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Abstract

In this paper, we develop a model for estimating flight departure delay distributions required

by air traffic congestion prediction models. We identify and study major factors influencing

flight departure delays, and develop a strategic departure delay prediction model. This model

employs nonparametric methods for daily and seasonal trends. In addition, the model uses a

mixture distribution to estimate the residual errors. In order to overcome problems with local

optima in the mixture distribution, we develop a global optimization version of the Expectation

Maximization algorithm, borrowing ideas from Genetic Algorithms. The model demonstrates

reasonable goodness of fit, robustness to the choice of the model parameters, and good predictive

capabilities. We use flight data from United Airlines and Denver International Airport from the

years 2000/01 to train and validate our model.

Keywords: Smoothing spline, mixture model, Expectation Maximization (EM), Genetic

Algorithm (GA), airline delay, airspace congestion, delay distribution.
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1 Introduction

The U.S. National Airspace System (NAS) is inherently highly stochastic. Yet, many existing

decision support tools for air traffic flow management take a deterministic approach to problem

solving. For example, to predict when an airspace sector will become overloaded, the Federal

Aviation Administration (FAA) employs a module called Monitor Alert. This tool predicts airspace

traffic levels by projecting, for each planned flight, time/space epochs through the airspace based

on a single flight plan (route) and a single estimated departure time. The estimated departure time

used is typically the flight’s scheduled departure time. This deterministic approach fails to capture

three important stochastic factors: i) the uncertainty in a flight’s departure time (including the

possibility of flight cancellation), ii) changes in a flight’s route immediately before takeoff or after

the flight is airborne, and iii) airspace queueing effects. On-going research and development efforts

are seeking to develop stochastic models to replace this deterministic system (see Chandran (2002)

for preliminary work and Wanke et al. (2005) for an alternate approach). This paper represents

one component of these research efforts that addresses factor i). That is, in this paper we describe

a model for estimating flight departure delay distributions. We emphasize that a major objective

is to produce not just point estimates but estimates of the entire distribution since the congestion

estimation models envisioned require delay distribution functions, e.g. to produce expected traffic

levels for arbitrary time intervals. It is perhaps unnecessary to emphasize the potential benefits of

reducing airspace congestion and delays. As an example, delays directly attributed to air traffic

control actions are estimated to cost airlines 2.9 billion dollars in 1998 in addition to the cost of

delays borne by passengers (ATA, 1999).

The Bureau of Transportation Statistics (BTS) releases summary statistics and basic analysis

on airline performance each month. Most of its delay analysis focuses on arrival delays rather than

the departure delays since arrival delays are more closely related to ultimate passenger satisfaction.

On the other hand, when trying to understand the source of arrival delays and airspace congestion

in general, study of departure delays becomes quite relevant. We should also note that the BTS

analysis and most prior studies of airspace delays typically only provide average delay statistics

and do not focus on estimates of distribution functions. Probably the most typical approach to

estimating distributions for aviation analysis involves the generation of histograms from historical

data. In Inniss and Ball (2004), such an approach is used to estimate airport departure capacity

distributions. The estimates vary by hypothetical “seasons”, which are determined through an

optimization model. This approach to characterizing seasonal variation jumps from one estimated

distribution to another at discrete points in time. The approach developed in this paper employs
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smoothing methods to allow for continuous variations in estimates over time, which is much more

consistent with the underlying physical system. SimAir, a modular airline simulation tool developed

in the year 2000, employs raw historical aggregate distributions (Rosenberger et al., 2000). Although

raw historical distributions are a simple way to capture departure delays, they can potentially be

too sensitive to specific random variation in the data. In our analysis, we attempt to separate

random variation from observable patterns in the data. Specifically, we characterize the underlying

mechanisms behind delay, then model and regenerate delay using functional characterizations. In

that sense, our method could be used as input into simulation tools such as SimAir. One of the

distinctive features of our model is the characterization of seasonal and daily delay patterns. This

is one aspect in which it distinguishes itself from other work on modeling delay distributions (e.g.

Mueller and Chatterji, 2002). Also, we consider a flexible continuous probability model for the

error distribution while Mueller and Chatterji (2002) assume a discrete Poisson model. While the

authors consider data across several different airports and airlines, we focus here on one particular

airport/airline combination, and a longer time span, with the goal of extracting airport/airline

specific patterns. We want to point out that our method is flexible and can be readily adapted to

other airline/airport combinations.

The specific delay value we consider is the push-back delay, which measures the discrepancy

between the scheduled departure time and the actual departure time from the gate (push-back

time). Other delays, such as taxi-out delay, delay in the air, taxi-in delay, and arrival delay, are

all generated after the flight leaves the gate. There is a body of related, prior research that uses

models to estimate departure delays or employs departure delay estimates within broader models.

