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a b s t r a c t

This paper uses a complex network approach to examine the network structure and nodal centrality of
individual cities in the air transport network of China (ATNC). Measures for overall network structure
include degree distribution, average path length and clustering coefficient. Centrality metrics for individ-
ual cities are degree, closeness and betweenness, representing a node’s location advantage as being
directly connected to others, being accessible to others, and being the intermediary between others,
respectively. Results indicate that the ATNC has a cumulative degree distribution captured by an expo-
nential function, and displays some small-world (SW) network properties with an average path length
of 2.23 and a clustering coefficient of 0.69. All three centrality indices are highly correlated with socio-
economic indicators of cities such as air passenger volume, population, and gross regional domestic prod-
uct (GRDP). This confirms that centrality captures a crucial aspect of location advantage in the ATNC and
has important implications in shaping the spatial pattern of economic activities. Most small and low-
degree airports are directly connected to the largest cities with the best centrality and bypass their regio-
nal centers, and therefore sub-networks in the ATNC are less developed except for Kunming in the south-
west and Urumchi in the northwest because of their strategic locations for geographic and political
reasons. The ANTC is relatively young, and not as efficient and well-developed as that of the US.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction 1998). In the case of incremental growth in a complex network,
Network structure has been of great interest to transport geog-
raphers since the ‘‘Quantitative Revolution” in the 1950s (Haggett
and Chorley, 1969). More recently, the advancement of complex
network theory has generated an increasing body of literature on
applications in transport systems. Network analysis in geography
was rejuvenated with the influx of new concepts and methods. Un-
like most studies on complex network analysis by physical scien-
tists, studies by geographers (including this study) have interests
beyond testing the statistical properties of the networks and clas-
sifying whether a network meets the criteria of small-world (SW) or
scale-free (SF). Rather the spatial structure of the transport net-
work, its distinctive roles of nodes and connection with actual traf-
fic flows are the primary interests of geographic inquiry.

A small-world network generally has a small average path
length and a large clustering coefficient (Watts and Strogatz,
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new nodes are more likely to connect with well-linked existing
nodes (Barabási and Albert, 1999). Consequently, hubs tend to
reinforce themselves, and lead to a scale-free network. A scale-free
network is a network whose degree distribution conforms to a
power-law (Newman, 2003). There have been a number of studies
applying these concepts to analyze air transport networks. Earlier
applications were primarily to illustrate and test theories or mod-
els (e.g., Amaral et al., 2000; Chi et al., 2003; Guimerá and Ama-
ral, 2004). More recent work explored the implication of network
analysis results. For example, Guimerá et al. (2005) observed that
the worldwide airport network is a scale-free small-world network
and the most-connected cities are typically not the most-central,
implying the anomaly of centrality values. Complex network
measures are also used for evaluating air transport networks of
particular countries and airlines, as for Italy (Guida and Maria,
2007), India (Bagler, 2008), and the Lufthansa airline (Reggiani
et al., 2009). These studies examined overall network structures
and indices for individual nodes such as average path length, no-
dal clustering, nodal degree and degree distributions. One com-
mon oversight is the lack of discussion of geographic, political,
and socio-economic factors that strongly influence the configura-
tion and evolution of air transport networks. Focusing network
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mailto:huihuimo@163.com
http://dx.doi.org/10.1016/j.jtrangeo.2010.08.012
http://www.sciencedirect.com/science/journal/09666923
http://www.elsevier.com/locate/jtrangeo


Fig. 1. Air passenger volumes in cities in China 2007 (in 10,000).

Table 1
Top 15 cities by air passenger volume in China 2007.

Rank Name No. of air
routes

Populationa

(million)
GRDPa

(billion
Yuan)

Air passenger
volume
(million)

1 Beijing 92 11.42 920.76 54.37
2 Shanghai 82 13.09 1206.61 51.55
3 Guangzhou 79 7.73 657.05 30.96
4 Shenzhen 65 2.12 680.16 20.62
5 Chengdu 58 5.03 209.19 18.57
6 Kunming 58 2.33 104.87 15.73
7 Hangzhou 43 4.20 325.79 11.73
8 Xi’an 57 5.49 132.95 11.37
9 Chongqing 56 15.26 294.10 10.36

10 Xiamen 42 1.67 138.79 8.68
11 Wuhan 42 5.10 270.90 8.36
12 Changsha 44 2.19 129.90 8.07
13 Nanjing 39 5.34 301.57 8.04
14 Qingdao 44 2.76 213.85 7.87
15 Dalian 39 2.93 225.88 7.28

a In municipal districts. Source: China City Statistical Yearbook, 2008; Statistical
Data on Civil Aviation of China, 2008.
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analysis on China provides the opportunity to explore such
aspects.

