Topic: Autocorrelation

- This problem set deals with autocorrelation, and in particular detection (visually and by several diagnostic tests), robust inference (using Newey-West standard errors), and nonlinear least squares for model estimation with autocorrelated errors.
- We use annual U.S. macroeconomic time-series data over the period 1963-1982 (t = 1, 2, ..., 20), available as investment.txt on the website. Import the data into a dated workfile as year (date), gnp (output), inv (investment), p (price level) and int (interest rate). In what follows, T refers to the effective sample size.
- Refer to figures 1 3, and perform the following:
 - Perform a brief descriptive analysis of the dataset. Do you notice any features of interest? Then, run a linear regression of inv/p on a constant, gnp/p, and int Δp, where Δp := p_t p_{t-1}, and the EViews command for first-differencing is d(p, 1). Plot the estimated residuals û_t against time, and interpret the results. Check for the normality of û_t at the 90% level.¹ Finally, test H₀ : β₂ = -8 (where β₂ is the weight on int Δp) against the two-sided H₁, at the 95% level.
 - 2. Re-run the above regression, using Newey-West robust (to heteroscedasticity and autocorrelation of unknown form) standard errors. Calculate the lag length $L = \text{integer}(4(T/100)^{2/9})$ that is used in the computation of the standard errors.

¹Hint (optional, advanced): how many observations have been used in the model estimation? Suggestion: use the *asymptotic* $\chi^2_{0.90}(2)$ critical value, then use Figure 3 and/or Table 1 in the 'Finite-sample quantiles of the Jarque-Bera test' handout to approximate the *actual* 90% level critical value to 1 d.p.; does this change the test result?

What do you notice from the regression output? Again, test H_0 : $\beta_2 = -8$ against the two-sided alternative, at the 95% level. Explain your findings.

3. One of the most widely-used checks for autocorrelation is the Durbin-Watson d statistic, which is based on the principle that if the true disturbances are autocorrelated, then this should be revealed through autocorrelation of \hat{u}_t :

$$d = \frac{\sum_{t=2}^{T} (\hat{u}_t - \hat{u}_{t-1})^2}{\sum_{t=1}^{T} \hat{u}_t^2}$$

This is related to the sample autocorrelation $\hat{\rho} := (\sum_{t=2}^T \hat{u}_t \hat{u}_{t-1}) / (\sum_{t=1}^T \hat{u}_t^2)$:

$$d = 2(1-\widehat{\rho}) - \left(\frac{\widehat{u}_1^2 + \widehat{u}_T^2}{\sum_{t=1}^T \widehat{u}_t^2}\right).$$

(Show this.) If the sample is large, then:

$$d \approx 2(1 - \hat{\rho})$$

and so $d \approx 2$ as $\hat{\rho} = 0$ and d > 2 as $\hat{\rho} < 0$ and d < 2 as $\hat{\rho} > 0$. Practically, the distribution of d under the null hypothesis H_0 : no autocorrelation ($\rho = 0$), depends upon on the explanatory variables in the regression, and the critical region does not come from a 'standard' distribution. The d test is not valid if lagged dependent variables are used as explanatory variables. Further, the d test can only be used to test for no autocorrelation against H_1 : first-order autocorrelation. What is the interpretation of the d statistic from part 1?

4. An asymptotic approximation to the distribution of d (as $T \to \infty$) is:

$$d \sim \mathrm{N}(2, 4/T).$$

Use this result to formally test $H_0: \rho = 0$ at the 95% level.

