selection of principle attribute
- Train model(linear regressions)
- Test model
- Implements models on dataset

Regional level comparison

Region	Avg life expectancy
Southern Africa	58.9
Middle Africa	59.9
Western Africa	60.7
Eastern Africa	62.8
Northern Africa	71.8

Questions of interest and Assumptions

Questions of interest:

- Is there a significant link between respectively life expectancy and GDP, population and FDI?
- What are the impacts of GDP on life expectancy?
- What are the impacts of population size on life expectancy? What are the impacts of FDI on life expectancy in Africa?

Initial assumptions

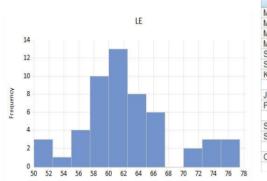
- The higher the GDP of an African country, the higher its life expectancy.
- The lower the population the higher the life expectancy.
- The more FDI an African country receive/has, the higher the life expectancy.

Factors we want to study

Life Expectancy (in years)	GDP (in Million)	Population (in Million)	FDI (in Million)
Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.	GDP is often used as a metric for international comparisons as well as a broad measure of economic progress. It is often considered to be the world's most powerful statistical indicator of national development and progress.	A growing population increases the size of the labor force, providing more human capital which is a key component of economic growth.	Foreign direct investment refers to direct investment equity flows in the reporting economy. It is the sum of equity capital, reinvestment of earnings, and other capital.
*Here for both men and women(average value)	"Here GDP is the total value for year 2015		*FDI data do not give a complete picture of international investment in an economy.

Data collection and pre-processing

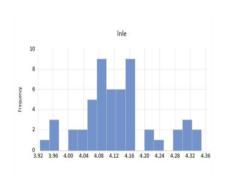
- Our project uses data from multiple sources, GDP and Life expectancy data are from the World Bank Open Data platform and Population data is from Worldometers.
- Change the values except FDI into In, because the FDI in Algeria is negative in 2015.
- We have no data about Eritrea's GDP in 2015, we deleted it from the database.
- Sample size n=53 countries in Africa.


Data: Descriptive statistics

• Life Expectancy Q1: 58 years (13 countries below) Median: 61 years (26 countries) Q3: 62 years (39 countries)

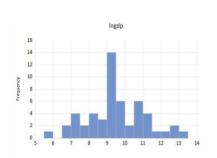
Data	Highest value	Mean value	Lowest value	Medium value
LE	76(Tunisia)	62	51(Lesotho)	61(Uganda)
GDP	493027M (Nigeria)	45303M	259M (Sao Tome & Principe)	12007M (Mauritius)
Population	223M(Nigeria)	23M	0.1M(Seychelles)	14M(Rwanda)
FDI	970521M(Tunisia)	22055M	-537M(Algeria)	328M (Madagascar)

Test: Jarque-Bera F-Test for le


 Skewness is 0.6 and kurtosis is 3.04, Pvalue is 0.19, we conclude that LE is normally distributed

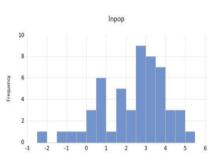
	LE
Mean	62.28302
Median	61.00000
Maximum	76.00000
Minimum	51.00000
Std. Dev.	6.118627
Skewness	0.606082
Kurtosis	3.047376
Jarque-Bera	3.249753
Probability	0.196936
Sum	3301.000
Sum Sq. Dev.	1946.755
Observations	53

Test: Jarque-Bera F-Test for Inle


 Skewness is 0.35 and kurtosis is 2.92, Pvalue is 0.56, we conclude that InLE is normally distributed

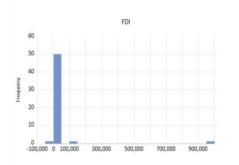
	LNLE
Mean	4.127077
Median	4.110874
Maximum	4.330733
Minimum	3.931826
Std. Dev.	0.096423
Skewness	0.355469
Kurtosis	2.929035
Jarque-Bera	1.127286
Probability	0.569132
Sum	218.7351
Sum Sq. Dev.	0.483461
Observations	53

Test: Jarque-Bera F-Test for InGDP

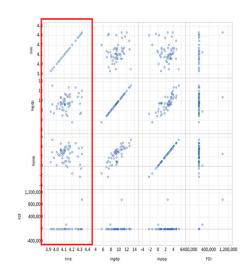

 Skewness is 0.05 and kurtosis is 2.93, Pvalue is 0.98, we conclude that InGDP is normally distributed

	LNGDP
Mean	9.517427
Median	9.393269
Maximum	13.10832
Minimum	5.560680
Std. Dev.	1.587449
Skewness	0.050960
Kurtosis	2.933157
Jarque-Bera	0.032807
Probability	0.983730
Sum	504.4236
Sum Sq. Dev.	131.0397
Observations	53

