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Abstract
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1 Introduction

Airline fares exhibit wide variation across different routes, across different air carriers, and over

time. Even on a single flight, travellers throughout the plane will have paid a wide range of

fares and few of them will have paid something close to the average fare. Airline fares also tend

to be higher in markets that have fewer airlines. The combination of these facts has fascinated

the economics profession since at least the early 1990s. Much of the earlier theoretical work

attempted to show that this price dispersion could result from the efforts of firms in competitive

environments effectively executing price discrimination policies, while much of the more recent

work has provided more definitive empirical evidence to support or disprove the claim that the

dispersion of airline fares results from price discrimination, usually by demonstrating that as

market concentration increases, some measure of price dispersion either increases or decreases.

In this paper, I show that market structure affects more than just the standard singular measures

of price dispersion. Market structure also influences the entire distribution of airline fares.

The most direct method of exploring a link between price discrimination and market struc-

ture would be to collect data on the price-quality schedules offered by various airlines across

a wide number of routes. Unlike other price discrimination studies where these price-quality

schedules are observed by the econometrician, as in Busse and Rysman (forthcoming), in this

study I do not observe the choices available to consumers. This is an explicit feature of the

standard airline fare database used in most empirical studies of the airline industry. I do not

observe consumer choices, nor do I even observe similar ticket types across markets or time.

Whereas most studies handle this complication by collapsing the data into a single statistic at

the carrier-route level, in this study I choose to work with the whole distribution of airline fares.

I do this with a finite mixture of normals model. Usually the mixture of normals model is used

to relax the Normality assumption employed in most likelihood-based empirical analyses (see,

for example, the discussion in Koop, 2003, or Koop and Tobias, 2004) because the researcher

suspects peculiarly fat tails in the distribution or even bimodality in the residuals due to insuf-

ficient observable characteristics. But in this study, I exploit the flexibility and tractability of
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the mixture of normals model in a unique way that allows me to surmount the basic problem

that I have an unmatched panel data set.

To anticipate results, I find that the distribution of monopoly fares is both economically

and statistically different from the distribution of fares in duopoly and competitive markets.

Specifically, the distribution of fares is shifted upwards for monopoly markets, more notably

right-skewed, flatter, and fatter tailed. Taken together, these results imply, for example, that

the shortest interval of price ranges for any given constant percentage of purchased tickets

is greater for monopoly markets than it is for duopoly and competitive markets. The same

phenomenon is observed between duopoly and competitive markets, though to a lesser degree.1

From an economic perspective, the results of the predictive analysis in this paper are consistent

with models of second degree price discrimination, i.e., airlines encourage consumers to self-

select their preferred tickets based on a trade-off between tickets that more closely match their

vertical preferences for quality/scheduling and the price associated with those tickets. This is

in contrast to the results of earlier studies that find support for a model of price discrimination

where consumers’ horizontal preference uncertainty across brands is the primary mechanism

driving airlines’ pricing decisions.

The paper is organized as follows. Section 2 describes the existing empirical and theo-

retical literature studying the effect of market structure on price dispersion. In this section I

also describe the data used in this study, I introduce a set of definitions to categorize market

structure, and I describe a basic breakdown of the data across different market structures. In

Section 3 I describe the empirical methodology in more detail, and in Section 4 I explain the

main results of the paper. Section 5 concludes and the Appendix provides technical details for

the analysis.

2 Market Structure and Price Dispersion

In their seminal paper, Borenstein and Rose (1994; hereafter BR) demonstrated the peculiar

phenomenon that the dispersion of airline fares tends to be greater in markets that are less
1For example, the smallest interval containing 75% of purchased tickets is predicted to be $296 for monopoly

markets, between $280 and $284 for duopoly markets, and $278 for competitive markets.
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concentrated, i.e., in markets with more airlines and for which we would a priori expect greater

price competition. This early work has generated a number of additional empirical studies

seeking to corroborate and explain the inverse relationship between price dispersion and market

concentration, as well as some controversy, since BR argue that their results are consistent with

a model of price discrimination where horizontal (interfirm) preference diversity dominates over

vertical (intrafirm across ticket quality characteristics). Some of the controversy derives from

the discriminatory pricing explanation of price dispersion. Dana (1999) argues that there are

possible non-discriminatory sources of price dispersion, in particular that it can arise benignly

in a model of costly capacity and demand uncertainty. More importantly, Dana demonstrates

an alternative explanation of the BR empirical findings, showing that his model also leads to an

inverse relationship between market concentration and price dispersion. The other source of

controversy stems from Stole’s (1995) theoretical contradiction of the main BR results, claiming

instead that the range of prices should increase with market concentration, regardless of whether

horizontal or vertical preference uncertainty dominates each firm’s pricing decisions.

In this paper, I assume that the source of the controversy is the empirical strategy used to

measure the effect of market structure on price dispersion. This is in-line with Stole’s suggestion

that the BR results are reflective of the averaging technique inherent in collapsing the airline

ticket fare data to a single airline-route GINI coefficient that ignores elasticity differences across

market segments. Other studies, in particular Liu and Serfes (2005), have attempted more

flexible measurement strategies. I argue that there is no reason to collapse the fare data at all.

Like other studies, the goal of the analysis is to see how market structure affects the dispersion

of airfares. The problem is that different market segments are affected to different extents, but

that the researcher cannot actually distinguish each market segment in the data. So, rather

than collapse the data to a single statistical measure of dispersion, I work with the entire set

of airline fares for a large sample of routes and airlines; my measure of the effect of market

structure on prices is to then predict how the entire distribution of fares on a route changes

as the market structure changes. In the following subsections, I describe the data that I use

for this study, as well as some suggestive results of what the data might be able to tell us by
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looking at the whole distribution of fares as opposed to single measurement statistics like GINI

coefficients or standard deviations.

2.1 Data

The standard data source for most airline pricing studies is the DB1A/B data set provided by the

U.S. Department of Transportation (DOT). The data are a random sample of approximately

10% of all airline tickets in the U.S., and include information on the origin and destination

airports for each leg of the trip, whether the ticket is restricted or unrestricted, whether it is

a roundtrip ticket, the number of passengers flying on that ticket, who the operating airline

carrier was, the distance traveled for each leg, as well as various other characteristics. The

DOT also provides the T100 database, which contains information at a monthly level on the

number of passengers, flights, and seats by aircraft type for each airline and route in the U.S..

I use these two data sets as my primary sources of information in this study. To make the data

more tractable, as well as comparable with other studies, I employ only a subset of the data

that meet the following criteria:

1. I use the first quarter of 2000 as the time period. The year selection is somewhat arbitrary,

although I wanted to avoid any issues associated with post-9/11/2001, in particular the

long string of airline bankruptcies and financial problems that resulted afterward. The

quarter selection avoids the summer slump that occurs in the 2nd quarter and the holiday

jump that occurs in the 4th quarter. Most studies use either the 1st or the 3rd quarters

for their data.