5. A more sophisticated check for autocorrelation is the Breusch-Godfrey test, which assesses the null of no autocorrelation up to lag p, against the alternative that $u_t \sim AR(p)$ or $u_t \sim MA(p)$ (the same test procedure is used for both). It consists of regressing \hat{u}_t on a constant, the original (non-constant) explanatory variables and $\hat{u}_{t-1}, \ldots, \hat{u}_{t-p}$, computing the R^2 from this regression, and noting:

$$T R^2 \sim \chi^2(p),$$

where T here is the *effective* sample size. This is equivalent to regressing \hat{u}_t on the part of the lagged residuals that is *unexplained by the explanatory variables* (if some fit is found, this will be due to the correlation between the current and lagged residuals: autocorrelation!). Interpret the results of this test statistic (computed using EViews), with $p = 4.^2$

- 6. Regress inv/p on a constant, gnp/p, int Δp, and AR(1) errors, using nonlinear least squares (to include AR(1) errors in a model, use ar(1); to include AR(2) errors, use ar(1) and ar(2) together, etc.). Compare the results to part 1 above, and interpret the AR(1) coefficient. Does the Breusch-Godfrey test suggest that explicit modelling of error dependence has removed the problem of autocorrelated errors?! (Hint: try various lags p).
- Note that this problem set is intended to introduce methods of treating autocorrelation, and does not deal with some fundamental time-series issues (such as possible nonstationarity of the series) that can be very important when modelling such data.

²Note that performing this test manually will give a different value for the computed test statistic, since EViews sets all presample values of the residuals to zero rather than dropping those observations, e.g. $\hat{u}_0 = 0$, $\hat{u}_{-1} = 0$, etc. Furthermore, a different choice of lag p may also change the test outcome!

Figure 1: Ordinary least squares regression of inv/p on a constant, gnp/p, and $int - \Delta p$, and actual and fitted residuals.

Equation: EQ02	Workfile: AP	PLIED_PROBL	EM_SET_3_						
View Proc Object Print	Name Freeze	Estimate Forec	ast Stats Res	ids					
Dependent Variable: INV/P Method: Least Squares Date: 09/19/09 Time: 16:17 Sample (adjusted): 2 20 Included observations: 19 after adjustments Newey-West HAC Standard Errors & Covariance (lag truncation=2)									
	Coefficient	Std. Error	t-Statistic	Prob.					
C GNP/P INT-D(P,1)	-33.37635 0.201524 -2.934159	29.03188 0.033320 1.841019	-1.149645 6.048164 -1.593769	0.2672 0.0000 0.1305					
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.825756 0.803975 16.65948 4440.612 -78.77386 37.91253 0.000001	Mean depend S.D. depende Akaike info cri Schwarz critei Hannan-Quin Durbin-Watsc	lent var nt var terion rion n criter. in stat	192.4258 37.62754 8.607775 8.756897 8.633012 1.430277					
Equation: EQ01	Workfile: AP		EM_SET_3_	🗖 🗖					
Equation: EQ01 View Proc Object Print	Workfile: AP Name Freeze	PLIED_PROBL [Estimate]Foreca	EM_SET_3_ ast Stats Res	💶 🗖					
Equation: EQ01 View Proc Object Print Breusch-Godfrey Seria	Workfile: AP Name Freeze	PLIED_PROBL [Estimate][Forec. M Test:	EM_SET_3_ ast Stats Res	💶 🗖					
Equation: EQ01 View Proc Object Print Breusch-Godfrey Seria F-statistic Obs*R-squared	Workfile: AP Name Freeze I Correlation L 5.321288 12.15010	PLIED_PROBL Estimate Foreco M Test: Prob. F(4,12) Prob. Chi-Squ	EM_SET_3_ ast Stats Res						
Equation: EQ01 View Proc Object Print Breusch-Godfrey Seria F-statistic Obs*R-squared Test Equation: Dependent Variable: R Method: Least Square: Date: 09/19/09 Time: Sample: 2 20 Included observations Presample missing va	Workfile: AP Name Freeze al Correlation L 5.321288 12.15010 RESID 23:19 : 19 alue lagged res	PLIED_PROBL Estimate) Foreco M Test: Prob. F(4,12) Prob. Chi-Squ siduals set to ze	EM_SET_3 ast)Stats)Res Jare(4) Pro.						
Equation: EQ01 View Proc Object Print Breusch-Godfrey Seria F-statistic Obs*R-squared Test Equation: Dependent Variable: F Method: Least Square: Date: 09/19/09 Time: Sample: 2 20 Included observations Presample missing va	Workfile: AP Name Freeze al Correlation L 5.321288 12.15010 EESID 5 23:19 : 19 alue lagged res Coefficient	PLIED_PROBL Estimate Foreco M Test: Prob. F(4,12) Prob. Chi-Squ siduals set to ze Std. Error	EM_SET_3_ ast)Stats)Res Jare(4) ero.	() () () () () () () () ()					
Equation: EQ01 View Proc Object) Print Breusch-Godfrey Seria F-statistic Obs*R-squared Test Equation: Dependent Variable: R Method: Least Square: Date: 09/19/09 Time: Sample: 2 20 Included observations Presample missing va C C GNP/P INT-D(P,1) RESID(-1) RESID(-2) RESID(-3) RESID(-4)	Workfile: AP Name Freeze al Correlation L 5.321288 12.15010 EESID 38 23:19 :19 alue lagged res Coefficient 78.26295 -0.117293 10.21571 -0.704523 -0.899918 -0.757747 -0.719722	PLIED_PROBL [Estimate] Foreco M Test: Prob. F(4,12) Prob. Chi-Squ siduals set to ze Std. Error 31.09556 0.042453 3.546754 0.343648 0.391478 0.336969 0.373210	EM_SET_3 ast)Stats Res Jare(4) t-Statistic 2.516853 -2.762899 2.880299 2.880299 2.880299 2.2050128 -2.298772 -2.248713 -1.928466	0.0106 0.0163 0.0163 Prob. 0.0271 0.0172 0.0172 0.0138 0.0629 0.0403 0.0441 0.0778					

