## Esports athletes: How do they make so much money?

Exploring factors behind the income from playing games at a professional level

Duc Quan Nguyen, Vinh Hoang Nguyen, Nhu Thai Minh Nguyen ENAC, Toulouse<br>January 17, 2024, Empirical Project

## Table of Contents

(1) Introduction

- Context
- Database
(2) First Model
- Variables
- First regression
- Review
(3) Second Model
- Second regression
- Review
(4) Third model
- Third regression
(5) Conclusion


## Introduction

## LIST: NOTAIL IS THE WEALTHIEST ESPORTS ATHLETE WITH \$7MIN EARNINGS

Dupreeh Became the First CS: GO Player Who Earn \$2 million Prize
by Phoenix 2 years ago Money In Career

MK스포츠
Chinese industry: "Faker's actual income could exceed 10 billion won"
Input2021.11.23. 1:47 PM - Edited 2021.11.23. 3:54 PM Onginal text of article
i. Reporter Park Chan-hyung million at Fortnite World Cup

## Introduction

## Data source

Most of the data is collected from esportsearnings.com and escharts.com, based on freely available public information.

## Sample size

After collecting data from top 100 male and top 100 female, the sample size is $\mathrm{N}=200$. They competed in 43 different game titles and franchises.

## First model

## Variables

| Name | Variable | Type | Explanation | Expected sign |
| :---: | :---: | :---: | :---: | :---: |
| Sex | SEX | category | 1=man 2=woman | ? |
| Region | REG | category | $\begin{aligned} & 1=\text { North America } \\ & 2=\text { South America } 3=\text { Europe } \\ & 4=\text { Asia } 5=\text { Oceania } 6=\text { Africa } \end{aligned}$ | ? |
| Earning duration (years) | LNE | numeric | / | + |
| Champion (times) | LNC | numeric | 1 | + |
| Runner-up (times) | LNR | numeric | 1 | + |
| 3rd place/Semi-finals (times) | LNS | numeric | 1 | + |
| Competed in more than one game | CMP | category | $1=$ no $2=$ yes | ? |
| Game with most earning | GWM | category | 1 to 43 | ? |
| Game popularity (Twitter follows) | GPOP | category | $\begin{aligned} & 1=\text { more than } 6 \mathrm{~m} 2=\text { more than } 3 \mathrm{~m} \\ & 3=\text { more than } 1 \mathrm{~m} 4=\text { more than } 500 \mathrm{k} \\ & 5=\text { more than } 100 \mathrm{k} 6=\text { more than } 50 \mathrm{k} \\ & 7=\text { more than } 5 \mathrm{k} 8=\text { less than } 5 \mathrm{k} \end{aligned}$ | + |
| Tournament by developer | TDEV | category | $1=$ no $2=$ yes | + |
| 3rd party tournament | T3P | category | $1=$ no $2=$ yes | + |

## First model

## Variables

## Gender (SEX)

The woman with the highest earning from tournaments is at rank 518 in the highest overall earnings ranking.

## Game with most earning (GWM)

Only 7 out of 43 games titles and franchises became the biggest source of income for the players: DotA, Fortnite, League of Legends, Call of Duty, Counter Strike, Arena of Valor, PUBG Mobile.

Tournaments hosted by the game developer or a 3rd party (TDEV and T3P)
There are variations of these 2 variables for 43 game titles, but for the 7 game titles mentioned above, all of them have both kinds of tournament.

## First model

## Variables

## Changes to data

- SEX removed. $\mathrm{N}=100$
- TDEV , T3P removed
- GWM: 1 to 431 to 7 :
- 1: DotA
- 2: Fortnite
- 3: Counter Strike
- 4: League of Legends
- 5: Call of Duty
- 6: PUBG Mobile
- 7: Arena of Valor
- GPOP: 8 categories Number of followers of 7 game titles mentioned


## First model

## Variables: Region



- Players from Asia and Europe tends to earn more.
- No player from South America and Africa.


