Did B737 MAX Crisis Handed AIRBUS a Stock Gain?

Maria del Carmen RAMIREZ RODRIGUEZ, Ananthu SUGATHAN, Razvan NEACSU

École Nationale de l'Aviation Civile

January 26, 2024

Outline

- Context
- 2 Data
 - Source
 - Description
 - Feature Engineering
- Multivariate Linear Regression
 - 1st model
 - 3rd Model
- 4 "Magic"
 - Residuals tests
- Conclusions
- **6** Further Analysis
- References

Context

The Skies' Fierce Rivalry: BOEING-AIRBUS

- AIRBUS and BOEING (leading aircraft manufacturers), have made substantial contributions to developing the global aviation industry.
- AIRBUS has revolutionized the industry by introducing wide-body aircraft.
- BOEING, renowned for its engineering excellence, has a rich legacy of delivering iconic aircraft.
- In 2019, AIRBUS displaced BOEING as the largest aerospace company by revenue due to the BOEING 737 MAX groundings. [Flight Global, 2020]

Context

What are we considering?

- "The past few months have seen a marked turnaround in oil prices accompanied by a strong increase in implied price volatility".
 [E.C.Bank, 2019]
- "Nothing is more important to us than safety. We are determined to restore the trust we lost in 2019. We'll do it one airplane, one flight, one customer at a time." [BOEING Annual Report, 2019]
- BOEING accidents and aftermath.

Data

Source

All the used data are reliable and come from official sources.

- BOEING Annual Financial Report [BOEING Annual Report, 2019]
- AIRBUS Annual Financial Report [AIRBUS Annual Report, 2019]
- Yahoo Finance
 - AIRBUS prices
 - BOEING prices
 - Oil prices¹
- Official News Reports²

¹AIRBUS introduced usage of SAF

²Research based on BOEING volume outliers.

BOEING Events

Date	Event	
29.10.2018	First B737 MAX crash, Lion Air, flight 610	
10.03.2019	Second B737 MAX crash, Ethiopian Airlines flight 302	
19.03.2019	The United States Department of Transportation requested	
	the Office of the Inspector General to conduct on audit of the	
	certification process for the 737-MAX series.	
4.04.2019	Boeing official Statement On Ethiopian AirlinesFlight 302	
	Investigation Preliminary Report	
7.05.2019	Boeing Chairman, President and Chief Executive Officer	
	speaks at the Bernstein Strategic Decisions Conference	
18.09.2019	Boeing may have 'unknowingly' misled regulators	
	about crash-linked software	
23.12.2019	Key events leading up to the firing of Boeing's CEO	
	over the 737 MAX investigation.	

Data

Observations

- Data from October 2018 (1st B737 MAX accident) to December 2019.
- Weekdays (Monday to Friday)³

Feature Engineering

Our target variable

- Close price of AIRBUS
 - European market⁴
 - Units → €

Feature Engineering

Variables

- Categorical variables → Date and Day of the Week
- Dynamic variables → Using return of stocks from both companies, different variables were computed.
 - Daily returns for BOEING and AIRBUS
 - Open and close change of BOEING and AIRBUS
 - Percentage open and close change of BOEING and AIRBUS
 - Binary variables → Performances of BOEING and AIRBUS

Numerical variables

- Open and close prices of BOEING
- Open prices of AIRBUS
- Event time span
- Volumes for BOEING and AIRBUS

Feature Engineering

Shape of the dataframe

- Rows → Every daily observation.
- Columns → Each of the variables considered for both companies and common-ones.

