How to live longer ?

Ashraf Fawaz, Pierre-Antoine Chabbert, Stéphane Salim

ENAC

April 25, 2022

- 2 Data and Hypothesises
- 3 Variables
- 4 Descriptive Statistics
- 5 First model
- 6 Second model
- Coefficients Interpretation

8 Conclusion

Who wants to live forever ?

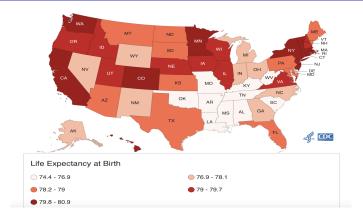
Figure: Queen's song who wants to live forever

Data and Hypothesises

- Data for the 50 US States, in years 2019, 2010 and 2000
- Harvested on America's Health Rankings and CDC websites

Hypothesis 1

The richest states have a higher life expectancy


Hypothesis 2

States with the healthiest lifestyle have a higher life expectancy

Hypothesis 3

Sunniest states have a higher life expectancy

Life expectancy by state

Figure: life expectancy by state in 2019

Descriptive statistics

Data	Highest value	Mean value	Lowest score
GDP	California (3 052 645)	421 962,5	Vermont(34 127,5)
Smoking	West Virginia (25,2%)	16,65%	Utah (9%)
med	Rhode Island (274,9)	156,5	Idaho(96,6)
Drinking	North Dakota(22,2%)	16,7%	Utah(11,2%)
over weight	Mississippi(40,8%)	32%	Colorado(23,8%)
nb sunny day	Arizona(193)	103	VT and WA(58)
air pol(µg/m³)	California(12,6)	7,276	New Hampshire(4,1)
Inactivity	Indiana(30,9%)	27,5%	Arizona(24,1%)

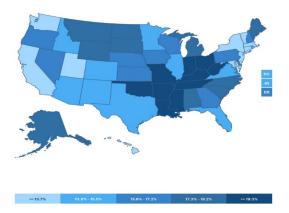
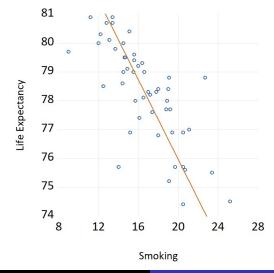



Figure: Percentage of adults who reported smoking at least 100 cigarettes in their lifetime and currently smoke daily or some days

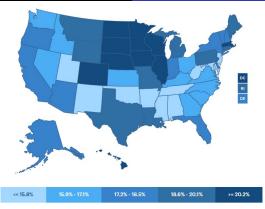


Figure: Percentage of adults who reported binge drinking (four or more [females] or five or more [males] drinks on one occasion in the past 30 days) or heavy drinking (eight or more [females] or 15 or more [males] drinks per week).

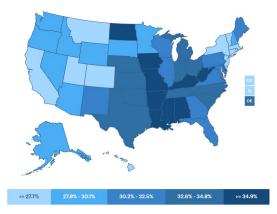


Figure: Percentage of adults with a body mass index of 30.0 or higher based on reported height and weight

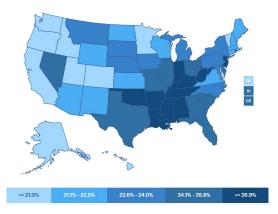
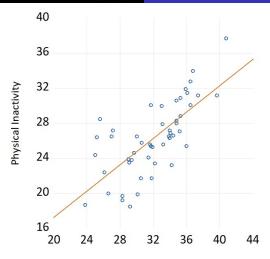
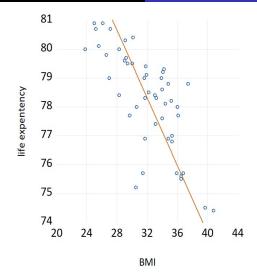
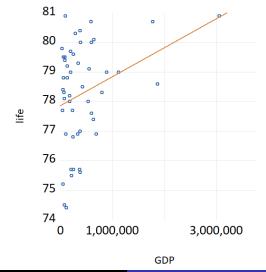





Figure: Percentage of adults who reported doing no physical activity or exercise other than their regular job in the past 30 days

Equation 01

- We want to model life expectancy across the different states
- The equation of our model can be written as :

$$\begin{aligned} \text{life} &= \beta_0 + \beta_1 g dp * 10^{-7} + \beta_2 c i g + \beta_3 drink + \beta_5 obesity + \\ \beta_6 med + \beta_7 sun + \beta_8 a i r + \beta_9 inac \quad (E1) \end{aligned}$$

First regression : 2019

Dependent Variable: LIFE Method: Least Squares Date: 04/23/22 Time: 11:37 Sample: 1 50 Included observations: 50

