IENAC22 / Econometrics 2 / Applied Problem Set 1

Topic: Heteroscedasticity

- This problem set deals with the detection of heteroscedasticity in cross-sectional data, both visually and by use of several statistical diagnostic tests.
- We use data on monthly credit card expenditure, for $n=100$ individuals, available as credit_card.txt on the website.
- The variables are: Y1 (number of derogatory/negative reports), Y2 (indicator variable: credit card application accepted? $1=$ yes, $0=$ no), X1 (age in years), X2 ($0.0001 \times$ income, in scaled U.S. dollars), X3 (average monthly credit card expenditure, in U.S. dollars), X4 (indicator variable: individuals owns / rents home? $1=$ owns, $0=$ rents), X 5 (indicator variable: individual self-employed? $1=$ yes, $0=$ no).
- Refer to figures 1 - 4 , and perform the following 1

1. Perform a careful descriptive analysis of the dataset. In particular, (a) what features of interest can you find for each of the variables?, (b) approximately how many individuals have never had a credit card?! - look for evidence of first-time applications, (c) consider bivariate scatterplots and correlations of Y2 against each of the other variables - interpret the signs of the correlations, and (d) run a regression of Y2 on a constant, and all of the other variables - interpret the signs and magnitudes of the estimated coefficients, examine the significance of the variables, and compare your results with part (c) above.

[^0]2. Run a linear regression of monthly expenditure on a constant, age, scaled income, scaled income squared, and the home ownership indicator (eq01). Plot the estimated residuals \widehat{u}_{i} (resid_eq01) against scaled income, with kernel densities superimposed on the axes (graph01), and interpret the results. Test manually for normality of the estimated residuals, and compare your result with the EViews 6 (menu) version of the Jarque-Bera test. What do you notice?!
3. Perform White's $n R^{2}$ general test for heteroscedasticity manually, at the 95% level, where R^{2} is computed from the regression of the squared fitted residuals \widehat{u}_{i}^{2} on a constant, all explanatory variables, and all squares and cross-products of explanatory variables (eq02): explain why $\mathrm{X} 4^{2}$ is not included.

White's $n R^{2}$ test is for the null $H_{0}: \sigma_{i}^{2}=\sigma^{2}$ for all $i=1,2, \ldots, n$, against the alternative H_{1} : not H_{0}. Interpret the results. Check your solution against the EViews 6 (menu) version of this test.
4. What is the estimated sum of squared residuals ($\widehat{u}^{\prime} \widehat{u}$) from eq01? An alternative test for heteroscedasticity is due to Breusch and Pagan, and Godfrey: it is a Lagrange multiplier test of $\alpha=0$ (homoscedasticity) in $H_{0}: \sigma_{i}^{2}=\sigma^{2} f\left(\alpha_{0}+\alpha^{\prime} z_{i}\right)$, against H_{1} : not H_{0}, where z_{i} is some vector of variables excluding a constant. The test statistic is:

$$
\mathrm{BPG}_{\mathrm{LM}}=\frac{1}{2} \mathrm{ESS}=\frac{1}{2}\left(\widehat{y} \widehat{y}-n \bar{y}^{2}\right) \sim \chi^{2}(m)
$$

where ESS is the explained sum of squares from the regression of $y_{i}:=n \widehat{u}_{i}^{2} / \widehat{u}^{\prime} \widehat{u}$ on a constant and z_{i}, and m is the number of variables in (= dimension of) z_{i}. Use $z_{i}=\left(\mathrm{X} 2_{i}, \mathrm{X} 2_{i}^{2}\right)^{\prime}$, and perform the test manually at the 95% level. Explain carefully what you notice about the mean of y. Interpret your results. Check
your results against the EViews 6 (menu) version of the test. What do you notice?! (hint 1: compare the EViews 6 auxiliary regression for the $\mathrm{BPG}_{\mathrm{LM}}$ test against your manual version - could rounding error be a problem here?; hint 2: look at the EViews 6 help page for the $\mathrm{BPG}_{\mathrm{LM}}$ test - is this what EViews 6 actually does?!; hint 3 : using your answer(s) to hint 2 , try to calculate the EViews 6 'scaled explained SS' test result manually). ${ }^{2}$

[^1]

Figure 1: Run a linear regression of X3 on a constant, X1, X2, X2 squared, and X4. Plot the fitted residuals against X 2 , with kernel densities superimposed on the axes.