## First model

## Variables: Earning duration



- High earning players tend to have already played from 5 to 12 years


## First model

## Variables: Champion



- Players with high earnings tend to win a tournament more times than the median value.


## First model

## Variables: Runner-up



## First model

## Variables: 3rd place/Semi-finals



## First model

Variables: Competed in more than one game


- Most competed in only one game.


## First model

## Variables: Game with most earning



- Players earned most from DotA.


## First model

## Variables: Game popularity



## First model

First regression
Dependent Variable: LNT
Method: Least Squares
Date: 01/16/24 Time: 17:28
Sample: 1100
Included observations: 100

| Variable | Coefficient | Std. Error | t-Statistic | Prob. |  |  |
| :---: | ---: | ---: | ---: | ---: | :---: | :---: |
| C | 16.20066 | 1.067672 | 15.17381 | 0.0000 |  |  |
| CMP | 0.075114 | 0.129097 | 0.581838 | 0.5621 |  |  |
| GPOP | -0.088899 | 0.058605 | -1.516925 | 0.1328 |  |  |
| GWM | -0.148966 | 0.031539 | -4.723218 | 0.0000 |  |  |
| LNC | 0.131904 | 0.120672 | 1.093076 | 0.2772 |  |  |
| LNE | 0.032393 | 0.205179 | 0.157878 | 0.8749 |  |  |
| LNR | -0.069646 | 0.138973 | -0.501148 | 0.6175 |  |  |
| LNS | -0.093568 | 0.126497 | -0.739684 | 0.4614 |  |  |
| REG | -0.052620 | 0.053815 | -0.977807 | 0.3308 |  |  |
|  | 0.214281 | Mean dependent var |  |  |  | 14.65401 |
| R-squared | 0.145207 | S.D. dependent var | 0.458820 |  |  |  |
| Adjusted R-squared | 0.424202 | Akaike info criterion | 1.208475 |  |  |  |
| S.E. of regression | 16.37520 | Schwarz criterion | 1.442940 |  |  |  |
| Sum squared resid | -51.42375 | Hannan-Quinn criter. | 1.303367 |  |  |  |
| Log likelihood | 3.102183 | Durbin-Watson stat | 0.387165 |  |  |  |
| F-statistic | 0.003847 |  |  |  |  |  |
| Prob(F-statistic) |  |  |  |  |  |  |

## First model

| Variables | Expected sign | First model |
| :--- | :---: | :---: |
| SEX | $?$ | $X$ |
| REG | $?$ | - |
| LNE | + | + |
| LNC | + | + |
| LNR | + | - |
| LNS | + | - |
| CMP | $?$ | + |
| GWM | $?$ | - |
| GPOP | + | - |
| TDEV | + | $X$ |
| T3P | + | $X$ |

## First model

## Result of the first regression

- Dependent variable is total earning.
- Model only captures $R^{2}=21.4 \%$; adjusted $R^{2}=14.5 \%$ of the variability of the total earning.


## Variables

- Significance at 99\%: GWM
- Significance > 70\%: GPOP, LNC
- Significance > 50\%: REG, LNS
- Not significant: CMP, LNE, LNR


## First model

Review

Wald Test:
Equation: REGRESSION1

| Test Statistic | Value | df | Probability |
| :--- | :---: | ---: | ---: |
| F-statistic | 0.251149 | $(1,91)$ | 0.6175 |
| Chi-square | 0.251149 | 1 | 0.6163 |

Null Hypothesis Summary:

| Normalized Restriction (= 0) | Value | Std. Err. |
| :--- | :---: | ---: |
| $\mathrm{C}(7)$ | -0.069646 | 0.138973 |

Restrictions are linear in coefficients.

## Result

- Wald test on LNR gives p -value $>0.05$.
- We can remove LNR.