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C GDP*10^(-7) CIG DRINK	84.77736 3.718542 -0.298394 0.156719	2.086976 3.654006 0.082457 0.057350	40.62210 1.017662 -3.618781 2.732660	0.0000 0.3148 0.0008 0.0092 0.1221
OBESITY MED SUN AIR INAC	-0.100781 0.001556 -0.010428 -0.117225 0.022916	0.063834 0.004507 0.006235 0.134418 0.056487	-1.578806 0.345190 -1.672371 -0.872097 0.405686	0.1221 0.7317 0.1021 0.3882 0.6871
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.740513 0.689881 0.953782 37.29772 -63.61966 14.62548 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		78.27400 1.712715 2.904786 3.248950 3.035846 2.138598

Figure: Eq01 output for 2019

Ashraf Fawaz, Pierre-Antoine Chabbert, Stéphane Salim

First regression : 2010

Dependent variable: En E Method: Least Squares Date: 04/23/22 Time: 11:40 Sample (adjusted): 1 50 Included observations: 50 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C GDP*10*(-7) CIG DRINK OBESITY MED SUN AIR INAC	84.76046 2.603469 -0.226087 0.127895 -0.088982 0.005141 -0.003666 -0.077000	1.375318 2.497063 0.035945 0.025944 0.043919 0.003644 0.003192 0.047430 0.039928	61.62970 1.042612 -6.289886 4.929651 -2.026064 1.410616 -1.127951 -0.140548 -1.928476	0.0000 0.3032 0.0000 0.0493 0.1659 0.2659 0.8889 0.0607
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.927244 0.913047 0.481159 9.492089 -29.40782 65.31566 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		78.55400 1.631728 1.536313 1.880477 1.667372 1.994644

Figure: Eq01 output for 2010

Ashraf Fawaz, Pierre-Antoine Chabbert, Stéphane Salim

First regression : 2000

Dependent Variable: LIFE Method: Least Squares Date: 04/23/22 Time: 11:26 Sample (adjusted): 1 50 Included observations: 50 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C GDP*10^(-7) CIG DRINK OBESITY SUN INAC	84.99268 0.259226 -0.180654 0.129312 -0.239124 -0.004790 -0.021824	1.509687 5.178626 0.053430 0.040215 0.062137 0.004492 0.034460	56.29819 0.050057 -3.381110 3.215513 -3.848310 -1.066516 -0.633310	0.0000 0.9603 0.0015 0.0025 0.0004 0.2921 0.5299
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.711663 0.671430 0.832519 29.80276 -58.01138 17.68849 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		76.87200 1.452379 2.600455 2.868138 2.702391 2.572830

Figure: Eq01 output for 2000

Ashraf Fawaz, Pierre-Antoine Chabbert, Stéphane Salim

Robustness

Variables	Units	2019	2010	2000
GDP	Current million USD	+	+	+
CIG	Percentage smoking adults	-	-	-
DRINK	Percentage binge-drinking	+	+	+
OBESITY	Percentage $BMI > 30$	-	-	-
MED	Number per 100,000	+	+	NA
SUN	Number of clear days	-	+	-
AIR	Exposure in $\mu g/m^3$	-	+	NA
INAC	Percentage inac last 30 days	+	+	-

Table: Signs of the variables' coefficients

Robustness

- The coefficient of SUN has opposite signs from a year to another
- Let's add a new variable, SUN², and test whether or not this new model is better
- $life = \beta_0 + \beta_1 gdp * 10^{-7} + \beta_2 cig + \beta_3 drink + \beta_5 obesity + \beta_6 med + \beta_7 sun + \beta_8 sun^2 + \beta_9 air + \beta_{10} inac$

Second regression : 2019

Dependent Variable: LIFE Method: Least Squares Date: 04/23/22 Time: 13:19 Sample: 1 50 Included observations: 50

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	81.04376	2.186425	37.06680	0.0000
GDP*10^(-7)	3.774097	3.278331	1.151225	0.2565
CIG	-0.235444	0.076388	-3.082205	0.0037
DRINK	0.110179	0.053343	2.065467	0.0454
OBESITY	-0.111910	0.057369	-1.950692	0.0581
MED	0.004466	0.004138	1.079333	0.2869
SUN	0.076759	0.026951	2.848075	0.0069
SUN^2	-0.000370	0.000112	-3.307017	0.0020
AIR	-0.073286	0.121326	-0.604042	0.5492
INAC	-0.042906	0.054447	-0.788027	0.4353
R-squared	0.796226	Mean dependent var		78.27400
Adjusted R-squared	0.750377	S.D. depende	ent var	1.712715
S.E. of regression	0.855711	Akaike info criterion		2.703089
Sum squared resid	29.28966	Schwarz criterion		3.085493
Log likelihood -57.5772		Hannan-Quinn criter.		2.848711
F-statistic	17.36624	Durbin-Watson stat		1.995720
Prob(F-statistic)	0.000000			

