Topic: Heteroscedasticity

- This problem set deals with the detection of heteroscedasticity in cross-sectional data, both visually and by use of several statistical diagnostic tests.
- We use data on monthly credit card expenditure, for n = 100 individuals, available as credit_card.txt on the website.
- The variables are: Y1 (number of derogatory/negative reports), Y2 (indicator variable: credit card application accepted? 1 = yes, 0 = no), X1 (age in years), X2 (0.0001 × income, in scaled U.S. dollars), X3 (average monthly credit card expenditure, in U.S. dollars), X4 (indicator variable: individuals owns / rents home? 1 = owns, 0 = rents), X5 (indicator variable: individual self-employed? 1 = yes, 0 = no).
- Refer to figures 1 4, and perform the following:¹
 - Perform a careful descriptive analysis of the dataset. In particular, (a) what features of interest can you find for each of the variables?, (b) approximately how many individuals have never had a credit card?! - look for evidence of first-time applications, (c) consider bivariate scatterplots and correlations of Y2 against each of the other variables - interpret the signs of the correlations, and (d) run a regression of Y2 on a constant, and all of the other variables - interpret the signs and magnitudes of the estimated coefficients, examine the significance of the variables, and compare your results with part (c) above.

¹Note that not all of the necessary steps are shown in the figures!

- 2. Run a linear regression of monthly expenditure on a constant, age, scaled income, scaled income squared, and the home ownership indicator (eq01). Plot the estimated residuals \hat{u}_i (resid_eq01) against scaled income, with kernel densities superimposed on the axes (graph01), and interpret the results. Test **manually** for normality of the estimated residuals, and compare your result with the EViews 6 (menu) version of the Jarque-Bera test. What do you notice?!
- 3. Perform White's nR^2 general test for heteroscedasticity **manually**, at the 95% level, where R^2 is computed from the regression of the squared fitted residuals \hat{u}_i^2 on a constant, all explanatory variables, and all squares and cross-products of explanatory variables (eq02): explain why X4² is not included.

White's nR^2 test is for the null H_0 : $\sigma_i^2 = \sigma^2$ for all i = 1, 2, ..., n, against the alternative H_1 : not H_0 . Interpret the results. Check your solution against the EViews 6 (menu) version of this test.

4. What is the estimated sum of squared residuals (û'û) from eq01? An alternative test for heteroscedasticity is due to Breusch and Pagan, and Godfrey: it is a Lagrange multiplier test of α = 0 (homoscedasticity) in H₀: σ_i² = σ²f(α₀+α'z_i), against H₁: not H₀, where z_i is some vector of variables excluding a constant. The test statistic is:

$$BPG_{LM} = \frac{1}{2}ESS = \frac{1}{2}(\widehat{y}'\widehat{y} - n\overline{y}^2) \sim \chi^2(m),$$

where ESS is the explained sum of squares from the regression of $y_i := n \hat{u}_i^2 / \hat{u}' \hat{u}$ on a constant and z_i , and m is the number of variables in (= dimension of) z_i . Use $z_i = (X2_i, X2_i^2)'$, and perform the test **manually** at the 95% level. Explain carefully what you notice about the mean of y. Interpret your results. Check your results against the EViews 6 (menu) version of the test. What do you notice?! (hint 1: compare the EViews 6 auxiliary regression for the BPG_{LM} test against your manual version - could rounding error be a problem here?; hint 2: look at the EViews 6 help page for the BPG_{LM} test - is this what EViews 6 actually does?!; hint 3: using your answer(s) to hint 2, try to calculate the EViews 6 'scaled explained SS' test result manually).²

²These problems do not affect the outcome of the test here, although this will not generally be true.

Figure 1: Run a linear regression of X3 on a constant, X1, X2, X2 squared, and X4. Plot the fitted residuals against X2, with kernel densities superimposed on the axes.