2. I only use the top 80% of airline routes based on the number of passengers, and only the top

95% of airlines by passengers, which results in the following airlines: Delta (DL), Southwest

(WN), United (UA), American (AA), US Airways (US), Northwest (NW), Continental

(CO), TWA (TW), America West (HP), Alaska (AS), AirTran (FL), American Eagle

(MQ), Hawaiian (HA), and Aloha (AQ).

3. I exclude tickets with fares less than $30 (which I presume to be purchased with frequent
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flier miles), and with fares greater than 5 times the Standard Industry Fare Level (a

carryover from airline regulation that associates costs with the distance between routes).

Fares in excess of this number are assumed to be data entry errors.

4. I exclude routes with less than 100 ticket observations in the DB1B data. Although

the cutoff point is arbitrary, the reason for this exclusion is to provide a reasonably large

sample of tickets within a route in order to measure the entire distribution of fares on

that route, and not just a single statistic of them.

5. I exclude all tickets that include one or more connecting flights to get to the trip destina-

tion, and as such the results are indicative of only direct-flight markets.

Filtering the data in this manner results in 773,811 ticket observations on 1,428 routes and

14 airlines. The number of carriers on each route ranges from 1 to 9 with a median of 2, while

the number of routes that each carrier flies on ranges from 10 to 478 with a median of 176.

The number of tickets on each route ranges from 100 to 2,688 with a median of 412, and the

number of tickets associated with each carrier ranges from 1,732 to 155,123 with a median of

37,597.

It is worth noting the possible adverse effects that could arise from these filters. The

most egregious is the elimination of the low-fare tickets which are presumably purchased with

frequent flier miles. It is reasonable to assume that travellers prefer to use their frequent flier

miles for the most expensive tickets, and to the extent that monopoly routes tend to be the most

expensive, the distribution of monopoly fares might be incorrectly shifted upward. However,

provided the fraction of tickets purchased with frequent flier miles is only a small percentage of

fares, even if the exclusion only affects monopoly markets, it will not be a large impact.2

The remaining exclusions will all serve to bias the results away from the hypothesis that

monopoly markets exhibit a wider distribution of fares than nonmonopoly markets. Concen-

2The percentage of tickets meeting the frequent flier filter is approximately 3%. While I cannot determine if
indeed fares would have been higher than average for frequent flier trips, the data do reveal that the the tickets
screened out by my frequent flier filter are greater distance trips. Still, I don’t expect this to significantly impact
my results, as it also the case in these data that monopoly routes actually tend to be shorter distance trips,
potentially negating the possible bias.
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trating on only the top 95% of airlines and excluding all indirect flights both serve to understate

the level of competition in a given market. Thus, some markets will be incorrectly classified as

more concentrated than they really are, and a finding that more concentrated markets have a

wider distribution of fares would suggest that if I included the remaining air carriers and indirect

flights, the difference between the correctly identified distributions would be wider still.

2.2 Empirical Distributions by Market Structure Type

Before discussing the effect of market structure on the distribution of fares, I must first outline

how I am going to define market structure. Most empirical studies solely look at the Herfindahl-

Hirschman Index (HHI) as their measure of market structure. Although useful, the HHI has

only limited ability to differentiate between common market structure types that we might

expect to find in the data. BR avoids this issue by defining four categories of markets: Monopoly

(one firm with greater than 90% market share), Duopoly (nonmonopoly routes where two firms

together have greater than 90% market share), Asymmetric Duopoly (duopoly routes where

one carrier has at least 1.5 times greater market share than the other carrier), and Competitive

(nonmonopoly, nonduopoly routes); in all cases, BR defines market shares based on the number

of flights/week.

While useful, the BR definition cannot capture well certain market structures that most

people might accept. For example, if a route was such that one carrier had 50% market

share, and ten other firms each had 5%, most people would accept that this is a route that

is dominated by primarily one carrier, although they might hesitate to call it a "monopoly"

as such. Likewise, if two firms each had 40% of the market, while five other firms each had

4%, we would tend to think of this as a market dominated by two firms, although we might

hesitate to call it a duopoly market. I therefore offer an alternative categorization of airline

market structure. Let s1 denote the market share of the largest airline on a route, s2 denote

the market share of the second largest, and so on out to the last carrier on a route, so that

s1 > s2 > ... > sK . Throughout this paper, I then employ the following four categories, where

the titles are merely semantic:
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1. Monopoly. A route dominated by one carrier with greater than 50% market share and

all other firms are small in comparison. Specifically, s1 ≥ 0.5 and s1 > 9s2.

2. Asymmetric Duopoly. A route dominated by two carriers who together have more than

50% market share while all remaining firms are comparably smaller, but who themselves

are sufficiently distinguishable in size. Specifically: s1 + s2 ≥ 0.5, 1.5s2 < s1 < 9s2, and

s2 > 9s3.

3. Symmetric Duopoly. A route dominated by two carriers who together have more than

50% market share while all remaining firms are comparably smaller, but who themselves

are insufficiently distinguishable in size. Specifically: s1 + s2 ≥ 0.5, s1 < 1.5s2, and

s2 > 9s3.

4. Competitive. A route not dominated by only one or two carriers. Specifically, s1+ s2 <

0.5 or s1 + s2 ≥ 0.5 but s2 < 9s3.

Table 1 provides a breakdown of the DB1B fare and T100 passenger data based on these

market structure definitions. In this study, I define the market share as the share of passengers

enplaned in the quarter for each carrier in each route. As we might expect, average and median

fares are unambiguously increasing with market concentration, while the number of passengers

appears to be decreasing with market concentration. These results are consistent with textbook

economic theory on the market equilibria associated with different market structures. But

Table 1 also raises a few questions with regard to the empirical studies listed above that the

GINI coefficient is either decreasing or inverse U-shaped with market concentration and that

the standard deviation is increasing with market concentration.3 When we calculate the GINI

coefficient and standard deviation for each route and then look at averages across routes (the

last section of Table 1), the results are consistent with earlier empirical studies. But when we

3The GINI coefficient is essentially a measure of right-skewness. In this paper I employ the following
calculation of the GINI coefficient:

GINI =

Pn
i=1 (2i− n− xi)

n2x
,

where the xi are sorted such that x1 < x2 < ... < xn. If GINI = 0, then all observations are equivalent. As
GINI increases towards 1, the distribution of x is said to be more dispersed with most observations at the lower
end of the support for x and a few observations near the top end of the support.
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calculate the GINI coefficient and standard deviation using all tickets within a given market

structure (the first section of Table 1), the results are ambiguous at best. The only summary

statistic of the dispersion of prices that is consistent across the two methods is the interquartile

range, which we see to be increasing with market concentration. If robust, then based on

the theoretical results in BR, this would imply that firms encourage travellers to self-select

their airline tickets using price schedules that reflect firms’ uncertainties regarding (vertical)

consumer preferences for ticket quality.