Figure 2: Ordinary least squares regression of inv/p on a constant, gnp/p, and $int - \Delta p$, with Newey-West standard errors, and results of Breusch-Godfrey test for autocorrelation.

Equation: EQ03	Workfile: API	PLIED_PROBL	EM_SET_3_	🔳 🗖	X
View Proc Object Print	Name Freeze	Estimate Forec	ast Stats Res	ids	
Dependent Variable: I Method: Least Square Date: 09/20/09 Time Sample (adjusted): 3 Included observations Convergence achieve	NV/P :s : 00:05 20 s: 18 after adjus d after 27 iterati	tments			(m (>
	Coefficient	Std. Error	t-Statistic	Prob.	
C GNP/P INT-D(P,1) AR(1)	-33.42004 0.198892 -2.546250 0.227715	49.39430 0.056279 3.964467 0.384625	-0.676597 3.534048 -0.642268 0.592045	0.5097 0.0033 0.5311 0.5633	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.804130 0.762157 17.48933 4282.272 -74.78770 19.15860 0.000032	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watsc	lent var ent var iterion rion n criter. on stat	195.6802 35.86148 8.754189 8.952049 8.781471 1.558166	
					~
_					-
View Proc Object Print Breusch-Godfrey Seri	Workfile: AP	PLIED_PROBL Estimate Forec	EM_SET_3_ ast Stats Res	😑 🗖	
Equation: EQ03 View Proc Object Print Breusch-Godfrey Seri F-statistic Obs*R-squared	Workfile: AP Name Freeze al Correlation L 5.811335 12.58571	PLIED_PROBL Estimate Forec .M Test: Prob. F(4,10) Prob. Chi-Squ	EM_SET_3_ ast Stats Res	0.0111 0.0135	
Equation: EQ03 View Proc Object Print Breusch-Godfrey Seri F-statistic Obs*R-squared Test Equation: Dependent Variable: 1 Detroit Least Square Date: 09/20/09 Time Sample: 3 20 Included observations Presample missing v	Workfile: AP Name Freeze al Correlation L 5.811335 12.58571 RESID 25 : 00:24 s: 18 alue lagged res	PLIED_PROBL Estimate Forec M Test: Prob. F(4,10) Prob. Chi-Sq Prob. Chi-Sq	EM_SET_3 ast Stats Res uare(4) ero.	0.0111 0.0135	
Equation: EQ03 View Proc Object Print Breusch-Godfrey Seri F-statistic Obs*R-squared Test Equation: Dependent Variable: 1 Method: Least Square Date: 09/20/09 Time Sample: 3 20 Included observations Presample missing v	Workfile: AP Name Freeze al Correlation L 5.811335 12.58571 RESID 25 : 00:24 alue lagged res Coefficient	PLIED_PROBL Estimate Forec M Test Prob. F(4,10) Prob. Chi-Sq Stduals set to z	EM_SET_3 ast)Stats)Res uare(4) ero. t-Statistic	0.0111 0.0135 Prob.	
Equation: EQ03 View Proc Object Print Breusch-Godfrey Seri F-statistic Obs*R-squared Test Equation: Dependent Variable: 1 Method: Least Square Date: 09/20/09 Time Sample: 3 20 Included observations Presample missing v C GNP/P INT-D(P,1) AR(1) RESID(-1) RESID(-2) RESID(-3) RESID(-4)	Workfile: AP Name Freeze al Correlation L 5.811335 12.58571 RESID 35 : 00:24 : 18 alue lagged res Coefficient 106.2078 -0.146800 12.20695 -0.439000 -0.47455	PLIED_PROBL Estimate Forec M Test: Prob. F(4,10) Prob. Chi-Sq Std. Error 49.28784 0.057510 4.006718 7.226590 1.578883 0.461685 0.350189	EM_SET_3 ast Stats Res uare(4) ero. t-Statistic 2.154849 -2.555360 3.046620 -0.074728 -0.06748 -0.594312 -1.88846 -2.505662	Prob. 0.0566 0.0286 0.0286 0.0286 0.0286 0.0286 0.0286 0.0286 0.0286 0.0283 0.9419	