$$\begin{aligned} \textbf{Close}_{\textbf{AIRBUS}} &\sim \beta_0 + \beta_1 \text{ DayoftheWeek} + \beta_2 \text{ Close}_{\textbf{BOEING}} + \beta_3 \text{ Volume}_{\textbf{AIRBUS}} + \\ &+ \beta_4 \text{ Volume}_{\textbf{BOEING}} + \beta_5 \text{ Performance}_{\textbf{BOEING}} + \beta_6 \text{ Performance}_{\textbf{AIRBUS}} \\ &+ \beta_7 \text{ Change}_{\textbf{BOEING}} + \beta_8 \text{ Change}_{\textbf{AIRBUS}} + \beta_9 \text{ %Change}_{\textbf{BOEING}} + \\ &\qquad \qquad \beta_{10} \text{ %Change}_{\textbf{AIRBUS}} + \beta_{11} \text{ Price}_{\textbf{Oil}} + \beta_{12} \text{ Count}_{\textbf{Events}} + \\ &\qquad \qquad + \text{marginal effects} \end{aligned}$$

1st Model

Model Summary

```
call:
lm(formula = target ~ .. data = train_set)
Residuals:
            10 Median
   Min
                           30
                                 Max
-13.141 -4.542 0.886
                        4.759 12.860
coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
               5.829e+01 5.800e+00 10.050 < 2e-16 ***
dayofweek
               9.870e-02 2.741e-01 0.360 0.719043
Close BA
             1.117e-01 1.503e-02 7.431 1.54e-12 ***
Volume_BA 3.544e-07 1.006e-07 3.522 0.000505 ***
volume AIR -3.964e-06 7.707e-07 -5.143 5.31e-07 ***
Performance BA 4.572e-01 1.124e+00 0.407 0.684499
Performance_AIR -9.675e-01 1.135e+00 -0.853 0.394544
Change_BA -2.572e-02 1.133e-01 -0.227 0.820632
Change_AIR 7.354e-01 5.212e-01 1.411 0.159474
X.Change_BA -1.270e+01 3.093e+01 -0.411 0.681776
X.Change AIR -3.964e+00 4.775e+01 -0.083 0.933903
Price
              -8.717e+00 1.750e+01 -0.498 0.618763
Count
              1.405e-01 4.833e-03 29.068 < 2e-16 ***
signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.263 on 261 degrees of freedom
Multiple R-squared: 0.8121, Adjusted R-squared: 0.8035
F-statistic: 94.02 on 12 and 261 DF, p-value: < 2.2e-16
```

3rd Model

Equation

Dropping the variables that drive the target with less than 1% of probability.

The model now looks like:

Close_{AIRBUS} ~ $\beta_0 + \beta_1$ Close_{BOEING} + β_2 Volume_{BOEING}+

 $+\beta_3$ Volume_{AIRBUS} + β_4 Count_{Events} + marginal effects

3rd Model

Model Summary

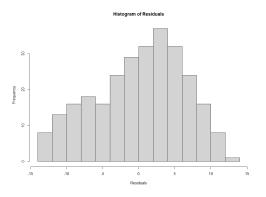
```
call:
lm(formula = target ~ .. data = train_set)
Residuals:
             10 Median
    Min
                             3Q
                                     Max
-13.4080 -4.5757 0.5688 4.7616 13.3009
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.850e+01 5.603e+00 10.440 < 2e-16 ***
Close BA 1.114e-01 1.466e-02 7.594 5.13e-13 ***
Volume_BA 3.549e-07 9.123e-08 3.890 0.000126 ***
Volume_AIR -3.962e-06 7.505e-07 -5.279 2.68e-07 ***
Count 1.400e-01 4.756e-03 29.437 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.228 on 269 degrees of freedom
Multiple R-squared: 0.8085, Adjusted R-squared: 0.8057
F-statistic: 284 on 4 and 269 DF, p-value: < 2.2e-16
```

2024 Blown Out window stock consequence prediction 1st prediction

Testing the trained model from 2019 with the data from last week event (8th January,2024 and next 3 days).⁵

Target	Fitted value
143.20	135.9533
143.12	128.9140
144.04	127.3262
143.88	125.7921
	©

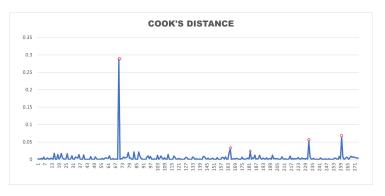
Table: 1st Prediction


Residuals tests

Jarque-Bera test

Residuals follow a normal distribution?