\square Equation: EQ02 Workfile: APPLIED_PROBLEM_SET_1_... $\square \times$				
View Proc Object Print Name Freeze Estimate Forecast Stats Resids				
Dependent Variable: RESID_EQ01~2 Method: Least Squares Date: 07/27/09 Time: $12: 57$ Sample: 1100 Included observations: 100				
	Coefficient	Std. Error	t-Staitistic	Prob.
c	876511.9	913863.8	0.959128	0.3402
X1	28775.90	31660.00	0.908904	0.3659
X2	-1509045.	778264.9	-1.938986	0.0557
$\times 2 \times 2$	498964.2	253154.3	1.970989	0.0519
X4	195763.1	474111.1	0.412905	0.6807
$\times 1 \times 2$	-644.2271	425.9743	-1.512361	0.1341
$\times 2 \times 4$	2820.726	1630.189	1.730306	0.0871
X1**2	6853.915	11227.53	0.610456	0.5432
X1*($\left(22^{22}\right.$)	-647.8628	1274.148	-0.508467	0.6124
$\times 1 \times \times 4$	5681.491	8776.134	0.647380	0.5191
$\times 2 \times 3$	-63934.08	34454.00	-1.855636	0.0669
X2**4	-177650.5	199416.6	-0.890851	0.3755
$\left(\times 22^{22}\right)^{*} \times 4$	11325.35	21530.66	0.526010	0.6002
R-squared	0.146539	Mean depend	entrar	70384.57
Adjusted R-squared	0.028820	S.D. depende	ntvar	287729.4
S.E. of regression	283552.9	Akaike info cri	terion	28.06892
Sum squared resid	$6.99 \mathrm{E}+12$	Schwarz critel		28.40760
Log likelihood	-1390.446	Hannan-Quin	n criter.	28.20599
F-statistic	1.244819	Durbin-Watso	n stat	1.745177
Prob(F-statistic)	0.266541			

Figure 2: Auxiliary regression for White's $n R^{2}$ general test for heteroscedasticity.

Figure 3: Computations required for Breusch-Pagan / Godfrey heteroscedasticity test (1).

Figure 4: Computations required for Breusch-Pagan / Godfrey heteroscedasticity test (2).