Figure 3: Ordinary least squares regression of inv/p on a constant, gnp/p, and $int - \Delta p$, with AR(1) errors, and results of the Breusch-Godfrey test for autocorrelation.

										14.1				
Ζ	Cum p	Tail p	Ζ	Cum p	Tail p	Z	Cum p	Tail p	Z	Cum p	Tail p	Z	Cum p	Tail p
0,00	0,5000	0,5000	0.40	0.6554	0.3446	0.80	0,7881	0.2119	1.20	0,8849	0.1151	1,60	0.9452	0.0548
0.01	0.5040	0.4960	0.41	0.6591	0.3409	0.81	0.7910	0.2090	1.21	0,8869	0.1131	1.61	0.9463	0.0537
0,02	0.5080	0.4920	0.42	0.6628	0.3372	0.82	0.7939	0.2061	1.22	0,8888	0.1112	1.62	0.9474	0.0526
0.03	0.5120	0.4880	0.43	0.6664	0.3336	0.83	0.7967	0.2033	1.23	0.8907	0.1093	1.63	0.9484	0.0516
0.04	0.5160	0.4840	0.44	0.6700	0.3300	0.84	0.7995	0.2005	1.24	0,8925	0.1075	1.64	0.9495	0.0505
0.05	0.5199	0.4801	0.45	0.6736	0.3264	0.85	0,8023	0.1977	1.25	0,8944	0,1056	1.65	0,9505	0.0495
0.06	0,5239	0,4761	0.46	0,6772	0,3228	0,86	0,8051	0.1949	1,26	0,8962	0,1038	1,66	0,9515	0.0485
0.07	0,5279	0.4721	0.47	0.6808	0.3192	0.87	0.8078	0.1922	1.27	0,8980	0,1020	1,67	0,9525	0.0475
0,08	0.5319	0.4681	0.48	0.6844	0.3156	0.88	0.8106	0.1894	1.28	0.8997	0.1003	1.68	0.9535	0.0465
0.09	0.5359	0.4641	0.49	0.6879	0.3121	0.89	0.8133	0.1867	1.29	0.9015	0.0985	1.69	0.9545	0.0455
0.10	0.5398	0.4602	0.50	0.6915	0.3085	0.90	0.8159	0.1841	1.30	0.9032	0.0968	1.70	0.9554	0.0446
0.11	0.5438	0.4562	0.51	0.6950	0,3050	0.91	0.8186	0.1814	1.31	0,9049	0.0951	1.71	0.9564	0.0436
0.12	0.5478	0.4522	0.52	0.6985	0.3015	0.92	0.8212	0.1788	1.32	0,9066	0.0934	1.72	0.9573	0.0427
0.13	0,5517	0.4483	0.53	0.7019	0,2981	0,93	0,8238	0.1762	1.33	0,9082	0.0918	1,73	0,9582	0.0418
0.14	0,5557	0.4443	0.54	0.7054	0,2946	0.94	0,8264	0.1736	1.34	0,9099	0.0901	1.74	0,9591	0.0409
0.15	0,5596	0.4404	0.55	0.7088	0.2912	0,95	0,8289	0.1711	1.35	0.9115	0,0885	1,75	0,9599	0.0401
0.16	0,5636	0,4364	0.56	0.7123	0,2877	0,96	0.8315	0.1685	1,36	0.9131	0,0869	1.76	0,9608	0.0392
0.17	0,5675	0.4325	0.57	0.7157	0.2843	0.97	0.8340	0.1660	1,37	0.9147	0.0853	1.77	0,9616	0.0384
0.18	0.5714	0.4286	0.58	0.7190	0.2810	0.98	0.8365	0.1635	1.38	0.9162	0,0838	1.78	0,9625	0.0375