In this paper, I argue that statistics such as those in Table 1 are insufficient for describing

the effect of market structure on fares. Instead, I contend that we should really be examining

the distribution of fares to see how it varies with market structure. In Figure 1, I look at

how the empirical distribution of fares breaks down across each of the market definitions listed

above. For example, the dash-dotted line is a kernel-smoothed plot of the distribution of fares

for the collection of all routes in my data that meet the market structure definition above for

a monopoly market. We see in Figure 1 that aggregated across all routes in a given market

structure type, the range of fares is roughly equivalent and that fares are heavily skewed to the

right, as we might expect. We also see that the concentration of fares (that is, the interval

of fares containing a fixed percentage of tickets) tends to shift down as the route becomes

more competitive, consistent with the notion that more airlines on a route should lead to more

competitive pricing on average. It is also worth pointing out that before controlling for any

ticket- or route-level characteristics, symmetric duopolies and competitive markets demonstrate

nearly indistinguishable fare distributions. Moreover, the one distribution that stands out

uniquely from the others is the fare distribution for monopoly markets, which also demonstrates

the widest range of fares for any given constant percentage of tickets up to about $900.

Aggregating across all routes smooths out many of the interesting features of the distribution

of fares that occurs at the route level. In Figure 2, I contrast the empirical distributions of

ticket fares for a subset of routes in my data set. The routes are chosen so as to represent the

median route based on the average fare, the standard deviation of fares, and the GINI coefficient

within each market structure type. In all cases, the distributions are multimodal and skewed
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to the right. For the Charlotte/Indianapolis (monopoly) route, the distribution is essentially

bimodal, with more of its mass centered on higher fares than any of the other distributions.

As with the aggregate results, it is the monopoly route that demonstrates the widest range

of fares for any given constant percentage of tickets. In contrast, the La Guardia/Orlando

(competitive) route has essentially only 1 mode toward the lower end of the distribution of

fares, and is more right-skewed than any of the other distributions. For these route selections,

we see that there is little difference in the distribution of fares for the two duopoly route types,

which conflicts with the expectation that the symmetric duopoly would have more mass for

lower fares and be more right-skewed than the asymmetric duopoly route. There are a couple

of possible reasons for this, including the fact that the composition of market shares on the two

routes are not markedly different, and in line with Table 1, the mean, standard deviation, and

GINI coefficient of the fares on the two routes are very similar.4 Another possibility is that the

LAX/BNA route is mostly dominated by Southwest Airlines, whose aggressive pricing policy

might be shifting more of the mass of ticket fares downward than if another carrier had similar

market share on this route.

In order to capture these details in a predictive analysis, the remainder of this study at-

tempts to model the effect of market structure on these route-level distributions of fares while

controlling for ticket-, route-, and carrier-level characteristics. These include the ticket’s restric-

tion type, whether the ticket is for roundtrip travel or not, the number of passengers traveling

on a ticket, the distance travelled, the total number of flights on the route, and the relative size

of each carrier based on its available seats. This is particularly important if we are concerned

that certain market structure types tend to be associated with, say, longer distance routes.5

4The mean, standard deviation, and GINI coefficient for LAX/BNA are $361, $216, and 0.292. For PHX/BWI
they are $374, $215, and 0.270.

5 In particular, we might suspect that short-haul routes are best served by a single carrier if there are significant
economies in utilizing the same plane on a route for multiple trips on a given day. If, in addition, it is also
true that short-haul routes have greater fare dispersion, then we might spuriously conclude that monopolies are
associated with a greater spread of fares. The data dispute this. The dispersion of airline fares is greater on
longer routes. Moreover, while monopoly routes are on average shorter, the Bayes Factor for the hypothesis
that monopoly route distances differ from those of nonmonopolies is only exp(-4.2). More importantly, in
a regression of the intequartile range of fares on distance and route types (monopoly, asymmetric duopoly,
symmetric duopoly), the Bayes Factor that the coefficients differ for short-haul (≤ 500 miles) versus long-haul
(> 500 miles) routes is only exp(-13.6). These Bayes Factors indicate no support for a confounding selection
bias with respect to the number of carriers on a route and the distance between cities on a route.
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Controlling for these characteristics will allow me to predict how the distribution of airfares

might change when market structure changes but the other characteristics do not.6

3 Empirically Modelling Unmatched Longitudinal Data

To model the full distribution of prices for the ticket-level data, I consider the following mixture

of normals specification for ticket i on route j operated by carrier k:

yijk = δk + xijkβ + εijk

p (εijk|πj , αj) =
GP
g=1

πgjφ
¡
εijk;αgj , η

−1
yg

¢
, (1)

where πj = (π1j , ..., πGj)
0 and αjk = (α1j , ..., αGj)

0 . In this specification, prices are denoted by

yijk and characteristics that vary at the ticket level are captured in the vector xijk, including

whether the the ticket is a restricted ticket, whether it is a roundtrip ticket, and the number

of passengers traveling on the itinerary. The error term is assumed to follow a G-component

mixture of normals distribution, with πgj denoting the probability that a ticket on route j falls

in component g and φ (a; b, c) denoting the ordinate of the normal density with mean b and

variance c, evaluated at a. Additionally, each component is assumed to have its own mean that

is assumed to be unique for each route, as well as its own error precision ηyg. Carrier- and

route-specific effects are captured in the terms δk and αgj . The fact that each route has its

own mean within each component is reflective of the data composition. Since the DB1B data

do not identify ticket types across routes in any meaningful way, the model as it is currently

written describes a pseudo-nonparametric description of ticket-level prices that varies across

routes.

If the data did in fact identify ticket types or market segments, then a hierarchical model

with individual ticket-type effects could be introduced that would potentially describe the mul-

timodality, skewness and fat tails that I demonstrated across all fares on a given route in Figure

2. It is precisely because of this unmatched longitudinal nature of the data that I introduce

6 In this study, I solely concentrate on a conditional predictive analysis in an attempt to re-identity the
empirical regularities in the data. The issue of estimating a model with endogenous airline entry on each route
is assumed to be beyond the scope of the paper.
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the mixture of normals distribution for the residual term. The alternative used in the airline

literature has been to collapse the data into sample statistics to describe the distribution of

fares for a given carrier-route combination, such as the mean, standard deviation, or GINI

coefficient. But as I show in Table 1, and as Stole (1995) argues, the inferences we draw from

such an approach are sensitive to how the data are aggregated before calculating the statistics.

The mixture of normals model allows me to estimate the entire distribution of fares, and addi-

tionally to associate the location and shape of the various components of the distribution with

observable characteristics such as market structure.