China has the world’s largest national population of 1.33 billion
in 2008 (National Bureau of Statistics of China, 2009). Since the
beginning of economic reforms and an open-door policy in 1978,
China has experienced an average annual growth rate of 14.6 per-
cent in per capita gross domestic product (GDP). These two aspects
together contributed to it becoming the world’s fastest growing
aviation market (Granitsas, 2002). In the past three decades
(1978–2008), China’s air passenger volume rose by 15.8% yearly,
faster than any other transport modes in the country (i.e., rail, road,
and water). By 2008, China had 158 commercial airports in opera-
tion with an annual air passenger volume of 192 million and an-
nual air passenger movement rose to 288.3 billion person-km,
surpassed only by the United States. The air transport network of
China (ATNC) has considerably expanded over time and gradually
evolved towards a complex network (Li and Cai, 2004). However,
the ATNC is relatively young as its commercial air passenger mar-
ket did not reach a significant scale until the 1980s (Jin et al., 2004).
The case study of China, with comparisons to some well-studied
and mature air networks such as the US, will shed new light on
the development of air networks in emerging economies.

Despite the rising role of air transportation in China, very little
has been reported on the evolution of the ATNC, particularly in
mainstream international journals. Most studies on the ATNC fo-
cused on the spatial pattern of air passenger flows and airport
hubs. Among others, Jin et al. (2004) examined the geographic pat-
terns of air passenger transport in China from 1980 to 1998; Zhou
and Li (2005) analyzed the relationship between China’s airport
distribution and tourist development; and Wang and Jin (2007)
found that the ATNC is mainly composed by city-pair connections
with some primitive features of a hub-and-spoke system. Most re-
cently, Ma and Timberlake (2008) used longitudinal air passenger
flow data to analyze the leading cities in China at both the national
and global levels during 1990–2005. Other studies (Le, 1997;
Zhang, 1998; Liu, 2000; Zhang and Chen, 2003; Zhang and Round,
2008; Yang et al., 2008; Zhang and Round, 2009; Shaw et al., 2009)
emphasized the regulation and management of China’s airline
industry and air transport system. Li and Cai (2004), the only study
on ATNC using the complex network approach, identified its basic
topological properties. However, like most studies by physical sci-
entists, they did not provide in-depth analysis of geographic and
socio-economic factors shaping the network structure.

Complex network theory offers a new set of analytical methods
for spatial economic analysis to provide this new insight (Reggiani
and Nijkamp, 2007). This study uses network analysis indices to
examine the overall network structure and centrality of individual
cities in the ATNC, and then analyzes their spatial patterns with
relationship to economic and geographic factors.
2. The study area and data processing

Data for this study are obtained from the Civil Aviation Admin-
istration of China or CAAC (2009). The study area includes all cities
with operating airports in mainland China (excluding Hong Kong,
Macao and Taiwan) from October 28, 2007 to March 29, 2008.
Air routes are the linkages in the network, operated by the follow-
ing carriers: Air China Airlines, China Eastern Airlines, China South-
ern Airlines, Hainan Airlines, Shanghai Airlines, Shandong Airlines,
Sichuan Airlines, Shenzhen Airlines, and Xiamen Airlines Ltd. etc.

Most cities in the data have a single airport. For some large cit-
ies with multiple airports, the data are combined with one entry
for each city. In other words, each node in this study represents a
city instead of an airport. For example, Shanghai includes data from
both the Pudong and Hongqiao airports. Meanwhile, some small
airports without regular flights are excluded. Both direct and stop-
over air routes are considered and combined in the data set. The
latter are divided into two parts: from the departure city to the
stopover city, and then from the stopover city to the destination
city. Duplicated air routes are removed and only one route con-
nects each city-pair. With these adjustments the final network is
constituted by 144 cities and 1018 unique air routes. Fig. 1 shows
the spatial distribution of the 144 cities and their air passenger
volumes.

Table 1 summarizes the GRDP, population, air route, and air
passenger volume of the top 15 cities in 2007. All these 15 cities
are located in eastern China, i.e., east of the famous ‘‘Aihui-teng-
chong Line” (see Fig. 1 for location), an imaginary ‘‘geo-demo-
graphic demarcation line” in China (Hu, 1935). According to the
2000 census, 90.8% of population lived east of this line which ac-
counts for just 43% of national area (Yue et al., 2003). The concen-
trations of population and economy in eastern China are a major
factor in shaping the spatial pattern of air transportation in China.
3. Methods

In this paper, the ATNC is abstracted as a connected network
G = (V, E) by V and E, where V = {vi:i = 1, 2, � � �, n}, n = |V| is the



Table 2
Characteristics of various networks.

