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The finite-sample null distribution of the Jarque-Bera Lagrange multiplier
test for normality differs considerably from the asymptotic x*(2). However,
asymptotic critical values are commonly used in applied work. even for
relatively small sample sizes. Here, very accurale response surface approxi-
mations are developed for the 10% and 5% critical values of the test,

which enable correct practical implementation.

. Introduction

The Jarque-Bera (1980. 1987) Lagrange multiplier
test is perhaps the most commonly used procedure
for testing whether a univariate sample of 7 data-
points, or estimated regression residuals. are drawn
from a normal distribution. It is a joint test of the null
hypothesis (of normality) that sample skewness
equals 0 and sample kurtosis equals 3, and the null
is rejected when the statistic

T na =3V 4 -
M=+ l(h}’-r +%} LX)

exceeds some critical value, which is usuvally taken
{rom the asymptotic x2(2) distribution. The standard-
ized third and fourth moments are given by
B2 = (m3/mY*y and by = (my/mi3) respectively, and
m; is the ith central moment of the sample. It has been
noted that the small-sample tail quantiles of the LM
statistics are quite different from their asymptotic
counterparts: e.g. Deb and Sefton (1996, Table 1)
and Urzua (1996, Table 1). The use of asymptotic
critical values given even fairly large samples will
distort the actual size of the test, and may lead Lo
incorrect decisions in applied work.

Deb and Sefon (1996) compute 14 very accurale
empirical 10% and 5% significance points of LM in
the interval T & [20,800}, and show that their use
gives an almost correctly-sized test using regressors.
However, practical implementation using their criti-
cal values requires new simulations for sample sizes
that are not tabulated. We address this problem. and
develop highly accurate response surface' approxi-
mations to the 10% and 5% finite-sample critical
values of LM, that are generally correct to £0.01,
and may be used for T= 5.

Il; Finite-Sample Critical Values

Using Monte Carlo simulation, we generate 1 000000
realization of LM under the null of normality, for
each sample size T in the set

T €15,6,....25,30,....100,125, ..., 1000}, o
o € {0.90,0.95}

and calculate the 10% and 5% critical values as the
{1 000 000)th largest values of LM. This procedure
gives 72 datapoints for each a, which are rather more
accurate than those previously available. We generate
standard normal pseudorandom numbers similarly

"Response surfaces are numerical-analytical approximations. that have been widely applied in cconometrics: e.g.. Ericsson
(199}). Cheung and Lai (1995), MacKinnon (1994), MacKinnon ¢ al. {1999), and Ericsson and MacKinnon (2002).
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to MacKinnon's (1994. p. 170) long-period algo-
rithm. The sample sizes that we have chosen are
representative of those that are commonly used in
applied work. Our design focuses on T <23, since
the actual critical values vary widely across this
range, and specification of good response surfaces
requires this information. All simulations were
performed on a Pentium 4 machine, with a 2GHz

Table 1. Estimated quantile response surfaces §*

=090 o=095
o 4.605049 59913104
B —145.1816602 —67.00449919
B 7286.233799 1719108744
B --275153.9753 —74.443. 10488
B 6437 304.253 1962 801.944
Bs =92456006.82 =30095541.45%
B 814503 5398.1 275285058.6
3 -4 276230 401 —=147919862]
By 12243 649 840 4299 485 882
ﬁq’ — 14677406 860 5206421393
R (.9999 £.9999
RSS 0.006423 0.009567
Mean (i) 0.00782 0.008499
Max |i] 0.0230 0.0344

Nores: The response surfaces (2) were estimated in E-Views.
All estimated coeflicients were significant a1 the 1% level.
R* is the degrees-of-freedom adjusted coefficient of
determination.

RSS is the residual sum of squares.

Meun |4| 1s the mean absolute error of the response surface
approximations against the stimulated critical values, and
Max || is the maximum absolute error.
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processor and 256 MB of RAM, running GAUSS
under Microsoft Windows XP.

We regressed the Monte Carlo estimates of 100a%
quantiles on various functions of sample size,
constructed so that T — oo gives the (known}
asymplotic quantiles. Following much experimenta-
tion, and motivated by the quantile approximations
developed by MacKinnon er al. (1999, p. 569) in the
context of Johansen-type tests for cointegration, we
chose to fit the following quantile response surlace:

9

T =g+ BT +u (2)
k=l

The dependent variable ¢*(7;) is the simulated
finite-sample 100x% quantile with sample size T,
which takes values from (1) ¢% is the asymp-
totic 100 quantile from the x*(2) distribution.
which was computed in GAUSS as ¢% =
arg min{edichic(g,2) — o + ll:: 1; 1S 4N error term.,
We denote the estimated response surface by ¢,
and estimated coefficients are -reported in Table 1.
Selection criteria included small residual variance,
parsimony, and satisfactory diagnostic performance.
The dependencies of the 10% and 5% critical values
on sample size are presented in Figs 1-3, which plot
response surfaces ¢” against 7. The response surface
fits are very good, and generally agree with the
simulated quantiles to roughly £0.01, across the enlire
parameter space (1}. For instance, estimated critical
values are 2,75 (10%) and 4.41 (5%) for a sample
size of 30, and 3.48 (10%) and 5.28 (5%) for a sample
size of 75. Simulated critical valves are 2.74 (10%)

Quantile: ghat™ (T}, q*(T)

ghat®95(T), and o: simulated q®95(T)
ghat®%(T), and o: simulated q°20(T)
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Fig. 1. Quantile response surfaces ¢"*° and ™™, for T  [5.500]
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Fig. 3. Quantile response surfaces

and 4.4] (5%) for a sample size of 30, and 3.49 (10%:)
and 5.27 (5%) for a sumple size of 75. We
considered more parsimonious approximations, with
fewer inverse powers of T}, although these failed to
yield an improved fit over (2). Clearly. §** and G%*s
break-down for T <4, although this is unlikely to be
a problem in applied work,

. Concluding Comments

We have developed very accurate response surlace
approximations to the 10% and 5% critical values

"% and §*, for T ¢ [5.20]

of the Jarque-Bera test for normality. that may be
used to give an almost correctly-sized test in empirical
work. While other tests for normality are also avail-
able (see Lobalo and Velasco, 2004. and references
therein). we focus on Jarque-Bera due to its great
popularity in applied econometric studies.

Various authors have proposed Monte Cario (e.g.,
bootstrap) methods for correcting the finite-sample
size distortions of residual-based tests, ¢.g. Dufour
et al. (1998) and Kilian and Demiroglu (2004).
However, the approach used in this paper is very
simple to implement, inexpensive when compared to
more computational-based techniques for inference.
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and can easily be generalized to other tail quantiles if
necessary.
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