I introduce location effects for each component with the following distributional assumption

for the random effects αgj :

αgj
ind∼ N

¡
ajα

∗
g, η

−1
αg

¢
for g = 1, ..., G and j = 1, ..., J,

where aj is a vector of carrier- and ticket-invariant characteristics that include dummy indicators

if the route is a monopoly, symmetric duopoly or asymmetric duopoly, the HHI (Herfindahl

index) for routes that are competitive, the number of flights on the route, and the length of

the route in miles.7 Note that this specification also implicitly introduces scale (shape) effects

that vary by route analogous to a variance decomposition model. I also assume that the

carrier-specific effects δk are random, such that

δk
ind∼ N

¡
bkδ

∗, η−1δ
¢
for k = 2, ...K,

where bk is a vector of characteristics that vary only by carrier, in this case the number of

available seats based on the combination of planes flown throughout the quarter for a partic-

ular carrier.8 Analogous to the specification for the route-level effects, this specification for

the carrier-level effects introduces a common correlation component over tickets with common

7As with my construction of the market structure indicator variables, I use market shares based on passenger
enplanements to construct the HHI.

8Since I have a complete set of route-level effects for all routes, which are themselves centered with an intercept
term, and because I want to include an intercept term in the conditional mean for the carrier-effects, I must
exclude one of the carriers. For this analysis, I exclude Southwest Airlines from the list of carrier-effects, which
means that each of the estimated carrier-effects represent differences from the average (across routes) Southwest
fare after removing the effect of the ticket-level characteristics.
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carriers. However, for the sake of parsimony and because the data suggest that the domi-

nant source of asymmetry/skewness in ticket fares is route-specific, the carrier-level effects are

assumed to be just a simple normal distribution and not a mixture of normals as with the

route-level effects.

In the next section, I describe the posterior results from combining the mixture of normals

model with the data. Estimation is executed via a standard application of the Gibbs Sampler

with the prior distributions described in Appendix A. Appendix B contains details on the con-

ditional distributions used in the MCMC algorithm and Appendix C summarizes the numerical

precision of the Gibbs sampler for this study. An essential part of the analysis is to explore

the predictive distributions across different market structures. If we denote by θ the nonlatent

parameters in the model and p (θ|y) their posterior distribution, then the posterior predictive

distribution for ticket fares is just9

p
³
yfijk|y, a

f
j , b

f
k , x

f
ijk

´
=

Z
GP
g=1

πgjφ
³
yfijk; a

f
jα
∗
g + bfkδ

∗ + xfijkβ, η
−1
g

´
p (θ|y) dθ,

where the superscript f indicates a forecasted variable and

η−1g = η−1yg + η−1ag + η−1δ .

GivenMCMC draws from p (θ|y) , it is a straightforward calculation to derive a Rao-Blackwellized

estimate of p
³
yfijk|y, a

f
j , b

f
k , x

f
ijk

´
and to then plot this distribution over a grid of values for

yfijk. For this paper, I am primarily interested in comparing the simple hypothesis that market

structure has no effect on airfares to the hypothesis that market structure does influence the

distribution of airfares. If I let α∗l denote the coefficients on the market structure variables

in aj , then the no-effect hypothesis is that α∗l = 0. I can therefore calculate the Bayes Fac-

tor for this hypothesis versus the hypothesis that there is a market structure effect using the

Savage-Dickey density ratio

BF =
p (α∗l = 0|y)
p
¡
α∗l = 0

¢ .

9 It should be noted that this expression only describes the marginal posterior predictive for yfijk. The pre-
dictive distribution is not independent across j or k, implying that if, for example, we wish to describe the
distribution of fares for a route with multiple carriers, there would be nonzero off-diagonal terms in the covari-
ance matrix.
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As with the posterior predictive distributions, I use the MCMC draws and the posterior con-

ditional distribution p (α∗l |y, θ) described in Appendix B to Rao-Blackwellize the numerator of

the Savage-Dickey density ratio; the denominator is known a priori and easily calculated.

4 Market Structure and the Predictive Distribution of Ticket
Fares

The main results of this study are contained in Tables 2-3 and in Figure 3.10 In Table 2,

I describe the moments of the marginal posterior distributions for each of the parameters in

each component of the mixture distribution. We see that after controlling for route, ticket, and

carrier-level characteristics, the market structure variables have an important impact on the dis-

tribution of airline fares. To begin with, monopoly fares are uniformly (across all components)

greater than the fares for all other markets–the posterior probability that the distribution of

monopoly fares exceeds the distribution of fares for all other market structure types is arbi-

trarily close to one. Asymmetric duopoly fares are also greater than competitive fares (with

posterior probabilities of the differences ranging between 0.58 and 1.0 for all components), but

not markedly different from symmetric duopoly fares in all components.11

Another interesting finding is that the Herfindahl index does not seem to have a large

impact on the dispersion of airfares. The posterior means of the HHI coefficients in each

component vary only slightly around their common value, whereas for the other market structure

parameters there is at least one component that is centered at considerable distance from the

others. After controlling for the presence of a competitive market (through the intercept

and market structure indicators), it would appear that the concentration of firms only weakly

affects the distribution of fares. This is consistent with the finding that the distribution of

fares is not strongly distinguishable between symmetric and asymmetric duopolies. Still, the

10The results of the analysis are conditioned on a 5-component mixture model. At minimum, given the
plots in Figures 1 and 2, I require 3 components to capture the kurtosis and skewness of the observed distribu-
tions. Moreover, if the observable characteristics are inadequate to capture all of the features in the empirical
distributions described in Figure 3, I potentially require even more than 3 components.
11The posterior probabilities of a positive difference between asymmetric and competitive routes are, for each

component respectively, 0.58, 0.93, 0.96, 0.84 and 1.0. The differences between asymmetric and symmetric
duopoly route effects are 0.60, 0.61, 0.75, 0.61, and 0.92.
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various market structure definitions are capturing significant variation in the distribution of

airline fares–the log-Bayes Factor for the hypothesis that market structure has an effect on

the distribution of fares versus the hypothesis that it has no effect is 87. A log-Bayes Factor of

this order is overwhelming evidence that market structure influences the distribution of airline

fares.

To derive the posterior predictive distribution of airline fares, I must either condition on

specific route and carrier effects, as well as ticket characteristics, or integrate these features

out to try and capture what I think is the underlying effect of the market structure variables.

In this analysis, I choose to integrate out the route and carrier effects. I also integrate out

the conditioning characteristics restricted ticket status and roundtrip status based on their

joint incidences in the data. I condition the predictive analysis on the following remaining

characteristics: the number of passengers traveling on the ticket is 2, the number of flights and

the distance travelled on the route are both fixed at their mean values, the size of the airline(s)

on the route is (are) fixed at the mean value for the monopoly market structure, 0.7 and 0.3

times the mean value for the asymmetric duopoly, 0.5 times the mean value for each airline in

the symmetric duopoly, and one-third the mean value for the competitive market structure.