Network Average path
length, L

Clustering
coefficient, C

Degree distribution,
P(k)

Regular network Long Large Point to point
Random network Short Small Binomial or poisson
Small-world network Short Large Exponential or

power-law
Scale-free network Short Large Power-law
Real network Short Large Similar power-law
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number of nodes (vertices), and E = {ei:i = 1, 2, � � �, m}, m = |E| is the
number of edges (links). To represent the network, a connectivity
(adjacency) matrix An�n, is created such that an element aij = 1
when a flight link exists between city-pair i and j and aij = 0 other-
wise. Two nodes are defined to be neighbors if there is a link be-
tween them. This section introduces the indices for assessing the
overall network structure, the measures for centrality of individual
nodes, and the techniques for evaluating the relationship between
some indices.

3.1. Network structure measures

Several basic indices are used to measure the configuration of a
network with a set of edges and nodes.

3.1.1. Degree distribution
Degree is the number of edges that a node shares with others

(Barabási and Albert, 1999). For a network with n nodes, if nk of
them have degree k, the degree distribution p(k) is defined as the
fraction of these k-degree nodes, i.e., nk/n. P(k) represents the
cumulative degree distribution, i.e., the fraction of nodes with de-
grees greater or equal k, written as:

PðkÞ ¼
X1

k0¼k

pðk0Þ ð1Þ

The average degree of a network, denoted as hki, is the average
number of neighbors (i.e., directly connected nodes) a node has in
the network.

3.1.2. Average path length
Average path length (L) is defined as the average number of

edges along the shortest paths for all possible node-pairs in the
network (Watts and Strogatz, 1998), written as:

L ¼ 1
1
2 nðn� 1Þ

X

i>j

dij ð2Þ

where dij is the number of edges for the shortest path from i to j, and
the diameter of a network is defined as the maximum value of all dij.

3.1.3. Clustering coefficient
The clustering coefficient (Ci) of a node i is the portion of actual

edges (Ej) between the nodes (ki) within its neighborhood divided
by the maximal possible edges (ki(ki � 1)/2) between them (Watts
and Strogatz, 1998), written as:

Ci ¼
Ei

kiðki � 1Þ=2
ð3Þ

Note that the neighborhood of node i includes all the nodes di-
rectly connected to it but excludes the node i itself. A larger Ci value
means that the node has a more compact system of connections
with its neighbors. In a fully-connected network, Ci of all nodes
equals 1. Ci of nodes with ki = 1 equals 0.

The clustering coefficient of the whole network C is the average
of all individual Ci’s, presented as:

C ¼ 1
n

X

v i2V

Ci ð4Þ

The larger the value of C is, the more likely nodes are to reach
one another within a short topological distance (i.e., connections
or transfers).

According to the aforementioned three indices, the characteris-
tics of regular network, random network, small-world network, and
scale-free network are summarized in Table 2. A regular network is a
connected graph in which each vertex is connected by the same
way exactly as its neighboring vertices. A random network is ob-
tained by starting with a set of n vertices and adding edges be-
tween them at random. A small-world network is a network that
between the regular and random network and has a small average
path length and a high clustering coefficient. In a small-world net-
work, most nodes are not neighbors of one another, but most of
them can be reached by a small number of edges. Many real world
networks such as the Internet connectivity and gene networks are
represented by small-world networks. A scale-free network is a net-
work whose degree distribution follows a power-law, at least
asymptotically. Scale-free networks are noteworthy because many
empirically observed networks appear to be scale-free, including
protein networks, citation networks, and some social networks (Al-
bert and Barabási, 2002). Also, a small-world network can be gener-
ated from a regular network by re-wiring the cut edges with
probability, and a scale-free network can be generated by the pref-
erential attachment algorithm.

3.2. Centrality measures

Centrality measures the relative importance of a node within a
network. In this paper, three indices—degree centrality, closeness
centrality, and betweenness centrality—are used to capture a
node’s importance as being directly connected to others, being
accessible to others, and being the intermediary between others.

3.2.1. Degree centrality
As previously discussed, degree centrality is the number of

edges that a node shares with others, and thus symbolizes the
importance of the node in a network (Freeman, 1977, 1979). De-
gree centrality of a node i reflects its connectivity in the network
and is defined as:

CDðiÞ ¼
Xn

j¼1

aij ð5Þ

where element aij = 1 when a direct link exists between nodes i and
j and aij = 0 otherwise. If the network is directed, then we usually
define two separate measures of degree centrality, namely in-de-
gree and out-degree. In-degree is a count of the number of edges di-
rected to the node, and out-degree is the number of edges that the
node directs to others. Since the in-degree is nearly perfectly corre-
lated with out-degree in the ATNC, the network is considered sym-
metric (Li and Cai, 2004), and thus regarded as an undirected graph
in this study.