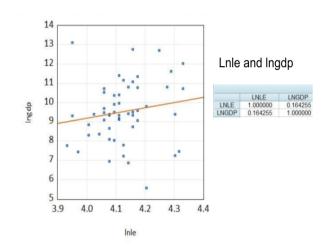
Test: Jarque-Bera F-Test for InPOP


 Skewness is -0.65 and kurtosis is 3.12,Pvalue is 0.14, we conclude that InPOP is normally distributed

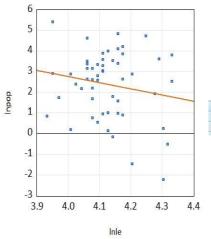
	LNPOP
Mean	2.374782
Median	2.652581
Maximum	5.410773
Minimum	-2.228777
Std. Dev.	1.627842
Skewness	-0.659115
Kurtosis	3.122798
Jarque-Bera	3.870791
Probability	0.144367
Sum	125.8634
Sum Sq. Dev.	137.7932
Observations	53


Test: Jarque-Bera F-Test for FDI

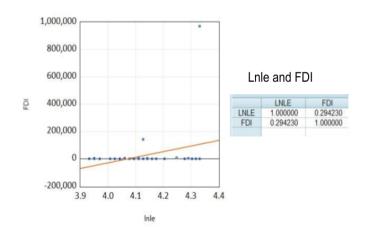
Skewness is 6.8 and kurtosis is 48,Pvalue is 0, we conclude that FDI is not normally distributed



	FDI
	1 651
Mean	22044.58
Median	328.0593
Maximum	970521.9
Minimum	-537.7929
Std. Dev.	134241.4
Skewness	6.858481
Kurtosis	48.86010
Jarque-Bera	5059.963
Probability	0.000000
Sum	1168362.
Sum Sq. Dev.	9.37E+11
Observations	53


Test : Correlation

Test: Correlation


Test: Correlation

Inle and Inpop

-	INF	INPOP
LNLE	1.000000	-0.176671
LNPOP	-0.176671	1.000000

Test: Correlation

Test: First Equation

$$\ln{(le)_{ijt}} = \beta_1 \cdot \ln(GDP)_i + \beta_2 \cdot \ln(POP)_i + \beta_3 \cdot (FDI)_{ij} + C_{ijt} \cdot (FDI)_{ij}$$

• Note1: **i** stand for the index of country, **j** stand for the index of region in Africa, **t** stand for the country political and democracy situation

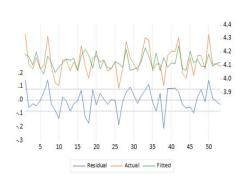
Test: First Regression

Dependent Variable: LNLE Method: Least Squares Date: 01/12/24 Time: 13:51 Sample: 1 53 Included observations: 53

	Variable	Coefficient	Std. Error	t-Statistic	Prob.
	C	3 769666	0.093952	40.12344	0.0000
	LNGDP	0.049484	0.012048	4.107172	0.0002
	LNPOP	-0.049225	0.011701	-4.206916	0.0001
	FDI	1.52E-07	8.44E-08	1.803145	0.0775
R-so	juared	0.342950	Mean depen	dent var	4.127077
Adju	sted R-squared	0.302723	S.D. depend	ent var	0.096423
S.É.	of regression	0.080516	Akaike info c	riterion	-2.128252
Sum	squared resid	0.317658	Schwarz crit	terion	-1.979551
Log	likelihood	60.39868	Hannan-Qui	nn criter.	-2.071069
F-sta	atistic	8.525270	Durbin-Wats	son stat	1.781382
Prob	(F-statistic)	0.000117	hadron to the same		10 (2000) (2000)

Test: Second Equation

$$\ln(le)_{ijt} = \beta_1 \cdot \ln(GDP)_i + \beta_2 \cdot \ln(POP)_i + C_{ijt} \leftarrow$$

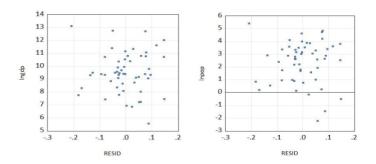

• Note1: **i** stand for the index of country, **j** stand for the index of region in Africa, **t** stand for the country political and democracy situation

Test: Second Regression

Dependent Variable: L Method: Least Square Date: 01/12/24 Time: Sample: 1 53 Included observations	s :11:30			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	3.745516	0.095063	39.40049	0.0000
LNPOP	-0.052207	0.011842	-4.408769	0.0001
LNGDP	0.053117	0.012143	4.374377	0.0001
R-squared	0.299353	Mean depen	dent var	4.127077
Adjusted R-squared	0.271327	S.D. depend	ent var	0.096423
S.E. of regression	0.082309	Akaike info o	riterion	-2.101743
Sum squared resid	0.338736	Schwarz cri	terion	-1.990217
Log likelihood	58.69618	Hannan-Qui	nn criter.	-2.058855
F-statistic	10.68130	Durbin-Wats	son stat	1.815778
Prob(F-statistic)	0.000137			