In Figure 3 I plot the posterior predictive distributions of airline fares for each of the

market structures based on these choices. The main results demonstrated in Figure 3 are

mostly consistent with the simple kernel-smoothed histograms described in Section 2. We

see that as market concentration increases, the distribution of airline fares (controlling for the

other characteristics) shifts to the right, and, at least for the monopoly case, demonstrates a

wider dispersion of fares for any given constant percentage of tickets. One way to see this

is to compare the coefficient parameters in component 5 across each of the market structure

types, where we see fares in this component $103 greater than asymmetric duopoly routes

and $134 greater than symmetric duopoly routes. All of the distributions exhibit significant

non-normality near the mode–they are all heavily skewed to the right, and the tails are much

fatter than we might get from even a Student-t distribution.12 Also, consistent with Table 2,

12As we move away from the mode, the tails start to exhibit more Gaussian-like behavior. This is an explicit
feature of the model, since the components at the extreme ends of the distribution are each conditionally normal
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we see that the fare distributions for both types of duopoly markets lie to the right of the fare

distribution for competitive markets, and that the fare distribution for asymmetric duopolies

is only slightly to the right of the fare distribution for symmetric duopolies. Again, it seems

that including variables for the basic market structure–one, two, or more firms dominating a

market–captures most of the observable variation in the distribution of airline fares.

These findings suggest, as I described earlier based solely on the descriptive characteristics of

the data, that the predictive distributions are consistent with second degree price discrimination

in oligopoly markets. This conclusion is based on the theoretical results described in the

Stole (1995) and Liu and Serfes (2005) models which have dispersion increasing with market

concentration. Conditional on the theoretical results in BR, the results suggest that the vertical

(ticket quality) preference diversity of consumers dominates the nonlinear price scheduling of air

carriers, and not horizontal (brand) preferences as documented empirically by BR. The findings

here are consistent with the conclusions reached in Liu and Serfes (2005) based on their empirical

results regarding the relationship between market concentration and the standard deviation of

fares. Indeed, the summary of the posterior predictive densities provided in Table 4 directly

supports the Liu and Serfes results. Not only is the distribution of airfares shifting to the

right as market concentration increases, it is also becoming flatter. The estimated posterior

standard deviations are increasing in market concentration, and more importantly, the length

of the highest posterior density intervals (intervals of shortest length for a given percentage

of the distribution) are also increasing with market concentration. These results also directly

contradict the predictions in Dana’s (1999) non-discriminatory model of price dispersion, which

predicts that the support of the price distribution decreases with market concentration and that

the standard deviation of prices also falls with market concentration.

Most of the control variables have signs that are consistent with the standard economic

literature. The number of flights on a route is a potential proxy for a demand shifter (and

a potential instrument for HHI if we are concerned with possible endogeneity problems), and

indeed we see a strong positive effect between the number of flights and airline fares. The

distributed, which ensures propriety of the predictive distributions and the existence of moments.
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distance between cities on a route has the largest economic effect on the distribution of airline

fares, shifting each component upward by anywhere from $40 to $314, reflecting the higher

costs for airlines to service routes that are further apart, and also indicating that the range of

fares is itself increasing with the distance between cities on a route. The remaining unobserved

variation at the route level is significant, with standard deviations in each component ranging

from $66 to $255, suggesting the importance of controlling for unobserved route-level effects in

the analysis.

In Table 3 I summarize the carrier- and ticket-level covariates. At the carrier level I include

only one covariate to preserve parsimony of the model. Since Southwest Airlines is the excluded

carrier-effect, the coefficient on available seats should be interpreted as the effect of a larger

fleet size on the deviation from the average Southwest residual fare. If we were to suppose

that airlines with larger fleets would have lower per-ticket or per-flight costs, then we would

expect to see that as available seats increase, airlines that normally charge a higher price than

Southwest should charge a differential that is otherwise closer to the Southwest fare. In other

words, the coefficient on available seats would then be negative. Instead, it appears that an

increase in available seats has a positive effect on this differential, with a posterior probability

that the effect is negative of only 0.09. One possible explanation of this is that the airlines

with the largest fleets are also the oldest airlines with more entrenched labor costs, and that

they tend to have much higher costs than some of the airlines with smaller fleets. At any rate,

there is not a great deal of inter-carrier variation in the deviation from Southwest fares that

remains unobserved relative to the unobserved variation at the route-level, since the posterior

standard deviation is only $22.

In contrast, all of the ticket-level characteristics are easily explained as standard features

of the airline industry. Restricted tickets tend to be cheaper than unrestricted tickets, while

roundtrip tickets tend to be more costly for travellers than one-way trips. Tickets that include

only one passenger, presumably business-travel tickets, tend to be higher than tickets with

multiple passengers, although the discounts associated with extra travellers are not significant

unless the number of passengers on the ticket exceeds 10. Lastly, allowing for route-specific and
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carrier-specific effects seems to have captured a sizable percentage of the unobserved variation

in fares overall. The standard deviation of fares in the data is $333, while the posterior means of

the residual standard deviations in each component range from $58 to $210. Moreover, a back-

of-the-envelope calculation yields an approximate standard deviation for the entire distribution

of the residuals of approximately $207.

5 Conclusion

In this paper I explore the effect of market structure on the entire distribution of airline fares.

I find that, after controlling for carrier-, route-, and ticket-level characteristics, monopoly mar-

kets exhibit higher fares and a wider range of fares for a constant percentage of tickets than

both duopoly and competitive markets, and that duopoly markets have a similar but dimin-

ished relationship with respect to competitive markets. These findings imply that as market

concentration on a route increases, not only do consumers tend to pay more for their tickets, but

the range of fares paid by similar percentages of consumers within each market structure type is

wider. This result is consistent with theoretical models of second-degree price discrimination.
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Appendix

A Specifying a Prior Distribution for the Unmatched Longitu-
dinal Model

To ease computation within the Gibbs Sampler, I employ independent normal-gamma priors

for the model specified in Section 3. Specifically, I condition on

β ∼ N
³
β,Q−1

β

´
, ηyg

ind∼ G

Ã
ωyg
2

,
2

µ
yg

!
,

ηαg
ind∼ G

Ã
ωαg
2

,
2

µ
αg

!
,

δ∗ ∼ N
³
δ∗, Q−1

δ

´
, ηδ ∼ G

Ã
ωδ
2
,
2

µ
δ

!
,

and

πj = [π1j , ..., πGj ] ∼ Dir
³
ρ
j

´
,

where Dir denotes the Dirichlet distribution. Lastly, for identification purposes, I impose a

labeling restriction on the first coefficient in each of the α∗g through the joint distribution of the

α∗g:

p
³
α∗ =

£
α∗01 , ..., α

∗0
G

¤0´ ∝ GQ
g=1

φ
³
α∗g;α

∗
g, Q

−1
αg

´
I (α11 < α21 < . . . < αG1) ,

where I (a ∈ A) = 1 if a ∈ A and yields 0 otherwise.