3.2.2. Closeness centrality
Closeness centrality measures the extent to which a node is

close to all other nodes along the shortest path and reflects its
accessibility in a given network. The closeness of node i is written
as:

CCðiÞ ¼
n� 1P
v j2V ;i–jdij

ð6Þ



Fig. 2. Cumulative degree distribution in the air transport network of China.
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In other words, a node’s closeness is the inverse of the average
shortest distance from that node i to all other nodes in a given net-
work (Sabidussi, 1966). The larger the i value, the more convenient
it is to reach other nodes.

3.2.3. Betweenness centrality
Betweenness centrality measures the extent to which a partic-

ular node lies between other nodes in a network, as first described
by Anthonisse (1971) and Freeman (1977). A node tends to be
more powerful if it is on the shortest paths connecting many
node-pairs, as it may be in a position to broker or mediate connec-
tions between these pairs. The betweenness of a node i is defined
as the ratio of all shortest paths passing through it and reflects
its transitivity. Thus,

CBðiÞ ¼
X

k–i–j2N

rkjðiÞ=rkj ð7Þ

where rkj is the sum of all shortest paths between nodes vk and vj,
and rkj(i) is the number of shortest paths that pass through vi.
Nodes that occur on many shortest paths between other nodes have
higher betweenness than those that do not.

3.3. Correlation measures

3.3.1. Degree correlation
Degree correlation demonstrates the extent of a node’s degree

related to the average degree of its neighbors. This index reflects
the node’s connection preference. If high-degree nodes tend to link
with each other, this tendency is referred to as assortativity. Other-
wise, high-degree and low-degree nodes tend to connect with each
other is referred to as disassortativity (Newman, 2003). Considering
the node vi with degree k and its ki neighbors (each vj e Ni), the
average degree of Ni is defined as:

KðiÞ ¼ 1
ki

X

v j2Ni

kj ð8Þ

The average degree of all k-degree nodes Ni (neighbors of all
nodes with k-degree) is defined as:

KðkÞ ¼ 1
NðkÞ

X

v i2V ;ki¼k

KðiÞ ð9Þ

where N(k) equals the number of k-degree nodes. Degree correla-
tion refers to the relationship between k and KðkÞ.

3.3.2. Clustering-degree correlation
Clustering-degree correlation demonstrates the extent of a

node’s clustering coefficient related to its degree. The average clus-
tering coefficient C(k) of all k-degree nodes Ni is given by:

CðkÞ ¼ 1
NðkÞ

X

v i2V ;ki¼k

Ci ð10Þ
4. Topological analysis of the ATNC

4.1. Cumulative degree distribution conforming to an exponential
function

The ATNC’s cumulative degree distribution follows an exponen-
tial function as P(k) = 0.705e�0.047k (R2 = 0.977), shown in Fig. 2.
That is to say, a few busy cities at the top dominate the system
with a large number of air routes, and the number of routes to each
city declines quickly and levels off towards small cities, most of
which have only 1–3 air routes. For example, the top 20% cities ac-
count for a majority (65%) of all air routes, and the bottom one-
third cities (46 of the 144 cities in the network) are only connected
by one or two air routes. The distribution of air passenger volume
in the ATNC has even a steeper slope with the top 20% cities
accounting for 87.7% of all passenger volume in 2007. Therefore,
the air passenger volumes are even more concentrated in a few
large cities than are the air routes in China. The cumulative distri-
butions of degree and air passenger volume approximately follow
the Pareto principle, also known as the 80–20 rule: about 80% of
the effects come from 20% of the causes. The average degree is
14.14 in the ATNC.

Such a distribution pattern is found in most self-organized com-
plex systems in nature, technology, and society. In other words, the
ATNC exhibits the statistical property of a self-organized system
following some ‘‘organic” order in its evolution over time. This is
different from a scale-free network, whose degree distribution pat-
tern is better characterized by a power function. In general, the de-
gree distribution captured by an exponential function (as in the
ATNC) exhibits a steeper decline, i.e., more dominance of large air-
ports, than that by a power function. This is more common in a
developing country than in a developed one. Table 3 compares
the air transport network structure of China to other countries
and the world as reported in the literature. All share some proper-
ties of a small-world network. The ATNC has an average degree va-
lue (hki) similar to those of the air transport networks of India, Italy
and the world, but much smaller than the average degree value in
the US. Note that the US air transport network is much larger than
that of the ATNC with about twice as many nodes and more than
six times the number of edges. There are much fewer edges per
node in the ATNC (1018/144 = 7.07) than in the US (6566/
272 = 24.14).
4.2. Average path length above 2

The average path length is an indicator of the convenience of
travelling in a given network. Table 4 summarizes the minimum
number of flights for travelling for all city-pairs. Over 98% of
city-pairs are reachable by changing two flights or less. About
70% of city-pairs are accessible by direct flights or changing one
flight. Only about 10% of city-pairs are connected by direct flights.
Based on Eq. (2), the ATNC’s average path length is 2.23. In other
words, it takes over one-flight change on average to connect all
city-pairs. This number is slightly larger than a random network
(Lr � 1.88) of the same size. The ATNC’s diameter is 5 (at least four
flight changes), which exists in connections between the isolated
Qiemo and six other cities (i.e., Heihe, Baoshan, Dehong, Fuyang,
Liping, and Linyi). Qiemo in southern Xinjiang has only one direct



Table 3
Characteristics of the air transport networks of China and other countries/regions.

