# Esports athletes: How do they make so much money?

Exploring factors behind the income from playing games at a professional level

Duc Quan Nguyen, Vinh Hoang Nguyen, Nhu Thai Minh Nguyen

ENAC, Toulouse

January 17, 2024, Empirical Project

# Table of Contents

- Introduction
  - Context
  - Database
- Pirst Model
  - Variables
  - First regression
  - Review
- Second Model
  - Second regression
  - Review
- Third model
  - Third regression
- 6 Conclusion

# Introduction

by Phoenix 2 years ago

Context

# LIST: NOTAIL IS THE WEALTHIEST ESPORTS ATHLETE WITH \$7M IN EARNINGS

Dupreeh Became the First CS: GO Player Who Earn \$2 million Prize Money In Career

# MK△ Chinese industry: "Faker's actual income could exceed 10 billion won"

Input 2021.11.23. 1:47 PM - Edited 2021.11.23. 3:54 PM Original text of article

Reporter Park Chan-Invung

16-year old Kyle "Bugha" Giersdorf wins \$3 million at Fortnite World Cup

Updated on: July 29, 2019 / 2:38 PM EDT / CBS News

#### Introduction

Database

#### Data source

Most of the data is collected from esportsearnings.com and escharts.com, based on freely available public information.

#### Sample size

After collecting data from top 100 male and top 100 female, the sample size is N=200. They competed in 43 different game titles and franchises.

# Variables

| Name                          | Variable | Туре     | Explanation                              | Expected sign |
|-------------------------------|----------|----------|------------------------------------------|---------------|
| Sex                           | SEX      | category | 1=man 2=woman                            | ?             |
|                               |          |          | 1=North America                          |               |
| Region                        | REG      | category | 2=South America 3=Europe                 | ?             |
|                               |          |          | 4=Asia 5=Oceania 6=Africa                |               |
| Earning duration (years)      | LNE      | numeric  | /                                        | +             |
| Champion (times)              | LNC      | numeric  | /                                        | +             |
| Runner-up (times)             | LNR      | numeric  | /                                        | +             |
| 3rd place/Semi-finals (times) | LNS      | numeric  | /                                        | +             |
| Competed in more              | CMP      | category | 1=no 2=yes                               | ?             |
| than one game                 | Civii    | category | 1—110 2—yes                              |               |
| Game with most earning        | GWM      | category | 1 to 43                                  | ?             |
|                               |          |          | 1=more than 6m $2=$ more than 3m         |               |
| Game popularity               | GPOP     | catagoni | 3=more than $1$ m $4=$ more than $500$ k | 1             |
| (Twitter follows)             |          | category | 5=more than 100k 6= more than 50k        | +             |
|                               |          |          | 7= more than 5k 8=less than 5k           |               |
| Tournament by developer       | TDEV     | category | 1=no 2=yes                               | +             |
| 3rd party tournament          | T3P      | category | 1=no 2=yes                               | +             |

**Variables** 

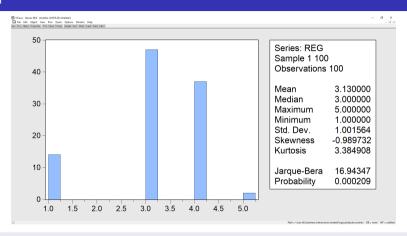
# Gender (SEX)

The woman with the highest earning from tournaments is at rank 518 in the highest overall earnings ranking.

# Game with most earning (GWM)

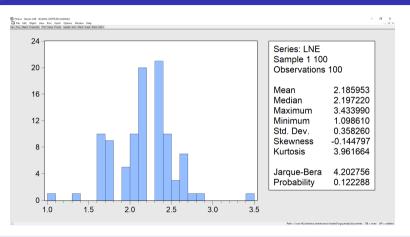
Only 7 out of 43 games titles and franchises became the biggest source of income for the players: DotA, Fortnite, League of Legends, Call of Duty, Counter Strike, Arena of Valor, PUBG Mobile.

# Tournaments hosted by the game developer or a 3rd party (TDEV and T3P)


There are variations of these 2 variables for 43 game titles, but for the 7 game titles mentioned above, all of them have both kinds of tournament.