 $\ln(le)_{ijt} = 0.053117 \cdot \ln(GDP)_i + (-0.052207) \cdot \ln(POP)_i + 3.745516$

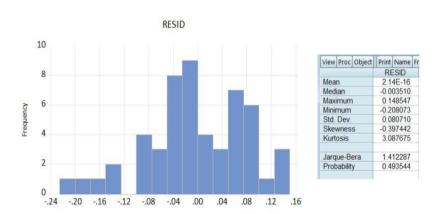
Test: Residual


Heteroskedasticity Test: White Null hypothesis: Homoskedasticity

F-statistic	1.711100	Prob	F(5.47)	0.1506
Obs*R-squared	8.161955	Prob	Chi-Square(5)	0.1475
Scaled explained SS	7.582553	Prob	Chi-Square(5)	0.1808

Test Equation: Dependent Variable: RESID*2 Method: Least Squares Date: 01/12/24 Time: 15:14 Sample: 1 53 Included observations: 53

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.014377	0.092849	-0.154838	0.8776
LNGDP*2	-0.000496	0.001564	-0.317335	0.7524
LNGDP*LNPOP	0.002186	0.002696	0.810538	0.4217
LNGDP	0.006794	0.024192	0.280836	0.7801
LNPOP*2	-0.000953	0.001296	-0.735442	0.4657
LNPOP	-0.018412	0.020620	-0.892905	0.3765
R-squared	0.153999	Mean dependent var		0.006391
Adjusted R-squared	0.063999	S.D. dependent var		0.009323
S.E. of regression	0.009020	Akaike info o	riterion	-6.472546
Sum squared resid	0.003824	Schwarz cri	terion	-6.249494
Log likelihood	177.5225	Hannan-Qui	nn criter.	-6.386771
F-statistic Prob(F-statistic)	1.711100	Durbin-Wat:	son stat	2.065575


Test: Residual

Based on the graph, there is no slope/line, no pattern. The errors/residuals of the regression are independent and constant, the model is linear

Test: Residual

• Skewness is -0.39 and kurtosis is 3.08, Pvalue is 0.49, we conclude that Residual is **normally distributed**

Conclusions

$$\ln(le)_{ijt} = 0.053117 \cdot \ln(GDP)_i + (-0.052207) \cdot \ln(POP)_i + 3.745516$$

Variables	Unit (without LN)	Expected sign	Sign
LNGDP	\$M	+	+
LNPOP	М	-	-
FDI	\$M	+	1

Figure: Equation signs compared to assumptions/expectations

Conclusions

Back to Hypothesis

- The higher the GDP of an African country, the higher its life expectancy, but low impact.
- The lower the population the higher the life expectancy, but low impact.
- The FDI has no impact on the life expectancy in the model.

Robustness of the model: $R^2 = 0.29$

Further conclusions and comments

$$\ln (le)_{ijtr} = \beta_1 \cdot \ln (GDP)_{i(r-k)} + \beta_2 \cdot \ln (POP)_{i(r-m)} + C_{ijtr}$$

 Note1: i stand for the index of country, j stand for the index of region in Africa, t stand for the country political and democracy situation, r stand for the index of years, k stand for the hysteresis number for GDP, m stand for the hysteresis number for Population If k=5, when r=2015, the LE on 2015 depends on the GDP on 2010

Further conclusions and comments

- R-square can be improved by taking into account other variables, not necessarily economical such as health expenditures, diseases...
- From our analysis and model: we can state that governments and policies/ politics may play a key role in life expectancy.
- A different study comparing men and women average life expectancy in Africa, maybe on a larger period, (one decade for instance) could be also interesting to have a more accurate model and concrete solution.

Further conclusions and comments

Figure: Smiley Team, Life expectancy rises 10 years across Africa

References

- Frimpong, A. A. (2019). Life Expectancy in Africa: Improving Public Health Policy. États-Unis: Lexington Books.
- Amado, A. D., Barros, C., Bernardo, E. A. d. C., Borges, V., Évora, R., Fialho, D., Lima-Neves, T. A. S., Manuel da Luz Delgado Rocha, C. (2022). Economic Growth and Democracy in Post-Colonial Africa: Cabo Verde, Small States, and the World Economy. États-Unis: Lexington Books.
- Acemoglu, D. (2008). Introduction to Modern Economic Growth. Royaume-Uni: Princeton University Press.
- La Transition démographique de L'Afrique: Dividende Ou Catastrophe?. (2016). États-Unis: World Bank Publications.