Author Country No. nodes (n) No. edges (m) Average degree (hki) Average path length (L) Clustering coefficient (C) Network structure

Bagler (2008) India 79 455 11.52 2.26 0.66 SW
Guimerá et al. (2005) World 3883 27,051 13.93 4.4 0.62 SF SW
Guida and Maria (2007) Italy 50 310 12.40 1.98�2.14 0.07�0.1 SF SW Fractal
Xu and Harriss (2008) US 272 6566 48.28a 1.84�1.93 0.73�0.78 SW
In this paper China 144 1018 14.14 2.23 0.69 SW

a Calculated by the authors based on the info reported in the paper.

Table 4
Distribution of air routes by number of connection flights.

Shortest
path

No. of
paths

Percentage of
air routes (%)

Cumulative
percentage of air
routes (%)

No. of flights
needed to be
changed

1 2036 9.89 9.89 0
2 12,200 59.25 69.14 1
3 5976 29.02 98.16 2
4 362 1.76 99.92 3
5 18 0.09 100.00 4

Table 5
Best fitting models for centrality indices (y) vs. rankings (x).

Function a b R2 n

Degree, CD y = aebx 60.284 �0.032 0.976 144
Closeness, CC y = aebx 0.605 �0.004 0.936 144
Betweenness, CB y = aebx 0.206 �0.137 0.965 67a

a Excluding nodes with betweenness = 0.
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air route to Kuerle, and then connects through Urumchi (the capi-
tal of Xinjiang) in order to reach other cities in the network.

The average path length of 2.23 in the ATNC is very similar to
that of India’s air transport system (2.26) and slightly above that
of Italy’s (1.98–2.14), but larger than that of the US (ranging from
1.84 to 1.93) (Table 3). A relatively larger average path length in
the ATNC implies that China, like in other emerging countries, re-
mains at a less-developed stage in air transportation with much
room to improve in efficiency of connections.

4.3. Clustering coefficient close to 0.7

The ATNC’s clustering coefficient is 0.69, much larger than for a
random network (Cr � 0.098) of the same size. A larger clustering
coefficient confirms the high-degree of concentration identified
earlier and also implies a high probability for travelling with fewer
transfers in the network. The clustering coefficient of 0.69 in the air
transport network of China is slightly above that of India (0.66) but
lower than that of the US (0.73–0.78) (Table 3). With comparison
to the US, the ATNC has a smaller average degree value (i.e., cities
on average have fewer direct links to other cities), a larger average
path length and a smaller clustering coefficient (i.e., potentially
more transfers are needed to connect any two cities in the net-
work). All indicate that the air transport infrastructure in China
is less mature or efficient than that of the US. It might also imply
that the effect of the hub-and-spoke system of the US has not been
completely felt yet within the ATNC.

5. Node centrality assessment

5.1. Statistical distributions

5.1.1. Exponential decline in centrality values
The distribution of all three centrality indices generally con-

forms to an exponential function (Table 5 and Fig. 3), with R2 above
0.93. That is to say, the centrality value declines exponentially with
the node’s ranking. The top 20% cities (i.e., 29 most-central nodes)
account for 65.1% of air routes, 93.1% of transfers, and 84.0% air
passenger volumes. From Table 5, closeness has the flattest slope
(�0.004), betweenness has the steepest slope (�0.137), and the
slope for degree is between those two (�0.032). The steep curve
of betweenness indicates that a few hub cities account for most
of the transfer capacity.
Table 6 reports the top 20 cities by degree, closeness, and
betweenness. Beijing and Shanghai are ranked at the top by all
three indices. Based on both degree and closeness, the next three
cities are: Guangzhou, Shenzhen, and Chengdu. Kunming and
Urumchi make to the top 5 by betweenness in place of Shenzhen
and Chengdu. However, Kunming is ranked the sixth by degree
and the eighth by closeness, and Urumchi is ranked only the
28th and 27th by degree and closeness, respectively. Kunming is
the gateway to the southwestern region and Urumchi is a regional
hub in the northwestern region. Both enjoy considerably large
numbers of connection flights and thus have relatively high values
of betweenness. Similarly, some cities in peripheral regions such as
Hohhot, Guiyang, Xining, Lanzhou, and Kuerle also appear in the
top 20 cities by betweenness, but do not make to the top 20 lists
by degree or closeness. These cities are regional connector hubs
in the network.