Equation: EQ02	Workfile: API	PLIED_PROBL	EM_SET_1_	💶 🗖 🛛							
View Proc Object Print Name Freeze Estimate Forecast Stats Resids											
Dependent Variable: RESID_EQ01^2 Method: Least Squares Date: 07/27/09 Time: 12:57 Sample: 1 100 Included observations: 100											
	Coefficient	Std. Error	t-Statistic	Prob.							
C X1 X2 X2^2 X4 X1^2 X2^4 X1*X2 X1*(X2^2) X1*X4 X2^3 X2*X4 (X2^2)*X4	876511.9 28775.90 -1509045. 498964.2 195763.1 -644.2271 2820.726 6853.915 -647.8628 5681.491 -63934.08 -177650.5 11325.35	913863.8 31660.00 778264.9 253154.3 474111.1 425.9743 1630.189 11227.53 1274.148 8776.134 34454.00 199416.6 21530.66	0.959128 0.908904 -1.938986 1.970989 0.412905 -1.512361 1.730306 0.610456 -0.508467 0.647380 -1.855636 -0.890851 0.526010	0.3402 0.3659 0.0557 0.0519 0.6807 0.1341 0.0871 0.5432 0.6124 0.5191 0.0669 0.3755 0.6002							
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.146539 0.028820 283552.9 6.99E+12 -1390.446 1.244819 0.266541	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		70384.57 287729.4 28.06892 28.40760 28.20599 1.745177							

Figure 2: Auxiliary regression for White's nR^2 general test for heteroscedasticity.

🕌 EViews

File Edit Object View Proc Quick Options Window Help series dep=(100*resid_eq01^2)/7038457

Workfile: APP	PLIED_PROBLEM_SET_ Print)Save)Details+/-) Sh	1_WORKFILE ow)Fetch)Store	Dieplay Filter	Sar					
Sample: 1 100	100 obs		Display Filter.						
B C									
M dep ■ eq01	Equation: EQ03	Workfile: API	PLIED_PROBL	EM_SET_1_	🗖 🗖	X			
eq02	View Proc Object) Print	Name Freeze	Estimate Forec	ast Stats Res	ids				
■ equ3 graph01 Y resid Y resid_eq01 X1 X2 X3	Dependent Variable: DEP Method: Least Squares Date: 07/27/09 Time: 14:39 Sample: 1 100 Included observations: 100								
¥4 ▼ ×5		Coefficient	Std. Error	t-Statistic	Prob.				
y1 ∑y1 ∑y2	C X2 X2^2	-3.776505 2.132438 -0.172277	1.925285 0.908324 0.089749	-1.961530 2.347662 -1.919546	0.0527 0.0209 0.0579				
S Untitled N	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.068130 0.048916 3.986724 1541.715 -278.6679 3.545874 0.032639	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		1.000000 4.087961 5.633357 5.711513 5.664988 1.769105				

Figure 3: Computations required for Breusch-Pagan / Godfrey heteroscedasticity test (1).

Figure 4: Computations required for Breusch-Pagan / Godfrey heteroscedasticity test (2).