Areas Under the Normal Curve

Z	Cump	Tailp	Z	Cump	Tailp	Z	Cump	Tail p	Z	Cump	Tail p	Z	Cump	Tail p
0.00	0.5000	0.5000	0.40	0.655	0.3446	0.80	0.7881	0.2119	1.20	0.8849	0.1151	1.60	0.9452	0.0548
0.01	0.5040	0.4960	0.41	0.6591	0.3409	0.81	0.7910	0.2090	1.21	0.8869	0.1131	1.61	0.9463	0.0537
0.02	0.5080	0.4920	0.42	0.6628	0.3372	0.82	0.7939	0.2061	1.22	0.8888	0.1112	1.62	0.9474	0.0526
0.03	0.5120	0.4880	0.43	0.6664	0.3336	0.83	0.7967	0.2033	1.23	0.8907	0.1093	1.63	0.9484	0.0516
0.04	0.5160	0.4840	0.44	0.6700	0.3300	0.84	0.7995	0.2005	1.24	0.8925	0.1075	1.64	0.9495	0.0505
0.05	0.5199	0.4801	0.45	0.6736	0.3264	0.85	0.8023	0.1977	1.25	0.8944	0.1056	1.6	0.9505	0.0495
0.06	0.5239	0.4761	0.46	0.6772	0.3228	0.86	0.8051	0.1949	1.26	0.8962	0.1038	1.66	0.9515	0.0485
0.07	0.5279	0.4721	0.47	0.6808	0.3192	0.87	0.8078	0.1922	1.27	0.8980	0.1020	1.67	0.9525	0.0475
0.08	0.5319	0.4681	0.48	0.6844	0.3156	0.88	0.8106	0.1894	1.28	0.8997	0.1003	1.68	0.9535	0.0465
0.09	0.5359	0.4641	0.49	0.6879	0.3121	0.89	0.8133	0.1867	1.29	0.9015	0.0985	1.69	0.9545	0.0455
0.10	0.5398	0.4602	0.50	0.6915	0.3085	0.90	0.8159	0.1841	1.30	0.9032	0.0968	1.70	0.9554	0.0446
0.11	0.5438	0.4562	0.51	0.6950	0.3050	0.91	0.8186	0.1814	1.31	0.9049	0.0951	1.71	0.9564	0.0436
0.12	0.5478	0.4522	0.52	0.6985	0.3015	0.92	0.8212	0.1788	1.32	0.9066	0.0934	1.72	0.9573	0.0427
0.13	0.5517	0.4483	0.53	0.7019	0.2981	0.93	0.8238	0.1762	1.33	0.9082	0.0918	1.73	0.9582	0.0418
0.14	0.5557	0.4443	0.54	0.7054	0.2946	0.94	0.8264	0.1736	1.34	0.9099	0.0901	1.74	0.9591	0.0409
0.15	0.5596	0.4404	0.55	0.7088	0.2912	0.95	0.8289	0.1711	1.35	0.9115	0.0885	1.75	0.9599	0.0401
0.16	0.5636	0.4364	0.56	0.7123	0.287	0.96	0.8315	0.1685	1.36	0.9131	0.0869	1.76	0.9608	0.0392
0.17	0.5675	0.4325	0.57	0.7157	0.2843	0.97	0.8340	0.1660	1.37	0.9147	0.0853	1.77	0.9616	0.0384
0.18	0.5714	0.4286	0.58	0.7190	0.2810	0.98	0.8365	0.1635	1.38	0.9162	0.0838	1.78	0.9625	0.0375
0.19	0.5753	0.4247	0.59	0.7224	0.2776	0.99	0.8389	0.1611	1.39	0.9177	0.0823	1.79	0.9633	0.0367
0.20	0.5793	0.4207	0.60	0.7257	0.2743	1.00	0.8413	0.1587	1.40	0.9192	0.0808	1.80	0.9641	0.0359
0.21	0.5832	0.4168	0.61	0.7291	0.2709	1.01	0.8438	0.1562	1.41	0.9207	0.0793	1.81	0.9649	0.0351
0.22	0.5871	0.4129	0.62	0.7324	0.2676	1.02	0.8461	0.1539	1.42	0.9222	0.0778	1.82	0.9656	0.0344
0.23	0.5910	0.4090	0.63	0.7357	0.2643	1.03	0.8485	0.1515	1.43	0.9236	0.0764	1.83	0.9664	0.0336
0.24	0.5948	0.4052	0.64	0.7389	0.2611	1.04	0.8508	0.142	1.44	0.9251	0.0749	1.84	0.9671	0.0329
0.25	0.5987	0.4013	0.65	0.7422	0.2578	1.05	0.8531	0.1469	1.45	0.9265	0.0735	1.85	0.9678	0.0322
0.26	0.6026	0.3974	0.66	0.7454	0.2546	1.06	0.8554	0.1446	1.46	0.9279	0.0721	1.86	0.9686	0.0314
0.27	0.6064	0.3936	0.67	0.7486	0.2514	1.07	0.8577	0.1423	1.47	0.9292	0.0708	1.87	0.9693	0.0307
0.28	0.6103	0.3897	0.68	0.7517	0.2483	1.08	0.8599	0.1401	1.48	0.9306	0.0694	1.88	0.9699	0.0301
0.29	0.6141	0.3859	0.69	0.7549	0.2451	1.09	0.8621	0.1379	1.49	0.9319	0.0681	1.89	0.9706	0.0294
0.30	0.6179	0.3821	0.70	0.7580	0.2420	1.10	0.8643	0.1357	1.50	0.9332	0.0668	1.90	0.9713	0.0287
0.31	0.6217	0.3783	0.71	0.7611	0.2389	1.11	0.8665	0.1335	1.51	0.9345	0.0655	1.91	0.9719	0.0281
0.32	0.6255	0.3745	0.72	0.7642	0.2358	1.12	0.8686	0.1314	1.52	0.9357	0.0643	1.92	0.9726	0.0274
0.33	0.6293	0.3707	0.73	0.7673	0.2327	1.13	0.8708	0.1292	1.53	0.9370	0.0630	1.93	0.9732	0.0268
0.34	0.6331	0.3669	0.74	0.7704	0.2296	1.14	0.8729	0.1271	1.54	0.9382	0.0618	1.94	0.9738	0.0262
0.35	0.6368	0.3632	0.75	0.7734	0.2266	1.15	0.8749	0.1251	1.55	0.9394	0.0606	1.95	0.9744	0.0256
0.36	0.6406	0.3594	0.76	0.7764	0.2236	1.16	0.8770	0.1230	1.56	0.9406	0.0594	1.96	0.9750	0.0250
0.37	0.6443	0.3557	0.77	0.7794	0.2206	1.17	0.8790	0.1210	1.57	0.9418	0.0582	1.97	0.9756	0.0244
0.38	0.6480	0.3520	0.78	0.7823	0.217	1.18	0.8810	0.1190	1.58	0.9429	0.0571	1.98	0.9761	0.0239
0.39	0.6517	0.3483	0.79	0.7852	0.2148	1.19	0.8830	0.1170	1.59	0.9441	0.0559	1.99	0.9767	0.0233