0.19	0.5753	0.4247	0.59	0.7224	0.2776	0.99	0.8389	0.1611	1.39	0.9177	0.0823	1.79	0.9633	0.0367
0.20	0.5793	0.4207	0.60	0.7257	0.2743	1.00	0.8413	0.1587	1.40	0.9192	0.0808	1.80	0.9641	0.0359
0.21	0.5832	0.4168	0.61	0.7291	0.2709	1.01	0.8438	0.1562	1.41	0.9207	0.0793	1.81	0.9649	0.0351
0.22	0.5871	0.4129	0.62	0.7324	0.2676	1.02	0.8461	0.1539	1.42	0.9222	0.0778	1.82	0.9656	0.0344
0.23	0.5910	0.4090	0.63	0.7357	0.2643	1.03	0.8485	0.1515	1.43	0.9236	0.0764	1.83	0.9664	0.0336
0.24	0,5948	0.4052	0.64	0,7389	0.2611	1.04	0.8508	0.1492	1.44	0.9251	0.0749	1.84	0,9671	0.0329
0.25	0,5987	0.4013	0.65	0.7422	0,2578	1.05	0.8531	0.1469	1.45	0.9265	0.0735	1,85	0,9678	0.0322
0.26	0.6026	0.3974	0,66	0.7454	0,2546	1.06	0,8554	0.1446	1.46	0,9279	0.0721	1,86	0,9686	0.0314
0.27	0.6064	0,3936	0.67	0.7486	0.2514	1.07	0,8577	0.1423	1.47	0.9292	0,0708	1,87	0,9693	0.0307
0.28	0.6103	0,3897	0,68	0.7517	0,2483	1.08	0,8599	0.1401	1.48	0,9306	0,0694	1,88	0,9699	0.0301
0.29	0.6141	0,3859	0.69	0.7549	0,2451	1.09	0.8621	0.1379	1.49	0.9319	0,0681	1.89	0,9706	0.0294
0.30	0.6179	0.3821	0,70	0.7580	0,2420	1.10	0,8643	0.1357	1.50	0.9332	0,0668	1.90	0,9713	0.0287
0.31	0.6217	0,3783	0.71	0.7611	0,2389	1.11	0,8665	0.1335	1,51	0.9345	0,0655	1.91	0,9719	0.0281
0.32	0.6255	0,3745	0.72	0.7642	0,2358	1.12	0,8686	0.1314	1.52	0,9357	0,0643	1.92	0,9726	0.0274
0.33	0.6293	0.3707	0.73	0.7673	0.2327	1.13	0.8708	0.1292	1.53	0.9370	0.0630	1.93	0.9732	0.0268
0.34	0.6331	0.3669	0.74	0.7704	0.2296	1.14	0.8729	0.1271	1.54	0.9382	0.0618	1.94	0.9738	0.0262
0.35	0,6368	0.3632	0.75	0,7734	0.2266	1.15	0.8749	0,1251	1,55	0.9394	0,0606	1.95	0.9744	0.0256
0.36	0,6406	0.3594	0.76	0,7764	0.2236	1.16	0.8770	0,1230	1.56	0.9406	0.0594	1.96	0,9750	0.0250
0.37	0.6443	0.3557	0.77	0.7794	0.2206	1.17	0.8790	0.1210	1.57	0.9418	0.0582	1.97	0.9756	0.0244
0.38	0,6480	0.3520	0.78	0,7823	0.2177	1.18	0.8810	0,1190	1.58	0.9429	0.0571	1.98	0.9761	0.0239
0.39	0,6517	0.3483	0.79	0,7852	0.2148	1.19	0.8830	0.1170	1.59	0.9441	0.0559	1.99	0.9767	0.0233