Ζ	Cum p	Tail p	Ζ	Cum p	Tail p	Z	Cum p	Tail p	Z	Cum p	Tail p	Z	Cum p	Tail p
0,00	0,5000	0,5000	0.40	0.6554	0.3446	0,80	0,7881	0.2119	1.20	0,8849	0,1151	1.60	0.9452	0.0548
0.01	0,5040	0.4960	0.41	0.6591	0.3409	0.81	0.7910	0.2090	1.21	0,8869	0,1131	1,61	0.9463	0.0537
0.02	0,5080	0.4920	0.42	0,6628	0.3372	0.82	0,7939	0.2061	1.22	0.8888	0.1112	1,62	0.9474	0.0526
0.03	0,5120	0.4880	0.43	0,6664	0,3336	0.83	0.7967	0,2033	1.23	0,8907	0.1093	1.63	0.9484	0.0516
0.04	0,5160	0.4840	0.44	0,6700	0,3300	0.84	0.7995	0,2005	1.24	0,8925	0.1075	1.64	0.9495	0.0505
0.05	0,5199	0.4801	0.45	0.6736	0.3264	0.85	0.8023	0.1977	1.25	0.8944	0,1056	1.65	0,9505	0.0495
0.06	0,5239	0,4761	0.46	0,6772	0,3228	0.86	0.8051	0.1949	1,26	0,8962	0.1038	1,66	0.9515	0.0485
0.07	0,5279	0.4721	0.47	0,6808	0.3192	0.87	0,8078	0.1922	1.27	0,8980	0,1020	1,67	0,9525	0.0475
0.08	0,5319	0.4681	0.48	0.6844	0.3156	0.88	0,8106	0.1894	1.28	0,8997	0,1003	1.68	0.9535	0.0465
0.09	0,5359	0.4641	0.49	0.6879	0.3121	0.89	0.8133	0.1867	1.29	0.9015	0.0985	1.69	0.9545	0.0455
0.10	0.5398	0.4602	0.50	0.6915	0.3085	0.90	0.8159	0.1841	1.30	0.9032	0.0968	1.70	0.9554	0.0446
0.11	0.5438	0.4562	0.51	0.6950	0.3050	0.91	0.8186	0.1814	1.31	0.9049	0.0951	1.71	0.9564	0.0436
0.12	0.5478	0.4522	0.52	0.6985	0.3015	0.92	0.8212	0.1788	1.32	0.9066	0.0934	1.72	0.9573	0.0427
0.13	0.5517	0.4483	0.53	0.7019	0.2981	0.93	0.8238	0.1762	1.33	0.9082	0.0918	1.73	0.9582	0.0418
0.14	0,5557	0.4443	0.54	0,7054	0.2946	0.94	0.8264	0.1736	1.34	0.9099	0.0901	1.74	0.9591	0.0409
0.15	0,5596	0.4404	0.55	0,7088	0.2912	0.95	0.8289	0.1711	1.35	0.9115	0.0885	1.75	0.9599	0.0401
0.16	0.5636	0.4364	0.56	0.7123	0.2877	0.96	0.8315	0.1685	1.36	0.9131	0.0869	1.76	0.9608	0.0392
0.17	0.5675	0.4325	0.57	0.7157	0.2843	0.97	0.8340	0.1660	1.37	0.9147	0.0853	1.77	0.9616	0.0384
0.18	0.5714	0.4286	0.58	0.7190	0.2810	0.98	0.8365	0.1635	1.38	0.9162	0.0838	1.78	0.9625	0.0375
0.19	0.5753	0.4247	0.59	0.7224	0.2776	0.99	0.8389	0.1611	1.39	0.9177	0.0823	1.79	0.9633	0.0367
0.20	0.5793	0.4207	0.60	0.7257	0.2743	1.00	0.8413	0.1587	1.40	0.9192	0.0808	1.80	0.9641	0.0359
0.21	0.5832	0.4168	0.61	0.7291	0.2709	1.01	0.8438	0.1562	1.41	0.9207	0.0793	1.81	0.9649	0.0351
0.22	0.5871	0.4129	0.62	0.7324	0.2676	1.02	0.8461	0.1539	1.42	0.9222	0.0778	1.82	0.9656	0.0344
0.23	0.5910	0.4090	0.63	0.7357	0.2643	1.03	0.8485	0.1515	1.43	0.9236	0.0764	1.83	0.9664	0.0336
0.24	0.5948	0.4052	0.64	0.7389	0.2611	1.04	0.8508	0.1492	1.44	0.9251	0.0749	1.84	0.9671	0.0329
0.25	0.5987	0.4013	0.65	0.7422	0.2578	1.05	0.8531	0.1469	1.45	0.9265	0.0735	1.85	0.9678	0.0322
0.26	0.6026	0.3974	0.66	0.7454	0.2546	1.06	0.8554	0.1446	1.46	0.9279	0.0721	1.86	0.9686	0.0314
0.27	0.6064	0.3936	0.67	0.7486	0.2514	1.07	0.8577	0.1423	1.47	0.9292	0.0708	1.87	0.9693	0.0307
0.28	0.6103	0.3897	0.68	0.7517	0.2483	1.08	0.8599	0.1401	1.48	0.9306	0.0694	1.88	0.9699	0.0301
0.29	0.6141	0.3859	0.69	0.7549	0.2451	1.09	0.8621	0.1379	1.49	0.9319	0.0681	1.89	0.9706	0.0294
0.30	0.6179	0.3821	0.70	0.7580	0.2420	1.10	0.8643	0.1357	1.50	0.9332	0.0668	1.90	0.9713	0.0287
0.31	0.6217	0.3783	0.71	0.7611	0.2389	1.11	0.8665	0.1335	1.51	0.9345	0.0655	1.91	0.9719	0.0281
0.32	0.6255	0.3745	0.72	0.7642	0.2358	1.12	0.8686	0.1314	1.52	0.9357	0.0643	1.92	0.9726	0.0274
0.33	0.6293	0.3707	0.73	0.7673	0.2327	1.13	0.8708	0.1292	1.53	0.9370	0.0630	1.93	0.9732	0.0268
0.34	0.6331	0.3669	0.74	0.7704	0.2296	1.14	0.8729	0.1271	1.54	0.9382	0.0618	1.94	0.9738	0.0262
0.35	0.6368	0.3632	0.75	0.7734	0.2266	1.15	0.8749	0.1251	1.55	0.9394	0.0606	1,95	0.9744	0.0256
0.36	0.6406	0.3594	0.76	0.7764	0.2236	1.16	0.8770	0.1230	1.56	0.9406	0.0594	1,96	0.9750	0.0250
0.37	0.6443	0.3557	0.77	0.7794	0.2206	1.17	0.8790	0.1210	1.57	0.9418	0.0582	1.97	0.9756	0.0244
0.38	0.6480	0.3520	0.78	0.7823	0.2177	1.18	0.8810	0.1190	1.58	0.9429	0.0571	1.98	0.9761	0.0239
0.39	0.6517	0,3483	0.79	0.7852	0.2148	1.19	0.8830	0.1170	1.59	0.9441	0.0559	1,99	0.9767	0.0233