Figure 5: Statistical table for $\mathrm{N}(0,1)$. These tables have been taken from: http://fsweb.berry.edu/academic/education/vbissonnette/tables/tables.html.

Critical Values of the t Distribution

df	2-tailed testing			1-tailed testing		
	-			\cdots		
	0.1	0.05	0.01	0.1	0.05	0.01
5	2.015	2.571	4.032	1.476	2.015	3.365
6	1.943	2.447	3.707	1.440	1.943	3.143
7	1.895	2.365	3.499	1.415	1.895	2.998
8	1.860	2.306	3.355	1.397	1.860	2.896
9	1.833	2.262	3.250	1.383	1.833	2.821
10	1.812	2.228	3.169	1.372	1.812	2.764
11	1.796	2.201	3.106	1.363	1.796	2.718
12	1.782	2.179	3.055	1.356	1.782	2.681
13	1.771	2.160	3.012	1.350	1.771	2.650
14	1.761	2.145	2.977	1.345	1.761	2.624
15	1.753	2.131	2.947	1.341	1.753	2.602
16	1.746	2.120	2.921	1.337	1.746	2.583
17	1.740	2.110	2.898	1.333	1.740	2.567
18	1.734	2.101	2.878	1.330	1.734	2.552
19	1.729	2.093	2.861	1.328	1.729	2.539
20	1.725	2.086	2.845	1.325	1.725	2.528
21	1.721	2.080	2.831	1.323	1.721	2.518
22	1.717	2.074	2.819	1.321	1.717	2.508
23	1.714	2.069	2.807	1.319	1.714	2.500
24	1.711	2.064	2.797	1.318	1.711	2.492
25	1.708	2.060	2.787	1.316	1.708	2.485
26	1.706	2.056	2.779	1.315	1.706	2.479
27	1.703	2.052	2.771	1.314	1.703	2.473
28	1.701	2.048	2.763	1.313	1.701	2.467
29	1.699	2.045	2.756	1.311	1.699	2.462
30	1.697	2.042	2.750	1.310	1.697	2.457
40	1.684	2.021	2.704	1.303	1.684	2.423
50	1.676	2.009	2.678	1.299	1.676	2.403
60	1.671	2.000	2.660	1.296	1.671	2.390
80	1.664	1.990	2.639	1.292	1.664	2.374
100	1.660	1.984	2.626	1.290	1.660	2.364
120	1.658	1.980	2.617	1.289	1.658	2.358
-	1.645	1.960	2.576	1.282	1.645	2.327

Figure 6: Statistical table for Student's $t(r)$.

Critical Values of the $\underline{\underline{F}}$ Distribution

($\alpha=.05$)

df	df between										
within	1	2	3	4	5	6	7	8	12	24	∞
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.68	4.53	4.37
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.00	3.84	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.57	3.41	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.28	3.12	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.07	2.90	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	2.91	2.74	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.79	2.61	2.41
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.69	2.51	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.60	2.42	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.53	2.35	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.48	2.29	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.42	2.24	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.38	2.19	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.34	2.15	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.31	2.11	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.28	2.08	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.25	2.05	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.23	2.03	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.20	2.01	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.18	1.98	1.73
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.16	1.96	1.71
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.15	1.95	1.69
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.13	1.93	1.67
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.12	1.91	1.66
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.10	1.90	1.64
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.09	1.89	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.00	1.79	1.51
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	1.92	1.70	1.39
80	3.96	3.11	2.72	2.49	2.33	2.21	2.13	2.06	1.88	1.65	1.33
100	3.94	3.09	2.70	2.46	2.31	2.19	2.10	2.03	1.85	1.63	1.28
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.83	1.61	1.26
∞	3.84	3.00	2.61	2.37	2.22	2.10	2.01	1.94	1.75	1.52	1.00

Figure 7: Statistical table for $F(m, n)$ at the 5% level.