Regarding choice of prior hyperparameters, I follow what has become largely standard

in hierarchical linear regression models when a diffuse prior is desired. I first standardize

all of the nondiscrete independent variables in the analysis (by subtracting the sample mean

and dividing by the sample standard deviation). Then, for all of the coefficient parameters

(β, α∗, and δ∗), I set the prior mean equal to zero and the prior variance equal to 1600 times

the identity matrix. I set the intercept parameters in α∗ for all components at 400, which

implies that my prior predictive densities are symmetric with Gaussian tails, centered at $400.

Under this parameterization, my prior expected value for the effect of each covariate is that

increasing the level by one standard deviation will have no effect on the distribution of airfares.
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However, since I want to avoid shrinking the covariate effects too much toward having no effect, I

specify relatively large prior variances on the coefficient parameters which, nevertheless, preserve

propriety of my prior distributions.

For each of the components of the residual precisions, I set ωyg = 3 and µ
yg
= 2500, which

centers the prior for the residual standard deviation at approximately $50 in each component

but is otherwise extremely flat. For each of the components of the route-effect precisions, I

set ωαg = 3 and µ
αg
= 100, which centers the prior for the route-effect standard deviation at

approximately $10 in each component, but is otherwise extremely flat. For the carrier-level

effects, I set ωδ = 3 and µ
δ
= 4, which centers the prior for the standard deviation of the

carrier-level effects at approximately $2. Note that in each case for the route- and carrier-level

effects, I have centered the prior standard deviations at relatively small numbers and very flat

distributions. This contrasts with the usual notion that we should make the prior on residual

variances large if we wish to center our beliefs on the regression coefficients at zero, and is a

direct result of not wishing to inadvertently introduce extra unobserved variation at the route

and carrier levels.

Regarding prior sensitivity, I explore the impact of multiplying and dividing the prior vari-

ances on the regression coefficients by four. Figure 5 plots the predictive density for airfare

based on these choices. These densities are indeed sensitive to the prior variance of the coeffi-

cient estimates, and are suggestive of the influence the prior variances can have on the analysis

when they are too small. I condition the analysis in this paper on the case where the prior

variances are each equal to 1600, which covers the expected support of airline fares reasonably

well, and in particular excludes any significant mass for negative airfares.

B Posterior Conditional Distributions for the Gibbs Sampler

In this section I describe the full set of posterior conditional distributions that I use for esti-

mation in the Gibbs Sampling algorithm. A standard procedure in modeling normal mixtures

models is to introduce a latent component labeling vector cij = [c1ij , ..., cGij ] , where cgij = 1

if ticket i on route j is associated with component g and is equal to 0 otherwise. The model
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then becomes

p (εijk|cij) =
GQ
g=1

£
φ
¡
εijk;αgj , η

−1
yg

¢¤cgij
p (cij) =

GQ
g=1

[πgj ]
cgij .

We recognize the marginal distribution of cij as a Multinomial distribution with one trial, i.e.,

cij ∼Mult (1, πj) , and note additionally that the marginal distribution for εijk is still given by

equation (1) . Throughout, I employ the notational convention that θ is the vector of nonlatent

parameters in the model while

Γ =
£
{αgj} , {δk} , {cgijk} , θ0

¤0
is the vector of all latent and nonlatent parameters. Furthermore, I denote by Γ−x the vector

of all model parameters except x. Additional notational requirements concern the number of

observations associated with a given component, route or carrier. To that end, let ngj =
P
i
cgij ,

and ng =
P
j
ngj denote the number of observations within component g and broken down by

route j. I also define njk as the number of ticket observations on route j and carrier k, and nk

as the number of ticket observations associated with carrier k, so that: nj =
P
k

njk =
P
g
ngj

and n =
P
k

nk =
P
j
nj =

P
g
ng, which is the total number of unique observations in the data

set. Lastly, letting the number of airlines operating on route j be Kj and the number of routes

that airline k operates on be Jk, I denote the total number of carrier-route observations as

L =
P
j
Kj =

P
k

Jk, the total number of unique airlines as K, and the total number of unique

routes as J.

As is often the case in Bayesian analyses, computation is aided by conditioning on the latent

data. I therefore work throughout with the conditional likelihood

p (y|Γ) =
JQ

j=1

KjQ
k=1

njkQ
i=1

GQ
g=1

£
φ
¡
yijk;αgj + δk + xijkβ, η

−1
yg

¢¤cgijk ,
where y = [yijk] and all stacking is done first by all ticket observations associated with carrier

k on route j, then each of these stacked by carrier on route j, then over j, and finally, over g

where appropriate. At times, it will also be convenient to stack the latent parameters {cg} in
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matrix form, so that we have instead the n×G matrix ec = [c1, ...cG]. An additional notational
convenience will be to let

P
ijk

denote the more formal triple summation
JP

j=1

KjP
k=1

njkP
i=1

.

Loosely following Koop (2003), the conditional posterior β|y,Γ−β ∼ N
³
β,Q

−1
β

´
has para-

meters

Qβ = Q
β
+
P
ijk

P
g
cgijkηygx

0
ijkxijk

and

β = Q
−1
β

Ã
Q
β
β +

P
ijk

P
g
cgijkηygx

0
ijk (yijk − αgjk − δk)

!
.

This is the standard conditional posterior in linear models, augmented to allow
P

g cgijk to pick

off the correct component intercept and precision. However, since programs like Matlab are

optimized in such a way that they favor vector notation over loops, the conditional posterior

can be rewritten to eliminate the summation notation. If we let eαij = Pg cgijαgj , eα = [eαj ],
and ηy = [ηy1, ..., ηyG]

0, then the parameters of the conditional posterior for β are

Qβ = Q
β
+X 0diag

¡ecηy¢X
and

β = Q
−1
β

³
Q
β
β +X 0diag

¡ecηy¢ (y − eα)´ .13
The conditional posterior ηyg|y,Γ−ηyg ∼ G

³
ωyg
2 , 2

µyg

´
has the following parameters:

ωyg = ωyg + n

and

µyg = µ
yg
+
P
ijk

cgijk (yijk − δk − αgjk − xijkβ)
2

= µ
yg
+ (y −Kδ − Jαg −Xβ)0 diag (cg) (y −Kδ − Jαg −Xβ) ,

13For large data sets, for which this is one, the available system memory to store the diagonal matrix diag
¡ecηy¢

will be quickly overwhelmed. However, since this matrix will only contain n nonzero values and n (n− 1) zero
values, a useful tool here is to employ Matlab’s "sparse" matrices tool, which only stores locations and values
of the nonzero elements of a matrix. For example, in a simulated exercise I worked with n = 800, 000. The
memory required to store diag