Areas Under the Normal Curve

Figure 5: Statistical table for N(0,1). These tables have been taken from: http://fsweb.berry.edu/academic/education/vbissonnette/tables/tables.html.

	2-	tailed testin	ıg	1-tailed testing					
df									
	0.1	0.05	0.01	0.1	0.05	0.01			
5	2.015	2.571	4.032	1.476	2.015	3.365			
6	1.943	2.447	3.707	1.440	1.943	3.143			
7	1.895	2.365	3.499	1.415	1.895	2.998			
8	1.860	2.306	3.355	1.397	1.860	2.896			
9	1.833	2.262	3.250	1.383	1.833	2.821			
10	1.812	2.228	3.169	1.372	1.812	2.764			
11	1.796	2.201	3.106	1.363	1.796	2.718			
12	1.782	2.179	3.055	1.356	1.782	2.681			
13	1.771	2.160	3.012	1.350	1.771	2.650			
14	1.761	2.145	2.977	1.345	1.761	2.624			
15	1.753	2.131	2.947	1.341	1.753	2.602			
16	1.746	2.120	2.921	1.337	1.746	2.583			
17	1.740	2.110	2.898	1.333	1.740	2.567			
18	1.734	2.101	2.878	1.330	1.734	2.552			
19	1.729	2.093	2.861	1.328	1.729	2.539			
20	1.725	2.086	2.845	1.325	1.725	2.528			
21	1.721	2.080	2.831	1.323	1.721	2.518			
22	1.717	2.074	2.819	1.321	1.717	2.508			
23	1.714	2.069	2.807	1.319	1.714	2.500			
24	1.711	2.064	2.797	1.318	1.711	2.492			
25	1.708	2.060	2.787	1.316	1.708	2.485			
26	1.706	2.056	2.779	1.315	1.706	2.479			
27	1.703	2.052	2.771	1.314	1.703	2.473			
28	1.701	2.048	2.763	1.313	1.701	2.467			
29	1.699	2.045	2.756	1.311	1.699	2.462			
30	1.697	2.042	2.750	1.310	1.697	2.457			
40	1.684	2.021	2.704	1.303	1.684	2.423			
50	1.676	2.009	2.678	1.299	1.676	2.403			
60	1.671	2.000	2.660	1.296	1.671	2.390			
80	1.664	1.990	2.639	1.292	1.664	2.374			
100	1.660	1.984	2.626	1.290	1.660	2.364			
120	1.658	1.980	2.617	1.289	1.658	2.358			
	1.645	1.960	2.576	1.282	1.645	2 327			

Critical Values of the <u>t</u> Distribution

Figure 6: Statistical table for Student's t(r).