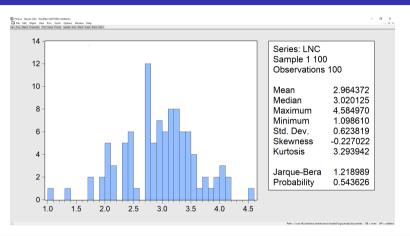
Variables

# Changes to data


- SEX removed. N = 100
- TDEV , T3P removed
- GWM: 1 to 43 1 to 7:
  - 1: DotA
  - 2: Fortnite
  - 3: Counter Strike
  - 4: League of Legends
  - 5: Call of Duty
  - 6: PUBG Mobile
  - 7: Arena of Valor
- GPOP: 8 categories Number of followers of 7 game titles mentioned

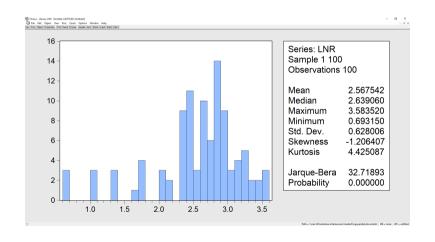
Variables: Region



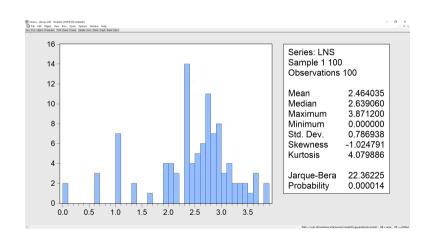

- Players from Asia and Europe tends to earn more.
- No player from South America and Africa.

#### Variables: Earning duration

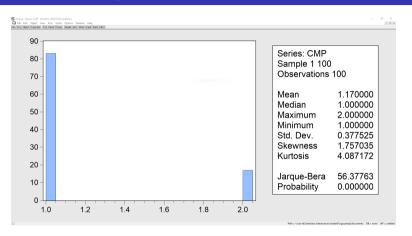



• High earning players tend to have already played from 5 to 12 years

Variables: Champion

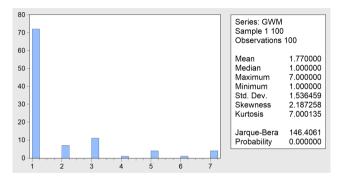



• Players with high earnings tend to win a tournament more times than the median value.


#### Variables: Runner-up

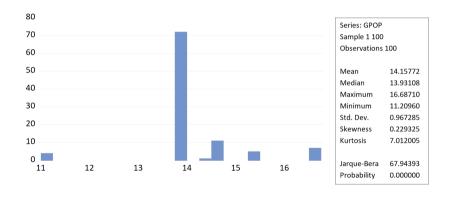


#### Variables: 3rd place/Semi-finals




Variables: Competed in more than one game




• Most competed in only one game.

Variables: Game with most earning



• Players earned most from DotA.

#### Variables: Game popularity



#### First regression

Dependent Variable: LNT Method: Least Squares Date: 01/16/24 Time: 17:28

Sample: 1 100

Included observations: 100

| Variable                                                                                                                         | Coefficient                                                                                                   | Std. Error                                                                                                                           | t-Statistic                                                                                                   | Prob.                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| C<br>CMP<br>GPOP<br>GWM<br>LNC<br>LNE<br>LNR<br>LNR<br>LNS<br>REG                                                                | 16.20066<br>0.075114<br>-0.088899<br>-0.148966<br>0.131904<br>0.032393<br>-0.069646<br>-0.093568<br>-0.052620 | 1.067672<br>0.129097<br>0.058605<br>0.031539<br>0.120672<br>0.205179<br>0.138973<br>0.126497<br>0.053815                             | 15.17381<br>0.581838<br>-1.516925<br>-4.723218<br>1.093076<br>0.157878<br>-0.501148<br>-0.739684<br>-0.977807 | 0.0000<br>0.5621<br>0.1328<br>0.0000<br>0.2772<br>0.8749<br>0.6175<br>0.4614<br>0.3308 |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>F-statistic<br>Prob(F-statistic) | 0.214281<br>0.145207<br>0.424202<br>16.37520<br>-51.42375<br>3.102183<br>0.003847                             | Mean dependent var<br>S.D. dependent var<br>Akaike info criterion<br>Schwarz criterion<br>Hannan-Quinn criter.<br>Durbin-Watson stat |                                                                                                               | 14.65401<br>0.458820<br>1.208475<br>1.442940<br>1.303367<br>0.387165                   |

Review

| Variables | Expected sign | First model |
|-----------|---------------|-------------|
| SEX       | ?             | X           |
| REG       | ?             | -           |
| LNE       | +             | +           |
| LNC       | +             | +           |
| LNR       | +             | -           |
| LNS       | +             | -           |
| CMP       | ?             | +           |
| GWM       | ?             | -           |
| GPOP      | +             | -           |
| TDEV      | +             | Х           |
| T3P       | +             | Χ           |

Review

# Result of the first regression

- Dependent variable is total earning.
- Model only captures  $R^2 = 21.4\%$ ; adjusted  $R^2 = 14.5\%$  of the variability of the total earning.