Areas Under the Normal Curve

Figure 4: Statistical table for N(0,1). These tables have been taken from: http://fsweb.berry.edu/academic/education/vbissonnette/tables/tables.html.

	2-	tailed testir	ıg	1-tailed testing				
df								
	0.1	0.05	0.01	0.1	0.05	0.01		
5	2.015	2.571	4.032	1.476	2.015	3.365		
6	1.943	2.447	3.707	1.440	1.943	3.143		
7	1.895	2.365	3.499	1.415	1.895	2.998		
8	1.860	2.306	3.355	1.397	1.860	2.896		
9	1.833	2.262	3.250	1.383	1.833	2.821		
10	1.812	2.228	3.169	1.372	1.812	2.764		
11	1.796	2.201	3.106	1.363	1.796	2.718		
12	1.782	2.179	3.055	1.356	1.782	2.681		
13	1.771	2.160	3.012	1.350	1.771	2.650		
14	1.761	2.145	2.977	1.345	1.761	2.624		
15	1.753	2.131	2.947	1.341	1.753	2.602		
16	1.746	2.120	2.921	1.337	1.746	2.583		
17	1.740	2.110	2.898	1.333	1.740	2.567		
18	1.734	2.101	2.878	1.330	1.734	2.552		
19	1.729	2.093	2.861	1.328	1.729	2.539		
20	1.725	2.086	2.845	1.325	1.725	2.528		
21	1.721	2.080	2.831	1.323	1.721	2.518		
22	1.717	2.074	2.819	1.321	1.717	2.508		
23	1.714	2.069	2.807	1.319	1.714	2.500		
24	1.711	2.064	2.797	1.318	1.711	2.492		
25	1.708	2.060	2.787	1.316	1.708	2.485		
26	1.706	2.056	2.779	1.315	1.706	2.479		
27	1.703	2.052	2.771	1.314	1.703	2.473		
28	1.701	2.048	2.763	1.313	1.701	2.467		
29	1.699	2.045	2.756	1.311	1.699	2.462		
30	1.697	2.042	2.750	1.310	1.697	2.457		
40	1.684	2.021	2.704	1.303	1.684	2.423		
50	1.676	2.009	2.678	1.299	1.676	2.403		
60	1.671	2.000	2.660	1.296	1.671	2.390		
80	1.664	1.990	2.639	1.292	1.664	2.374		
100	1.660	1.984	2.626	1.290	1.660	2.364		
120	1.658	1.980	2.617	1.289	1.658	2.358		
	1.645	1.960	2.576	1.282	1.645	2.327		

Critical Values of the <u>t</u> Distribution

Figure 5: Statistical table for Student's t(r).

Critical Values of the <u>F</u> Distribution ($\alpha = .05$)

df	df between										
within	1	2	3	4	5	6	7	8	12	24	8
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.68	4.53	4.37
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.00	3.84	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.57	3.41	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.28	3.12	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.07	2.90	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	2.91	2.74	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.79	2.61	2.41
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.69	2.51	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.60	2.42	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.53	2.35	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.48	2.29	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.42	2.24	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.38	2.19	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.34	2.15	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.31	2.11	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.28	2.08	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.25	2.05	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.23	2.03	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.20	2.01	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.18	1.98	1.73
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.16	1.96	1.71
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.15	1.95	1.69
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.13	1.93	1.67
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.12	1.91	1.66
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.10	1.90	1.64
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.09	1.89	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.00	1.79	1.51
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	1.92	1.70	1.39
80	3.96	3.11	2.72	2.49	2.33	2.21	2.13	2.06	1.88	1.65	1.33
100	3.94	3.09	2.70	2.46	2.31	2.19	2.10	2.03	1.85	1.63	1.28
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.83	1.61	1.26
00	3.84	3.00	2.61	2.37	2.22	2.10	2.01	1.94	1.75	1.52	1.00