The 23 cities with the lowest degree (CD = 1, only one air route
to other cities) are mostly located in less developed regions near
the borders such as those in Yunnan and Xinjiang. In terms of
closeness, Qiemo in Xinjiang has the lowest value, followed by
Ge’ermu in Qinghai, Fuyang in Anhui, Liping in Guizhou, and Ake-
su, Aletai, and Tacheng in Xinjiang. All these cities only have one
air route to their regional hubs, such as Kuerle, Xining, Hefei, Guiy-
ang, and Urumchi, and have no connections to national hubs.
Therefore, it usually takes multiple connection flights for them to
connect with other nodes in the network. Seventy seven cities have
a betweenness value of zero, indicating that no shortest paths be-
tween other city-pairs pass through them. These cities are the
peripheral 77 nodes in the network.
5.1.2. Consistency between degree and closeness but less with
betweenness

Table 6 shows that the rankings by degree and closeness are
generally consistent. The same 18 cities appear in the top 20 lists
for both indices. Dalian and Harbin are among the top 20 list by de-
gree but not by closeness; and conversely Guilin and Sanya make
to the top 20 list by closeness but not by degree. As pointed previ-
ously, the rankings of cities by betweenness can be significantly
different from those by degree and closeness. Some cities are
highly connected but play a relatively insignificant role for trans-
ferability such as Nanjing, Hangzhou, Wenzhou, Linyi, and Ningbo.
On the other side, some cities are less connected but serve as
important transfer hubs such as Kuerle, Diqing, Kelamayi, and
Urumchi. The latter are usually located in the peripheral areas,
and play an important role as connector hubs for sub-regions as



Fig. 3. Statistical distributions of degree, closeness and betweenness.

Table 6
Top 20 cities by degree, closeness, and betweenness.

Rank Degree, CD Closeness, CC Betweenness, CB Rank Degree, CD Closeness, CC Betweenness, CB

1 Beijing Beijing Beijing 11 Hangzhou Zhengzhou Hohhot
2 Shanghai Shanghai Shanghai 12 Zhengzhou Wuhan Guiyang
3 Guangzhou Guangzhou Kunming 13 Wuhan Ji’nan Haerbin
4 Shenzhen Shenzhen Guangzhou 14 Xiamen Taiyuan Wuhan
5 Chengdu Chengdu Urumchi 15 Haikou Qingdao Hefei
6 Kunming Xi’an Xi’an 16 Dalian Hangzhou Xining
7 Xi’an Chongqing Chengdu 17 Nanjing Guilin Lanzhou
8 Chongqing Kunming Shenzhen 18 Ji’nan Haikou Kuerle
9 Qingdao Changsha Chongqing 19 Taiyuan Sanya Guilin

10 Changsha Xiamen Changsha 20 Harbin Nanjing Zhengzhou

Table 7
Centralities and air passenger volumes by region.

Region Number
of cities

Mean Air passenger
volume
(million)

Degree,
CD

Closeness,
CC

Betweenness,
CB

Eastern 49 22.71 0.50 0.012 259.1
Central 42 10.83 0.46 0.003 45.42
Western 53 8.83 0.43 0.009 83.01
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shown above. The correlation coefficient is as high as 0.924 be-
tween degree and closeness, but much less (0.644) between the
closeness and betweenness.

5.2. Spatial patterns

The 144 cities with commercial airports are scattered almost
evenly across the three major regions, with 49 in the eastern
region, 42 in the central region and 53 in the western region
(Table 7; see Fig. 1 for division of the three regions). As noted how-
ever, population and economy are not so evenly distributed. Hence,
the spatial inequality of their centrality measures is evident
(Fig. 4). Generally, cities in the east have better centrality than
those in the west. Over half of the top 20 cities with the best cen-
trality values are in the eastern region, about one fourth in the cen-
tral region and less than one fourth in the western region. The
average degree of cities in the eastern region is 22.71, much higher
than the central region (10.83) and the western region (8.83). In
terms of degree and closeness, the most-central cities are mainly
clustered around the greater Beijing area, the Yangtze River Delta
and the Pearl River Delta. Provincial capitals such as Xi’an, Chen-
gdu, Kunming, Zhengzhou, Wuhan, and Changsha also have high
centrality values. The cities in peripheral areas as discussed earlier,
such as in Xinjiang, Qinghai, Gansu, and Tibet, have low centrality
values in terms of degree and closeness, excluding Urumchi and
Lanzhou. In terms of spatial distribution, betweenness has the
highest inequality, the degree next, and the closeness the least.