¡ecηy¢ with this n is approximately 4.66 Terabytes. Using Matlab’s sparce matrix,
this is shrunk to approximately 6.87 Megabytes. The sparse tool proves highly useful in storing ec as well.
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where K is a n× (K − 1) matrix of dummy indicators across carriers and J is a n× J matrix

of dummy indicators across routes. The conditional posterior for the latent parameters {αgj}

is

αgj |y,Γ−αgj ∼ N
¡
D−1α dα,D

−1
α

¢
for j = 1, ..., J , and g = 1, ...G,

where

Dα = ηαg + ηygngj ,

d = ηαgajα
∗
g + ηyg

KjP
k=1

njkP
i=1

cgij (yijk − δk − xijkβ)

= ηαgajα
∗
g + ηygngj

£
yj −K(j)δ − xjβ

¤
g
,

K(j) is a nj×(K − 1)matrix of dummy indicators for the carriers on route j, and
£
yj −K(j)δ − xjβ

¤
g

is the sample average (over i, k) of the residuals in component g.

To derive the conditional posteriors for δk, I require the notation Kk to denote the kth

column of K. It follows that

δk|y,Γ−δk ∼ N
¡
D−1δ dδ,D

−1
δ

¢
for k = 2, ...,K,

where

Dδ = ηδ +
JkP
j=1

njkP
i=1

GP
g=1

cgijηyg,

dδ = ηδbkδ
∗
g +

JkP
j=1

njkP
i=1

GP
g=1

cgijηyg (yijk − αgj − xijkβ) ,

which can be rewritten as

Dδ = ηδ +K
0
kdiag

¡ecηy¢Kk,

and

dδ = ηδbkδ
∗
g +K

0
kdiag

¡ecηy¢ (y − eα−Xβ) .

The posterior conditional for α∗g is

p
³
α∗|y,Γ−α∗g

´
∝
"

GQ
g=1

φ
³
α∗g;α

∗
g, Q

−1
αg

´#
I (α11 < α12 < . . . < α1G)
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where

Qαg = Q
αg
+ ηαgA

0A

and

α∗g = Q
−1
αg

³
Q
αg
α∗g + ηαgA

0αg
´
.

We also have ηαg|y,Γ−ηαg ∼ G
³
ωαg
2 , 2

µαg

´
, where

ωαg = ωαg + J

and

µαg = µ
αg
+
¡
αg −Aα∗g

¢0 ¡
αg −Aα∗g

¢
.

Conditional on δ, we have a standard linear regression model, and so we get δ∗|y,Γ−δ∗ ∼

N
³
δ
∗
, Q

−1
δ

´
and ηδ|y,Γ−ηδ ∼ G

³
ωδ
2 ,

2
µδ

´
, where

Qδ = Q
δ
+ ηδB

0B,

δ
∗
= Q

−1
ϕg

³
Q
δ
δ∗ + ηδB

0δ
´
,

ωδ = ωδ +K − 1

and

µδ = µ
δ
+ (δ −Bδ∗)0 (δ −Bδ∗) .

To obtain the latent {cgijk}, note that

p
¡
cij |y,Γ−cij

¢
∝

GQ
g=1

[πgj ]
cgij
£
φ
¡
yijk; δk + αgj + xijkβ, η

−1
yg

¢¤cgij ,
which implies that cij |y,Γ−cij ∼Mult (1, πij) , where

πgij =
πgjφ

¡
yijk; δk + αgj + xijkβ, η

−1
yg

¢
GP
g=1

πgjφ
¡
yijk; δk + αgj + xijkβ, η

−1
yg

¢ .
Lastly, the posterior conditional πgj |y,Γ−πgj ∼ Dir

¡
ρj
¢
has parameters

ρgj = ρ
gj
+ ngj for g = 1, ..., G and j = 1, ..., J.
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C Numerical Precision of the Gibbs Output

The numerical standard errors in Tables 2-3 and the plots in Figure 4 are provided in order

to demonstrate the effectiveness of the Gibbs Sampling algorithm in estimating the model

described in Section 3. In all cases, the moments of the marginal posterior distributions for

all of the parameters in the model are estimated with relatively high precision based on the

numerical standard errors. I calculate the numerical standard errors based on the "batching"

method described in Carlin and Louis (2000). As we can see in Figure 4 though, the Gibbs

chain mixes fairly well–for most of the parameters, the autocorrelation function drops to below

0.1 after about 20 lags, and in all cases drops below 0.5 after about 20 draws. Figure 4 also

demonstrates how quickly the Gibbs sampler converges to the posterior distribution. For this

study, I run 2 parallel chains of the sampler each for 1500 draws and discard the first 500 in

each as burn-in, which seems very reasonable based on the draws illustrated in Figure 4.
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Tables & Figures

Table 1
Summary Statistics by Market Structure of the DB1B/T100 Data

Monopoly
Asymmetric 

Duopoly
Symmetric 

Duopoly Competitive

Airline Fare (aggregate)

Min 31 31 31 31
Mean 431 404 391 375
Median 325 297 276 273
Max 2872 3398 3266 3713
IQR 325 308 288 263
SD 330 332 348 329
Gini 0.380 0.401 0.420 0.407

Passengers Enplaned (by route)

Min 2,307         15,183        20,043      25,721        
Mean 52,423       82,911        82,167      136,470      
Median 44,306       70,181        65,579      122,460      
Max 232,400     362,160      451,010    401,180      
IQR 32,132       57,790        51,205      86,466        
SD 29,285       51,651        64,864      75,294        

Airline Fare (by route)

Min 60 46 47 38
Mean 395 359 358 324
Median 325 297 294 272
Max 1070 1142 1146 1194
IQR 305 279 282 240
SD 228 211 209 193
Gini 0.284 0.290 0.287 0.293
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Table 2
Posterior Distribution of Route Effects Parameters in the Mixture of Normals Model

Route Effects
Moment 
Estimate

Numerical 
Std. Error

Moment 
Estimate

Numerical 
Std. Error

Moment 
Estimate

Numerical 
Std. Error

Moment 
Estimate

Numerical 
Std. Error

Moment 
Estimate

Numerical 
Std. Error

Intercept Post. Mean 231.402 (0.931) 276.114 (0.996) 289.386 (0.717) 316.724 (0.799) 523.407 (0.953)
Post. Std. Dev. 13.507 (0.100) 14.657 (0.106) 11.269 (0.147) 12.658 (0.157) 17.032 (0.260)

Monopoly Post. Mean -6.537 (1.015) 42.830 (1.424) 33.520 (1.423) 40.941 (0.833) 160.855 (1.063)
Post. Std. Dev. 14.787 (0.096) 20.819 (0.136) 21.072 (0.159) 13.897 (0.171) 20.102 (0.297)