Critical Values of the <u>F</u> Distribution ($\alpha = .05$)

df	df between										
within	1	2	3	4	5	6	7	8	12	24	8
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.68	4.53	4.37
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.00	3.84	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.57	3.41	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.28	3.12	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.07	2.90	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	2.91	2.74	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.79	2.61	2.41
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.69	2.51	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.60	2.42	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.53	2.35	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.48	2.29	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.42	2.24	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.38	2.19	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.34	2.15	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.31	2.11	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.28	2.08	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.25	2.05	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.23	2.03	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.20	2.01	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.18	1.98	1.73
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.16	1.96	1.71
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.15	1.95	1.69
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.13	1.93	1.67
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.12	1.91	1.66
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.10	1.90	1.64
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.09	1.89	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.00	1.79	1.51
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	1.92	1.70	1.39
80	3.96	3.11	2.72	2.49	2.33	2.21	2.13	2.06	1.88	1.65	1.33
100	3.94	3.09	2.70	2.46	2.31	2.19	2.10	2.03	1.85	1.63	1.28
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.83	1.61	1.26
8	3.84	3.00	2.61	2.37	2.22	2.10	2.01	1.94	1.75	1.52	1.00

Figure 7: Statistical table for F(m, n) at the 5% level.

Critical Values of the <u>F</u> Distribution ($\alpha = .01$)

df	df between										
within	1	2	3	4	5	6	7	8	12	24	8
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	9.89	9.47	9.02
6	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.72	7.31	6.88
7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.47	6.07	5.65
8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.67	5.28	4.86
9	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.11	4.73	4.31
10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.71	4.33	3.91
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.40	4.02	3.60
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.16	3.78	3.36
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	3.96	3.59	3.17
14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	3.80	3.43	3.01
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.67	3.29	2.87
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.55	3.18	2.75
17	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.46	3.08	2.65
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.37	3.00	2.57
19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.30	2.92	2.49
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.23	2.86	2.42
21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.17	2.80	2.36
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.12	2.75	2.31
23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.07	2.70	2.26
24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.03	2.66	2.21
25	7.77	5.57	4.68	4.18	3.85	3.63	3.46	3.32	2.99	2.62	2.17
26	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	2.96	2.58	2.13
27	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	2.93	2.55	2.10
28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	2.90	2.52	2.07
29	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	2.87	2.49	2.04
30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	2.84	2.47	2.01
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.66	2.29	1.81
60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.50	2.12	1.60
80	6.96	4.88	4.04	3.56	3.26	3.04	2.87	2.74	2.42	2.03	1.50
100	6.90	4.82	3.98	3.51	3.21	2.99	2.82	2.69	2.37	1.98	1.43
120	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.34	1.95	1.38
00	6.64	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.19	1.79	1.00

Figure 8: Statistical table for F(m, n) at the 1% level.

10	Area in the Upper Tail										
dI	0.99	0.95	0.9	0.1	0.05	0.01					
1	0.000	0.004	0.016	2.706	3.841	6.635					
2	0.020	0.103	0.211	4.605	5.991	9.210					
3	0.115	0.352	0.584	6.251	7.815	11.345					
4	0.297	0.711	1.064	7.779	9.488	13.277					
5	0.554	1.145	1.610	9.236	11.070	15.086					
6	0.872	1.635	2.204	10.645	12.592	16.812					
7	1.239	2.167	2.833	12.017	14.067	18.475					
8	1.646	2.733	3.490	13.362	15.507	20.090					
9	2.088	3.325	4.168	14.684	16.919	21.666					
10	2.558	3.940	4.865	15.987	18.307	23.209					
11	3.053	4.575	5.578	17.275	19.675	24.725					
12	3.571	5.226	6.304	18.549	21.026	26.217					
13	4.107	5.892	7.042	19.812	22.362	27.688					
14	4.660	6.571	7.790	21.064	23.685	29.141					
15	5.229	7.261	8.547	22.307	24.996	30.578					
16	5.812	7.962	9.312	23.542	26.296	32.000					
17	6.408	8.672	10.085	24.769	27.587	33.409					
18	7.015	9.390	10.865	25.989	28.869	34.805					
19	7.633	10.117	11.651	27.204	30.144	36.191					
20	8.260	10.851	12.443	28.412	31.410	37.566					
21	8.897	11.591	13.240	29.615	32.671	38.932					
22	9.542	12.338	14.041	30.813	33.924	40.289					
23	10.196	13.091	14.848	32.007	35.172	41.638					
24	10.856	13.848	15.659	33.196	36.415	42.980					
25	11.524	14.611	16.473	34.382	37.652	44.314					

Critical Values of the χ^2 Distribution

Figure 9: Statistical table for $\chi^2(q)$.