Fig. 4. Spatial distributions of degree, closeness and betweenness.
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Most flight transfers are concentrated in several major cities. That
can be seen in the highest betweenness value registered for Beijing
(0.20), which quickly drops to 0.04 in Changsha (10th ranked), and
to 0.01 in Guilin (19th ranked). In fact more than half of the cities
(77) have the betweenness value of zero. The polarization of
betweenness explains the very significant economic roles played
by large cities such as Beijing and Shanghai, although the effect
is less for other large cities such as Shenzhen and Wuhan.

6. Correlation analysis

6.1. Disassortativity in degree correlation

Based on Eqs. (8) and (9), the ATNC’s degree correlation equals
�0.429, and they follow a linear function as y = �0.429x + 54.64
(R2 = 0.886), as shown in Fig. 5. A node’s degree k is negatively cor-
related with the average degree of its next neighbors K(i), particu-
larly among moderate- and high-degree cities (e.g., when k P 8,
with y = �0.414x + 53.88, R2 = 0.947). The higher degree a node
has, the lower the average degree of its neighbors (K(i)) is. For
example, Beijing has the highest degree of 92 and the lowest K(i)
value of 19.4; Shanghai has the second highest degree of 82 and
also a low value of K(i) (21.7); and Guangzhou with the third high-
est degree of 79 has a low K(i) value (22.6). Among low-degree cit-
ies (k < 8), the pattern is less clear. For example, 4-degree cities
have the maximum KðkÞ value (average of K(i) for all 4-degree cit-
ies) of 62.2, followed by 5-, 6- and 2-degree cities. Among individ-
ual cities, the highest value K(i) equals 87 in three 2-degree cities
such as Dongying, Jiamusi, and Qiqihaer. All these three cities are
connected to Beijing and Shanghai with the highest degrees in
Fig. 5. Degree correlation.
the network. In Yunnan and Xinjiang, low-degree cities are directly
linked with their capitals (Kunming and Urumchi) that anchor
their respective sub-networks in the regions.

In the worldwide air transport network, when k 6 10, the net-
work is assortative (k and KðkÞ are positively correlated); when
k P 10, the variance of KðkÞ is very small (Barrat et al., 2004). For
the air transport network of the US, when k < 30, the network is
assortative; when k P 30, it becomes disassortative (Barrat et al.,
2005). In the ATNC, when k < 8, the node degree has little relation-
ship with that of its neighbors; when k P 8, the network is disas-
sortative. The ATNC is much smaller than the worldwide or the
US air transport network, and thus the cutoff number between
the distinctive assortativity patterns differ from those (10 for the
world, 30 for the US and eight for China). It is not necessarily assor-
tative for low-degree cities as both the worldwide and the US net-
works are, but is clearly disassortative for moderate- and high-
degree cities like the US (i.e., lower KðkÞ corresponds to higher de-
gree k). In the ATNC, many low-degree cities are prefecture-level
central cities, and their main air routes are linked to provincial cap-
itals that generally enjoy better centrality. Major hubs reinforce
themselves and prevent the formation of sub-hubs that are close
to them. The phenomena may be termed as the ‘‘shadow effect”
described originally by Taaffe (1959). This helps explain the gen-
eral pattern of disassortativity of the ATNC, particularly for high-
degree cities.

6.2. Nonlinear clustering-degree relation

Fig. 6 shows the relationship between clustering coefficients
and degrees, resembling an inverted-V shape. The trend can be
Fig. 6. Correlation between degree and clustering coefficient.



Table 8
Relationship between centralities and the air passenger volume, population, and GRDP.

Correlation coefficient Degree Closeness Betweenness Air passenger volume Population GRDP

Degree 1 0.924(a) 0.766(a) 0.837(a) 0.771(a) 0.793(a)
Closeness 1 0.644(a) 0.708(a) 0.698(a) 0.709(a)
Betweenness 1 0.905(a) 0.750(a) 0.770(a)

a Pearson correlation is significant at the 0.001 level (2-tailed) with 144 samples.

Fig. 7. Relationship of air passenger volume vs degree, closeness, and betweenness.
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captured by two parts: (1) when the degree is below the network
average (14.14), the clustering coefficient and degree indices are
positively related with a correlation coefficient of 0.41; and (2)
when the degree is over the network average, they are strongly
negatively related with a correlation coefficient of �0.92. In the
ATNC, 54 cities, i.e., 37.5% of all cities, have the highest clustering
coefficient of 1.0, and have low degrees ranging from 2 to 10. In
other words, neighbors of (i.e., cities directly connected to) these
54 cities are fully connected among themselves through direct
flights. Who are their neighbors? Among the 54 cities, 36 (66.7%)
have a direct link to Beijing, 25 (46.3%) to Shanghai, and 23
(42.6%) to Guangzhou. This illustrates the case that low-degree cit-
ies tend to directly connect with well-linked cities, which usually
have direct connections among each other (i.e., inter-hub air
routes). On the other side, after a city passes a threshold of degrees
(14 in our case), higher degree (and usually larger) cities tend to be
surrounded by lower-degree (and smaller) cities, which are less
well-connected among themselves. Therefore, higher degree cities
are associated with lower clustering coefficients in this group of
cities.