Symmetric Duopoly Post. Mean -15.419 (0.972) 10.950 (1.749) -7.641 (1.014) -7.443 (1.074) 26.704 (0.920)
Post. Std. Dev. 14.682 (0.100) 26.134 (0.174) 17.080 (0.174) 18.339 (0.194) 22.183 (0.306)

Asymmetric Duopoly Post. Mean -13.764 (0.920) 13.944 (1.235) 0.981 (1.165) -2.269 (0.876) 58.217 (0.951)
Post. Std. Dev. 13.649 (0.097) 18.604 (0.148) 17.952 (0.152) 14.779 (0.159) 19.868 (0.276)

Competitive * HHI Post. Mean -46.632 (1.922) -21.053 (1.432) -67.665 (1.575) -47.566 (1.287) -42.598 (1.066)
Post. Std. Dev. 30.408 (0.258) 28.881 (0.405) 30.531 (0.383) 29.189 (0.401) 35.091 (0.576)

Flights (in 000's) Post. Mean -2.927 (0.093) 13.276 (0.359) 8.645 (0.268) 17.202 (0.148) 29.961 (0.254)
Post. Std. Dev. 2.411 (0.037) 6.101 (0.072) 5.187 (0.060) 4.671 (0.079) 8.493 (0.146)

Distance (in 000's miles) Post. Mean 39.066 (0.150) 154.364 (3.119) 137.968 (0.781) 191.095 (0.189) 313.772 (0.536)
Post. Std. Dev. 2.786 (0.031) 44.097 (0.062) 11.449 (0.055) 4.467 (0.064) 10.048 (0.107)

Standard Deviation Post. Mean 65.940 (0.213) 111.362 (1.388) 117.181 (0.539) 135.128 (0.230) 255.461 (0.650)
Post. Std. Dev. 3.293 (0.025) 19.698 (0.047) 7.923 (0.038) 4.104 (0.046) 10.333 (0.090)

* The (1,1) element for each parameter indicates the posterior mean; the (1,2) element the numerical standard error (in parentheses) for the estimated posterior mean; the 
(2,1) element the posterior standard deviation; and the (2,2) element the numerical standard error (in parentheses) for the estimated posterior standard deviation.

Component 1 Component 2 Component 3 Component 4 Component 5
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Table 3
Posterior Distribution of Carrier- & Ticket-level Parameters in the Mixture of Normals Model

Carrier Effects Component Mixing Weights

Moment 
Estimate

Numerical 
Std. Error

Moment 
Estimate

Numerical 
Std. Error

Intercept Post. Mean 6.538 (0.148) Component 1 0.268 N/A
Post. Std. Dev. 9.054 (0.154) 0.010 N/A

Available Seats (in millions) Post. Mean 6.201 (0.119) Component 2 0.142 N/A
Post. Std. Dev. 6.717 (0.129) 0.017 N/A

Standard Deviation Post. Mean 22.398 (0.121) Component 3 0.148 N/A
Post. Std. Dev. 4.611 (0.092) 0.009 N/A

Componet 4 0.127 N/A
0.004 N/A

Component 5 0.316 N/A
0.001 N/A

Ticket-Level Effects 1st-Level Residual Standard Deviation

Restricted Post. Mean -43.287 (0.0196) Component 1 65.030 (0.054)
Post. Std. Dev. 0.389 (0.0046) 0.777 (0.003)

Roundtrip Post. Mean 42.303 (0.0177) Component 2 59.221 (0.197)
Post. Std. Dev. 0.376 (0.0049) 2.791 (0.006)

1 Passenger Post. Mean 3.124 (0.0054) Component 3 62.014 (0.096)
Post. Std. Dev. 0.257 (0.0047) 1.380 (0.006)

Num. Passengers (2-10) Post. Mean 0.002 (0.0012) Component 4 58.427 (0.122)
Post. Std. Dev. 0.057 (0.0010) 1.741 (0.006)

Num. Passengers (>10) Post. Mean -0.028 (0.0001) Component 5 210.391 (0.077)
Post. Std. Dev. 0.003 (0.0001) 1.126 (0.005)

* The (1,1) element for each parameter indicates the posterior mean; the (1,2) element the numerical standard error (in 
parentheses) for the estimated posterior mean; the (2,1) element the posterior standard deviation; and the (2,2) element the 
numerical standard error (in parentheses) for the estimated posterior standard deviation.  The reported mixture component 
weights are average values for the posterior means and standard deviations of the route-specific component weights.
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Table 4
Posterior Predictive Distributions of Fares by Market Structure Type

Posterior 
Mean

Posterior 
Median

Posterior 
Std. Dev

Interval 
Length

Monopoly 276 249 187 84 468 384

Asymmetric Duopoly 247 232 157 72 428 356

Symmetric Duopoly 243 224 155 68 420 352

Competitive 240 221 152 66 410 344

75% HPD 
Interval
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Figure 1: Empirical distribution of airline fares by market structure type. The empirical
densities are smoothed with the Epanechnikov kernel based on all ticket observations associated
with a given market structure type.
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Figure 2: Empirical distribution of fares for a subset of routes. CLT/IND is a monopoly
route between Charlotte, NC and Indianapolis, IN dominated by US Airways. LAX/BNA
is an asymmetric duopoly route between Los Angeles, CA and Nashville, TN dominated by
Southwest and American Airlines. PHX/BWI is a symmetric duopoly route between Phoenix,
AZ and Baltimore, MD dominated by Amerian West and Southwest Airlines. LGA/MCO is
a competitive route between New York’s La Guardia airport and Orlando, FL, operated by
United, US, and American Airlines.
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Figure 3: Posterior predictive distribution of airline fares for various market structures. Re-
stricted ticket status and roundtrip status are integrated out based on their joint sample inci-
dences. The number of passengers traveling on a ticket is fixed at 2, and the number of flights
and distance travelled on the route are fixed at their median sample values. The number of
seats offered is fixed at the median sample value for a monopoly, 0.7 and 0.3 times the median
value for asymmetric monopolies, 0.5 times the median value for symmetric duopolies, and
one-third the median value for competitive markets.
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Figure 4: Plots of MCMC draws and autocorrelations for the coefficients on the route effect of
Monopoly market structure. Each panel along the vertical axis corresponds to the coefficient
in the indicated component of the mixture distribution.

32



-200 0 200 400 600 800 1000
0

1

2

3

4

5

x 10
-3

Airfare in Dollars

Pr
io

r P
re

di
ct

iv
e 

D
is

tri
bu

tio
n 

of
 A

irf
ar

es

Prior Covariance x 4
Prior Covariance
Prior Covariance / 4

Figure 5: Sensitivity of the prior predictive distribution of airline fares to changes in the prior
covariance of the model coefficients.
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