Figure: Eq02 output for 2019

Ashraf Fawaz, Pierre-Antoine Chabbert, Stéphane Salim

F test

- We assume that all CAs hold
- We want to test if the general model (Eq02) can be nested within the restricted model (Eq01)

•
$$H_0: R\beta = r, H_1: /H_0$$

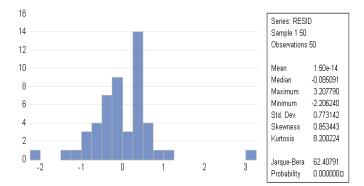
 $F = \left(\frac{\widehat{u'_R}\widehat{u_R}}{\widehat{u'}\widehat{u}} - 1\right) \left(\frac{n-k}{q}\right) \stackrel{H_0}{\sim} F(q, n-k)$

• if CA5 fails :
$$q F \stackrel{H_0}{\sim} \chi^2(q)$$
 as $n o \infty$

F test

Heteroskedasticity Test: Breusch-Pagan-Godfrey Null hypothesis: Homoskedasticity

F-statistic	1.005003	Prob. F(9,40)	0.4521
Obs*R-squared	9.221148	Prob. Chi-Square(9)	0.4171
Scaled explained SS	21.24619	Prob. Chi-Square(9)	0.0116

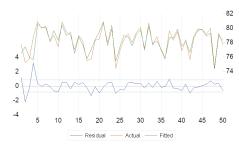

Test Equation: Dependent Variable: RESID*2 Method: Least Squares Date: 04/23/22 Time: 20:00 Sample: 1 50 Included observations: 50

Variable	Coefficient	Std. Error	t-Statistic	Prob.
c	0.961223	4.055199	0.237035	0.8138
GDP*10^(-7)	0.544378	6.080377	0.089530	0.9291
CIG	0.280574	0.141678	1.980358	0.0546
DRINK	-0.156442	0.098937	-1.581232	0.1217
OBESITY	-0.048239	0.106404	-0.453363	0.6527
MED	-0.000929	0.007674	-0.121076	0.9042
SUN	0.029503	0.049987	0.590205	0.5584
SUN ^A 2	-0.000116	0.000207	-0.558840	0.5794
AIR	0.008710	0.225026	0.038707	0.9693
INAC	-0.096736	0.100984	-0.957937	0.3438
R-squared 0.184423 Mean dependent var		lent var	0.585793	
Adjusted R-squared	0.000918	S.D. depende	ent var	1.587831
S.E. of regression	1.587102	Akaike info criterion		3.938553
Sum squared resid	100.7557	Schwarz criterion		4.320958
Log likelihood	-88.46383	Hannan-Quinn criter.		4.084175
F-statistic	1.005003	Durbin-Watson stat		2.108650
Prob(F-statistic)	0.452107			

Figure: Eq02 : BPG test for heteroscedasticity

Ashraf Fawaz, Pierre-Antoine Chabbert, Stéphane Salim

F test


Figure: Eq02 : Jarque-Berra test

F test

- n = 50, k = 10, q = 1, $\widehat{u'_R}\widehat{u_R}$ = 37.29772, $\widehat{u'}\widehat{u}$ = 29.28966
- so $qF = 10.94 > \chi^2_{0.99} = 6.635$
- we rH_0 and Eq02 cannot be restricted into Eq01
- Inverse quadratic : Life expectancy will grow with sun until a specific value

Residuals

- For example, the model is underestimating the life expectancy of Arkansas $(\hat{u}_4 = y_4 - \hat{y}_4 > 0)$
- Although it is one of the poorest states, it is known for its beautiful lakes, rivers, and hot springs which could maybe affect life expectancy

sun

- $\frac{\partial life}{\partial sun} = -0.00074sun + 0.077$
- 100 sunny days more per year on average will result in an increase of 3 * 10⁻³ in life expectancy
- 250 sunny days more per year on average will result in a decrease of -0.11 in life expectancy
- We must be careful with these results

smoking

- $\frac{\partial life}{\partial cig} = -0.24$
- 10 % more smokers in a state will result in a decrease of -2.4 years in its average life expectancy
- It seems logic, this is what we would expect

obesity

- $\frac{\partial life}{\partial obesity} = -0.11$
- 10 % more obese people in a state will result in a decrease of -1.1 years in its average life expectancy
- It seems logic, this is what we would expect

Figure: Queen celebrates 96th birthday in Sandringham