Jarque-Bera test


- Jarque-Bera \rightarrow 10.6
- p-value $\rightarrow 0.005$
- Skewness \rightarrow -0.2923
- Kurtosis → -0.7796

Residuals tests

Cook's distance test

Influence of independent observations in the model itself.

After dropping the observations with higher Cook's distance we could observe these results.

2nd prediction

Target	Fitted value
143.20	136.2078
143.12	128.8574
144.04	127.0940
143.88	125.5992
	②

Table: 2nd Prediction

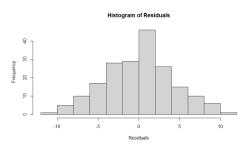
Our model still doesn't fit the data, it can be further improved...

2024 Event prediction

Improved data frame model

After training our 3rd model taking everything mentioned into account...

```
call:
lm(formula = target ~ .. data = train_set)
Residuals:
    Min
             10 Median
                                      Max
                              30
-10.8562 -2.6544 0.2903 2.6934 10.0207
coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.239e+02 6.648e+00 18.643 <2e-16 ***
close_BA -2.859e-02 1.673e-02 -1.709 0.0890 .
Volume_BA 1.737e-08 6.938e-08 0.250 0.8026
Volume AIR -1.547e-06 6.916e-07 -2.237 0.0265 *
Count
       6.205e-02 5.895e-03 10.526 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.244 on 189 degrees of freedom
Multiple R-squared: 0.4857, Adjusted R-squared: 0.4749
F-statistic: 44.63 on 4 and 189 DF, p-value: < 2.2e-16
```


Residuals tests

Jarque-Bera test

Residuals follow a normal distribution?

Jarque-Bera test

- Jarque-Bera $\rightarrow 0.636$
- p-value $\rightarrow 0.7276$
- Skewness \rightarrow -0.005
- Kurtosis \rightarrow -0.3083

2024 Event prediction

Our model shows the AIRBUS gain stock of last week!

- On 5th of January BOEING had a stock price of 249\$ and AIRBUS had 139.70€
- Alaska Airlines incident on B737 MAX happened during Friday night.

Fitted value
134.8802
134.8019
134.9852
134.8946
©

Table: 2nd Prediction

Conclusions

- Need of **Feature Engineering** to have low-correlated quality variables to feed the regression model.
- Residuals do NOT follow a normal distribution.
- Skewness and Kurtosis is present on our residuals.
 - There is a period of time in the time span of our data, where BOEING does not follow our initial assumptions of the model.
 - Some outliers observations influence the model in a higher manner based on the Cook's distance.
- Workflow through the project.
- Models helped us to predict when there is a negative event for the model B-737MAX, AIRBUS will show a stock gain.

Further Analysis

- Improve our model
 - Cleaning data
 - Changing predictors
- Change of model (?)
- Feed with more quality variables affecting AIRBUS stock prices
 - Effect of currency change
 - Effect of inflation
 - Effect of the gap in the predictions
- Time series analysis (?)
- The Random Walk Behaviour of Stock Prices [A. Cooray, 2003]

References

European Central Bank (Feb. 06, 2019)

Recent developments in oil prices

https://www.ecb.europa.eu/pub/economic-bulletin/focus/2019/html/ecb.ebbox201901_01~dd4b3e4eb2.en.html

The BOEING Company (2019)

What we stand for. BOEING Annual Report, 2019

https://investors.BOEING.com/investors/reports/

Murdo Morrison (2020)

Aerospace BOEING displaces BOEING as aerospace's biggest company

https://www.flightglobal.com/aerospace/ BOEING-displaces-BOEING-as-aerospaces-biggest-company/140026. article