## Second model

Second regression
Dependent Variable: LNT
Method: Least Squares
Date: 01/16/24 Time: 17:24
Sample: 1100
Included observations: 100

| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| :--- | ---: | :--- | ---: | ---: |
| C | 16.28846 | 0.828495 | 19.66030 | 0.0000 |
| GPOP | -0.089546 | 0.050338 | -1.778882 | 0.0785 |
| GWM | -0.145990 | 0.030324 | -4.814401 | 0.0000 |
| LNC | 0.121279 | 0.107677 | 1.126326 | 0.2629 |
| LNS | -0.115860 | 0.089058 | -1.300960 | 0.1965 |
| REG | -0.058247 | 0.049378 | -1.179600 | 0.2411 |
| R-squared | 0.208299 | Mean dependent var | 14.65401 |  |
| Adjusted R-squared | 0.166187 | S.D. dependent var | 0.458820 |  |
| S.E. of regression | 0.418964 | Akaike info criterion | 1.156060 |  |
| Sum squared resid | 16.49988 | Schwarz criterion | 1.312370 |  |
| Log likelihood | -51.80299 | Hannan-Quinn criter. | 1.219321 |  |
| F-statistic | 4.946326 | Durbin-Watson stat | 0.386855 |  |
| Prob(F-statistic) | 0.000460 |  |  |  |

## Second model

Review

## Second regression result

- All variables' significance is over $70 \%$
- $R^{2}$ lowered to $20.8 \%$


## Increase $R^{2}$

- Introduces 2 new variables based on publicly available information:

| Name | Variables | Type | Expected sign |
| :--- | :---: | :---: | :---: |
| Total prize pool (USD) | TPP | Numeric | + |
| Total tournaments held | TTS | Numeric | + |

## Third model

Third regression

Dependent Variable: LNT
Method: Least Squares
Date: 01/16/24 Time: 17:26
Sample: 1100
Included observations: 100

| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| :---: | ---: | ---: | ---: | ---: |
| C | 13.58467 | 4.289247 | 3.167146 | 0.0021 |
| GPOP | -0.052133 | 0.074977 | -0.695320 | 0.4886 |
| GWM | -0.108618 | 0.070182 | -1.547657 | 0.1251 |
| LNC | 0.141334 | 0.112530 | 1.255963 | 0.2123 |
| LNS | -0.105626 | 0.095151 | -1.110088 | 0.2699 |
| REG | -0.061136 | 0.052340 | -1.168049 | 0.2458 |
| TPP | 0.125164 | 0.191275 | 0.654366 | 0.5145 |
| TTS | -0.051486 | 0.094798 | -0.543109 | 0.5884 |
| R-squared | 0.212235 | Mean dependent var | 14.65401 |  |
| Adjusted R-squared | 0.152296 | S.D. dependent var | 0.458820 |  |
| S.E. of regression | 0.422439 | Akaike info criterion | 1.191076 |  |
| Sum squared resid | 16.41785 | Schwarz criterion | 1.399489 |  |
| Log likelihood | -51.55379 | Hannan-Quinn criter. | 1.275425 |  |
| F-statistic | 3.540864 | Durbin-Watson stat | 0.376062 |  |
| Prob(F-statistic) | 0.002060 |  |  |  |

## Conclusion

## Variables

- Most significant: GWM
- Significance > 70\%: LNC, LNS, REG
- Not significance: GPOP, TPP, TTS, CMP, LNE, LNR


## Statistical values

- $R^{2}=0.21$ : Explain $21 \%$ of the changes in the dependent variable.
- Adjusted $R^{2}=0.15$ : Some of the variables introduced are not significant.
- F -statistic $=3.5$ and $p$-value $=0.002$ : At least one independent variable is contributing to explaining the variation.


## Conclusion

What led to a low explanation capability?

- Many information are not publicly available.
- Differences in how different games host their tournaments.
- Contain large amount of players from one game.

How to improve?

- Focus on one game.
- Different approach to selecting factors.
Jhan!