#### **Variables**

- Significance at 99%: GWM
- Significance > 70%: GPOP, LNC
- Significance > 50%: REG, LNS
- Not significant: CMP, LNE, LNR

Review

#### Wald Test: Equation: REGRESSION1

| Test Statistic            | Value                | df           | Probability      |
|---------------------------|----------------------|--------------|------------------|
| F-statistic<br>Chi-square | 0.251149<br>0.251149 | (1, 91)<br>1 | 0.6175<br>0.6163 |
|                           |                      |              |                  |

#### Null Hypothesis Summary:

| Normalized Restriction (= 0) | Value     | Std. Err. |
|------------------------------|-----------|-----------|
| C(7)                         | -0.069646 | 0.138973  |

Restrictions are linear in coefficients.

#### Result

- Wald test on LNR gives p-value > 0.05.
- We can remove LNR.

# Second model

#### Second regression

Dependent Variable: LNT Method: Least Squares Date: 01/16/24 Time: 17:24 Sample: 1 100 Included observations: 100

| Variable                                                                                                                         | Coefficient                                                                       | Std. Error                                                                                                                           | t-Statistic                                                              | Prob.                                                                |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|
| C<br>GPOP<br>GWM<br>LNC<br>LNS<br>REG                                                                                            | 16.28846<br>-0.089546<br>-0.145990<br>0.121279<br>-0.115860<br>-0.058247          | 0.828495<br>0.050338<br>0.030324<br>0.107677<br>0.089058<br>0.049378                                                                 | 19.66030<br>-1.778882<br>-4.814401<br>1.126326<br>-1.300960<br>-1.179600 | 0.0000<br>0.0785<br>0.0000<br>0.2629<br>0.1965<br>0.2411             |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>F-statistic<br>Prob(F-statistic) | 0.208299<br>0.166187<br>0.418964<br>16.49988<br>-51.80299<br>4.946326<br>0.000460 | Mean dependent var<br>S.D. dependent var<br>Akaike info criterion<br>Schwarz criterion<br>Hannan-Quinn criter.<br>Durbin-Watson stat |                                                                          | 14.65401<br>0.458820<br>1.156060<br>1.312370<br>1.219321<br>0.386855 |

# Second model

Review

# Second regression result

- All variables' significance is over 70%
- $R^2$  lowered to 20.8%

#### Increase $R^2$

• Introduces 2 new variables based on publicly available information:

| Name                   | Variables | Туре    | Expected sign |
|------------------------|-----------|---------|---------------|
| Total prize pool (USD) | TPP       | Numeric | +             |
| Total tournaments held | TTS       | Numeric | +             |

# Third model

#### Third regression

Dependent Variable: LNT Method: Least Squares Date: 01/16/24 Time: 17:26 Sample: 1 100

Included observations: 100

| Variable                                                                                                                         | Coefficient                                                                                       | Std. Error                                                                                                                           | t-Statistic                                                                                       | Prob.                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| C<br>GPOP<br>GWM<br>LNC<br>LNS<br>REG<br>TPP<br>TTS                                                                              | 13.58467<br>-0.052133<br>-0.108618<br>0.141334<br>-0.105626<br>-0.061136<br>0.125164<br>-0.051486 | 4.289247<br>0.074977<br>0.070182<br>0.112530<br>0.095151<br>0.052340<br>0.191275<br>0.094798                                         | 3.167146<br>-0.695320<br>-1.547657<br>1.255963<br>-1.110088<br>-1.168049<br>0.654366<br>-0.543109 | 0.0021<br>0.4886<br>0.1251<br>0.2123<br>0.2699<br>0.2458<br>0.5145<br>0.5884 |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>F-statistic<br>Prob(F-statistic) | 0.212235<br>0.152296<br>0.422439<br>16.41785<br>-51.55379<br>3.540864<br>0.002060                 | Mean dependent var<br>S.D. dependent var<br>Akaike info criterion<br>Schwarz criterion<br>Hannan-Quinn criter.<br>Durbin-Watson stat |                                                                                                   | 14.65401<br>0.458820<br>1.191076<br>1.399489<br>1.275425<br>0.376062         |

# Conclusion

#### **Variables**

- Most significant: GWM
- Significance > 70%: LNC, LNS, REG
- Not significance: GPOP, TPP, TTS, CMP, LNE, LNR

#### Statistical values

- $R^2 = 0.21$ : Explain 21% of the changes in the dependent variable.
- Adjusted  $R^2 = 0.15$ : Some of the variables introduced are not significant.
- F-statistic = 3.5 and p-value = 0.002: At least one independent variable is contributing to explaining the variation.

# Conclusion

# What led to a low explanation capability?

- Many information are not publicly available.
- Differences in how different games host their tournaments.
- Contain large amount of players from one game.

# How to improve?

- Focus on one game.
- Different approach to selecting factors.