Critical Values of the $\underline{\underline{F}}$ Distribution

$$
(\alpha=.01)
$$

$\begin{gathered} \hline \text { df } \\ \text { within } \end{gathered}$	df between										
	1	2	3	4	5	6	7	8	12	24	∞
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	9.89	9.47	9.02
6	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.72	7.31	6.88
7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.47	6.07	5.65
8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.67	5.28	4.86
9	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.11	4.73	4.31
10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.71	4.33	3.91
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.40	4.02	3.60
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.16	3.78	3.36
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	3.96	3.59	3.17
14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	3.80	3.43	3.01
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.67	3.29	2.87
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.55	3.18	2.75
17	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.46	3.08	2.65
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.37	3.00	2.57
19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.30	2.92	2.49
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.23	2.86	2.42
21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.17	2.80	2.36
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.12	2.75	2.31
23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.07	2.70	2.26
24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.03	2.66	2.21
25	7.77	5.57	4.68	4.18	3.85	3.63	3.46	3.32	2.99	2.62	2.17
26	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	2.96	2.58	2.13
27	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	2.93	2.55	2.10
28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	2.90	2.52	2.07
29	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	2.87	2.49	2.04
30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	2.84	2.47	2.01
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.66	2.29	1.81
60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.50	2.12	1.60
80	6.96	4.88	4.04	3.56	3.26	3.04	2.87	2.74	2.42	2.03	1.50
100	6.90	4.82	3.98	3.51	3.21	2.99	2.82	2.69	2.37	1.98	1.43
120	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.34	1.95	1.38
∞	6.64	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.19	1.79	1.00

Figure 8: Statistical table for $F(m, n)$ at the 1% level.

Critical Values of the χ^{2} Distribution

df	Area in the Upper Tail					
	0.99	0.95	0.9	0.1	0.05	0.01
1	0.000	0.004	0.016	2.706	3.841	6.635
2	0.020	0.103	0.211	4.605	5.991	9.210
3	0.115	0.352	0.584	6.251	7.815	11.345
4	0.297	0.711	1.064	7.779	9.488	13.277
5	0.554	1.145	1.610	9.236	11.070	15.086
6	0.872	1.635	2.204	10.645	12.592	16.812
7	1.239	2.167	2.833	12.017	14.067	18.475
8	1.646	2.733	3.490	13.362	15.507	20.090
9	2.088	3.325	4.168	14.684	16.919	21.666
10	2.558	3.940	4.865	15.987	18.307	23.209
11	3.053	4.575	5.578	17.275	19.675	24.725
12	3.571	5.226	6.304	18.549	21.026	26.217
13	4.107	5.892	7.042	19.812	22.362	27.688
14	4.660	6.571	7.790	21.064	23.685	29.141
15	5.229	7.261	8.547	22.307	24.996	30.578
16	5.812	7.962	9.312	23.542	26.296	32.000
17	6.408	8.672	10.085	24.769	27.587	33.409
18	7.015	9.390	10.865	25.989	28.869	34.805
19	7.633	10.117	11.651	27.204	30.144	36.191
20	8.260	10.851	12.443	28.412	31.410	37.566
21	8.897	11.591	13.240	29.615	32.671	38.932
22	9.542	12.338	14.041	30.813	33.924	40.289
23	10.196	13.091	14.848	32.007	35.172	41.638
24	10.856	13.848	15.659	33.196	36.415	42.980
25	11.524	14.611	16.473	34.382	37.652	44.314

Figure 9: Statistical table for $\chi^{2}(q)$.

[^0]: ${ }^{1}$ Note that not all of the necessary steps are shown in the figures!

[^1]: ${ }^{2}$ These problems do not affect the outcome of the test here, although this will not generally be true.