These models typically address problems involving airport surface congestion. For example, Odoni

et al. (1994) develop a non-homogeneous queueing model to analyze congested airports. Shumsky

(1997) extends this model and estimate take-off times under non-steady state conditions. Idris

et al. (2002) develop a queueing model for taxi-out time estimation. The result of our work could

potentially be used as inputs into any of these models.

A key component of our model is the estimation of the delay propagation effect. Delay built-up

from previous flights is known as the delay propagation and its effects on delays have been studied

in several prior papers (see for example Beatty (1998), Schaefer and Millner (2001) and Wang et al.

(2003)). Our work provides a functional characterization of this effect at a single airport and uses

the underlying function as input into departure delay estimates.

In addition to the daily propagation effect, many other factors influence departure delay, such

as weather conditions, holiday demand surges, luggage problems, mechanical problems, airline

policies, airport congestion, etc. Instead of studying the impact of each individual factor alone, we
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group factors into three major categories: seasonal trend, daily propagation pattern and random

residuals. Our model uses each of these three categories as an individual building block. To

estimate the seasonal trend and the daily propagation pattern, we employ a smoothing spline

model. Its nonparametric nature eliminates the need for assuming a rigid (and possibly incorrect)

form for the dependence of response and predictors (Hastie and Tibshirani, 1990). In our analysis,

we do not have prior knowledge of the form of the seasonal trend nor of the daily propagation

pattern. In addition, by using a smoothing spline, we can treat time as a continuous factor, which

is appropriate since the delay at the end of one month will not vary significantly from the delay

at the beginning of the next month; there is a similar smooth fluctuation in delay over the course

of one entire day, making the smoothing spline also an advantageous approach for addressing the

daily propagation effect. Finally, we assume a mixture model for the residuals and estimate the

mixture-components using the EM (Expectation Maximization) algorithm. The EM algorithm

is known for its fast convergence, stability and convenient implementation in mixture problems

(Bilmes, 1998). One drawback of EM is that it typically converges only to a local optimum of

the likelihood function. The mixture model likelihood, however, is known to have many local,

sub-optimal solutions, especially when the data-dimensionality and/or mixture-number are large

(McLachlan and Peel, 2000). This means that EM can get trapped in a solution far away from the

global optimum (see e.g. Jank, 2006a,b).

In an effort to find the global optimum, we develop a global optimization version of EM by

combining EM with the ideas of the Genetic Algorithm (GA). GAs were first introduced by Hol-

land (1975) based on the principles of natural selection or “survival of the fittest” in the evolution

of species. The GA approach has been applied to many areas including marketing, biology, en-

gineering, etc. In this paper, we use the principles of GA to overcome local maxima in mixture

distributions within the framework of the EM algorithm. We want to point out that there exists,

to date, only little research on making EM suitable for solving global optimization problems. Some

very recent efforts into that direction include Heath et al. (2006), Jank (2006a) or Pernkopf and

Bouchaffra (2005).

To illustrate the performance of our model, we select Denver International Airport, a hub for

United Airlines (UA), as our case study. Our model shows promising results for estimation and

prediction of departure delays. Although the case study is for Denver International Airport and

UA only, our model can be readily generalized to other airports and airlines as well.

The paper is organized as follows. Section 2 introduces the model structure and assumptions.

Section 3 proposes a Genetic Algorithm version of the EM algorithm. In Section 4, we present the

case study, describe our data and discuss computational results including model robustness and
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validation. Section 5 describes possible application of our work within the context of air traffic

management. In that section we also describe a way of dynamically updating our model in real-

time as new delay information becomes available. Section 6 summarizes our findings and points

out areas for further research.

2 The Model Structure

Our model takes into account two types of delay structures: seasonal trend and daily propagation

pattern. Every day, delay builds up according to the daily propagation pattern while, at the same

time, it pursues a seasonal trend throughout the year. Random residuals capture the additional

variation not accounted for by these two structures (see Figure 1).

Seasonal 
Demand 
Change

Weather 
Impact

Other 
Seasonal 
Factors

Seasonal 
Trend

Crew 
Connection 
Problems

Delay Built -Up 
from Previous 
Flights

Other Daily 
Propagation 
Factors

Daily
Propagation

Pattern

Mechanical 
Problems

Luggage 
Problems

Other 
Random 
Factors

Random 
Residuals

Figure 1: Factors Influencing Departure Delay

Instead of attempting to explicitly account for all the different factors depicted on the left hand

side of the arrows in Figure 1, we use the much simpler structures on the right hand side. Therefore,

the departure delay for each individual flight can be decomposed into three major parts: a main

effect due to seasonal variation, a main effect due to daily delay propagation, plus random errors.