AIRBUS (2019)

Investors — Financial Results & Annual Reports

https://www.airbus.com/en/investors/financial-results-annual-reports

References

Arusha Cooray, (2003)

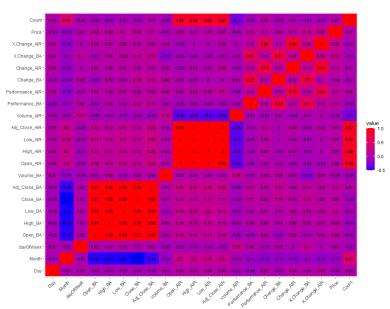
The Random Walk Behaviour of Stock Prices: A Comparative Study [ISSN 1443-8593 - ISBN 1 86295 130 6]

School of Economics, University of Tasmania

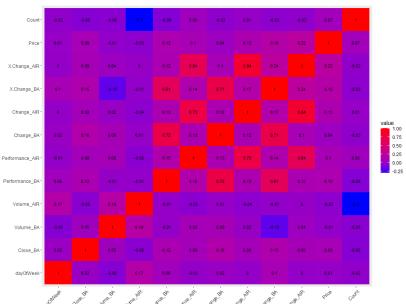
Did B737 MAX Crisis Handed BOEING a Stock Gain?

Research Paper studing the impact of BOEING events to AIRBUS stock prices Maria del Carmen RAMIREZ RODRIGUEZ, Ananthu SUGATHAN, Razvan NEACSU

https://www.overleaf.com/read/mcbrghybnsfy#f2a09a


Thank you for your attention! Questions?

Influence of the Events Count to the target


If we do not take into account our main assumption based on BOEING reports, i.e. 2019 was a bad year for BOEING

```
call:
lm(formula = stocks_AIR ~ .. data = train_set)
Residuals:
   Min
            10 Median 30
                                 Max
-32.579 -6.875 -1.160 8.880 25.474
coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.634e+01 8.418e+00 3.129 0.00186 **
Month
       1.617e+00 1.544e-01 10.473 < 2e-16 ***
Close_BA 2.213e-01 2.215e-02 9.993 < 2e-16 ***
Volume_BA 7.110e-07 1.489e-07 4.775 2.42e-06 ***
Volume_AIR -7.282e-06 8.360e-07 -8.710 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 10.94 on 466 degrees of freedom
Multiple R-squared: 0.4242, Adjusted R-squared: 0.4192
F-statistic: 85.82 on 4 and 466 DF, p-value: < 2.2e-16
```

Correlation matrix 1

Correlation matrix 2

2nd Model

Equation

The model now looks like:

Close_{AIRBUS} ~
$$\beta_0 + \beta_1$$
 Close_{BOEING} + β_2 Volume_{BOEING}+ + β_3 Volume_{AIRBUS} + β_4 Change_{AIRBUS} + β_5 Count_{Events}+ + marginal effects

2nd Model

Model Summary

```
call:
lm(formula = target ~ ., data = train_set)
Residuals:
              10 Median
    Min
                               30
                                      Max
-12.9304 -4.4787 0.5767 4.5848 12.5532
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.913e+01 5.590e+00 10.579 < 2e-16 ***
Close_BA 1.094e-01 1.464e-02 7.475 1.10e-12 ***
Volume_BA 3.521e-07 9.084e-08 3.876 0.000134 ***
Volume_AIR -3.918e-06 7.476e-07 -5.240 3.25e-07 ***
Change_AIR 4.415e-01 2.411e-01 1.831 0.068212 .
Count 1.400e-01 4.735e-03 29.573 < 2e-16 ***
---
signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.201 on 268 degrees of freedom
Multiple R-squared: 0.8109, Adjusted R-squared: 0.8074
F-statistic: 229.8 on 5 and 268 DF. p-value: < 2.2e-16
```