Figure 6: Statistical table for F(m, n) at the 5% level.

Critical Values of the <u>F</u> Distribution ($\alpha = .01$)

df	df between										
within	1	2	3	4	5	6	7	8	12	24	8
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	9.89	9.47	9.02
6	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.72	7.31	6.88
7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.47	6.07	5.65
8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.67	5.28	4.86
9	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.11	4.73	4.31
10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.71	4.33	3.91
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.40	4.02	3.60
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.16	3.78	3.36
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	3.96	3.59	3.17
14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	3.80	3.43	3.01
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.67	3.29	2.87
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.55	3.18	2.75
17	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.46	3.08	2.65
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.37	3.00	2.57
19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.30	2.92	2.49
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.23	2.86	2.42
21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.17	2.80	2.36
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.12	2.75	2.31
23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.07	2.70	2.26
24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.03	2.66	2.21
25	7.77	5.57	4.68	4.18	3.85	3.63	3.46	3.32	2.99	2.62	2.17
26	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	2.96	2.58	2.13
27	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	2.93	2.55	2.10
28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	2.90	2.52	2.07
29	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	2.87	2.49	2.04
30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	2.84	2.47	2.01
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.66	2.29	1.81
60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.50	2.12	1.60
80	6.96	4.88	4.04	3.56	3.26	3.04	2.87	2.74	2.42	2.03	1.50
100	6.90	4.82	3.98	3.51	3.21	2.99	2.82	2.69	2.37	1.98	1.43
120	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.34	1.95	1.38
00	6.64	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.19	1.79	1.00

Figure 7: Statistical table for F(m, n) at the 1% level.

	Area in the Upper Tail									
df	0.99	0.95	0.9	0.1	0.05	0.01				
1	0.000	0.004	0.016	2.706	3.841	6.635				
2	0.020	0.103	0.211	4.605	5.991	9.210				
3	0.115	0.352	0.584	6.251	7.815	11.345				
4	0.297	0.711	1.064	7.779	9.488	13.277				
5	0.554	1.145	1.610	9.236	11.070	15.086				
6	0.872	1.635	2.204	10.645	12.592	16.812				
7	1.239	2.167	2.833	12.017	14.067	18.475				
8	1.646	2.733	3.490	13.362	15.507	20.090				
9	2.088	3.325	4.168	14.684	16.919	21.666				
10	2.558	3.940	4.865	15.987	18.307	23.209				
11	3.053	4.575	5.578	17.275	19.675	24.725				
12	3.571	5.226	6.304	18.549	21.026	26.217				
13	4.107	5.892	7.042	19.812	22.362	27.688				
14	4.660	6.571	7.790	21.064	23.685	29.141				
15	5.229	7.261	8.547	22.307	24.996	30.578				
16	5.812	7.962	9.312	23.542	26.296	32.000				
17	6.408	8.672	10.085	24.769	27.587	33.409				
18	7.015	9.390	10.865	25.989	28.869	34.805				
19	7.633	10.117	11.651	27.204	30.144	36.191				
20	8.260	10.851	12.443	28.412	31.410	37.566				
21	8.897	11.591	13.240	29.615	32.671	38.932				
22	9.542	12.338	14.041	30.813	33.924	40.289				
23	10.196	13.091	14.848	32.007	35.172	41.638				
24	10.856	13.848	15.659	33.196	36.415	42.980				
25	11.524	14.611	16.473	34.382	37.652	44.314				

Critical Values of the χ^2 Distribution

Figure 8: Statistical table for $\chi^2(q)$.