6.3. Association of centralities with air passenger volume, population
and GRDP

This sub-section examines the relationships between the three
centrality indices and the air passenger volume, population, and
gross regional domestic product (GRDP). Table 8 reports the corre-
lation coefficients between them, and shows that centrality indices
are all highly correlated with economic indicators of cities such as
their air passenger volume, population, and GRDP. As an example,
Fig. 7a–c shows the best-fitting trendlines between air passenger
volume versus degree, closeness, and betweenness after we ac-
count for a variable’s scale effect by measuring each variable in
its original values or logarithms. Note that the best fitting function
is a power function for air passenger volume versus degree (or
closeness), but a linear function for air passenger volume versus
betweenness. In other words, the air passenger volume in a city in-
creases geometrically with its degree and closeness, and linearly
with its betweenness.

7. Conclusions

This paper has used complex network theory to examine the
overall structure of China’s air transport network and the centrality
of individual cities. Major findings are summarized as follows.

(1) The air transport network of China (ATNC) has small-world
characteristics (like the air networks of the world and other
countries such as the US, India and Italy), but is not a scale-
free network (as is found in the worldwide and Italian air
networks). Its degree distribution is best captured by an
exponential function, indicating more dominance of large
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airports particularly the ‘‘big three” (Beijing, Shanghai and
Guangzhou) than is found in other statistical patterns such
as a power function. These results confirm the links between
the air network and the underlying settlement geography of
the country.

(2) The average degree measures the average number of direct
links between two cities, the average path length reveals
the depth of air transport system, and the clustering coeffi-
cient reflects the intensity of interconnectivity of the system.
When compared to the US air network, the ATNC has a smal-
ler average degree value, a larger average path length and a
smaller clustering coefficient. Thus it seems that the air
transport network of China is less mature than that of the
US, but results confirm that it is consistent with that found
in other emerging economies.

(3) These outcomes are especially prominent in the measures of
centrality indices for individual cities. Among these three
indices, degree and closeness are generally consistent with
each other but not necessarily with betweenness. All three
measures are highly correlated with socio-economic indica-
tors of cities such as air passenger volume, population, and
GRDP. This confirms that the overall centrality of the cities
in a network, which reflects in turn the spatial pattern of
economic activities – captures the crucial aspect of location
advantage that moulds an air transport network. The role in
the network of cities with high air passenger volumes, such
as Nanjing, Hangzhou, Wenzhou, Shenzhen and Ningbo are
explainable by their economic power and tourism attraction,
while for others such as Urumchi, Kunming, Hohhot, and
Guiyang, outcomes are attributable to geographic locations
as regional hubs facilitating connection flights. For Beijing,
Shanghai, and Guangzhou, their high air passenger volumes
are explained by both of the aforementioned factors. Hence
the character of the network reflects not only the underlying
development of the country but also its distinctive settle-
ment pattern with many large cities in its heavily populated
eastern half.

(4) Like the US, the ATNC is largely disassortative (i.e., higher
degree cities surrounded by lower-degree neighbors with
direct links, and vice versa), particularly for moderate- and
high-degree (i.e., k P 8) cities. Such a ‘‘shadow effect” in
China is partially attributable to cities of lower administra-
tive levels with direct links mainly with cities of higher lev-
els (typically the ‘‘big three” and/or provincial capitals). That
outcome reflects the influence exerted by Beijing, Shanghai
and Guangzhou in particular upon the parts of the country
that surround them.

(5) In general however, unlike the hub-and-spoke system in the
US, sub-networks in the ATNC are less developed. The few
exceptions are ‘‘regional connector hubs” such as Kunming
in the southwest and Urumchi in the northwest because of
their strategic locations for geographic and political reasons.

In overview, the research shows that the rapid development of
the air transport network in China has produced a distinctive pat-
tern. In recent years, new and small airports in China are inclined
to supply direct links to the top hubs and so bypass the regional
ones, resulting in underdeveloped regional centers. For example,
Handan airport opened in 2007 only has direct flights to Shanghai,
Guangzhou and Chongqing. Qinhuangdao airport opened in 2006
only has direct flights to Shanghai and Shenzhen. Jixi, Yichun and
Daqing, all opened in 2009, only have direct flights to Beijing. This
approach to air traffic planning means the hierarchical structure of
the air transport system in China identified in the analysis may be
re-enforced as it evolves.
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