The model formulation is thus as follows: Let yi(s, t) be the departure delay for flight i scheduled

to depart on day s at time t. Let f(s) be the seasonal trend, ϕ(t) be the daily delay pattern, and

ǫi denote the random error. We propose an additive model of the form

yi(s, t) = f(s) + ϕ(t) + ǫi (1)

where the seasonal trend is a function of only day s and the daily delay pattern is function of only

time t. We further assume that the random error is independent of both s and t. In that sense,

yi(s, t) denotes the delay of any flight scheduled at day s and time t; if i and i′ were two flights

scheduled at the same day and time, then their only delay-difference would be due to random error

ǫi.
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Note that in this model we assume the effects of season and day to be additive. That is, control-

ling for the seasonal trend in the data, one day does not impact another. Moreover, controlling for

season and day, the residuals are iid (identically & independently distributed). While this model

may appear simplistic, our results show high predictive accuracy. In addition, the simplicity of the

model allows for easy implementation, maintenance and updating, and results in robustness with

respect to the choice of the model parameters.

2.1 Seasonal Trend

We model the seasonal trend using smoothing splines. This nonparametric approach allows us to

trace the seasonal trend without assuming a rigid (and possibly incorrect) functional form for the

dependence of response and predictors. Smoothing splines are also known to provide good fit to

the data without exhibiting excessive local variability (Green and Silverman, 1994).

Let Π = {π1, . . . , πV } be a set of knots (i.e. the break points of the piecewise-defined spline),

then a polynomial spline of order d is given by

f(s) = β0 + β1s+ β2s
2 + · · · + βds

d +
V

∑

v=1

βdv(s− πv)
d
+ (2)

where a+ = aI[a≥0] denotes the positive part of the function a. Let β= (β0, ...βd, βd1, ..., βdV )′ be

the vector of coefficients in (2). The choice of V and d strongly influences the local variability of the

function f . One can measure the degree of departure from a straight line by defining a roughness

penalty

PENm =

∫

(Dmf(s))2ds (3)

where Dm, m = 1, 2, ..., denotes the mth derivative of the function f . Using m = 2 and d = 3 leads

to the popular cubic smoothing spline. We find f(s) by minimizing the penalized residual sum of

squares (PENSSE):

PENSSEm=2 =

365
∑

s=1

(ȳs − f(s))2 + λS

∫ 365

1
(f ′′(s))2ds, (4)

where λS is the smoothing parameter. (The subscript S distinguishes it from the subsequent

smoothing parameter for the daily propagation pattern λD.) ȳs denotes the average daily delay

and is calculated via

ȳs =

∑

i

∑

t yi(s, t)
∑

t nst

s = 1, 2, 3, . . . , 365, (5)

where nst refers to the number of flights on day s at time t.

The parameter λS controls the smoothness of the spline. Large values of λS produce smoother

curves while smaller values produce locally more variable curves. In our study, we balance data-fit

6



and smoothness by choosing an equilibrium value for λS (see Section 4.3). As to the number and

placement of the knots πv, we set them to the unique values of ȳs (e.g. Reinsch, 1967; de Boor,

1978).

2.2 Daily Propagation Pattern

Since the airline operating resources are linked together, delaying one flight can affect other flights.

Among the inter-connected resources affected by delayed flight operations are crews, aircrafts,

passengers, and gate spaces. Because of this connectivity, airline departures are quite sensitive to

delays earlier in the day—the delay of one flight tends to propagate in time to many others.

The same smoothing approach as earlier is employed to model the daily propagation pattern.

We define the daily propagation function ϕ(t) to be one that minimizes the penalized residual sum

of squares:

PENSSEm=2 =
24:00
∑

t=00:00

(ȳt − ϕ(t))2 + λD

∫ 24:00

00:00
(ϕ′′(t))2dt (6)

where λD is again the smoothing parameter and ȳt denotes the average desesonalized delay at time

t. We calculate ȳt as follows. Let y
′

i(s, t) denote the delay after removing the seasonal trend,

y
′

i(s, t) = yi(s, t) − f̂(s) ∀s, t, i (7)

Then, we calculate ȳt as

ȳt =

∑

i

∑365
s=1

∑t+T
t y

′

i(s, t)
∑365

s=1

∑t+T
t nst

t = 00 : 00, T, 2T, . . . , 24 : 00, (8)

where T denotes a very short time interval (T = 5 minutes in our study). We choose λD and πv in

a similar manner as before (see also Section 4.5).

2.3 Finite Mixture Distribution for Residuals

The residuals are defined as the errors remaining after accounting for seasonal trend and daily

propagation delay. Residuals originate from many unpredictable factors such as customers run-

ning late, mechanical problems, extreme weather conditions, etc. To capture the residual delay

distribution, we employ a finite mixture model with several components. Many of the underlying

mechanism of delay suggest the use of an error model comprised of different components: A few

flights depart earlier than the scheduled departure time; this calls for a component that accounts

for early-departers. Another component may account for the majority of flights; i.e. the majority

of flights that depart right around the scheduled time. And yet, there may be another component

(or two) that account for those flights having extremely long delays.
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We thus model the residual distribution as a function of a J-component mixture in ℜ1. The

random residuals ǫi are calculated by removing the daily propagation pattern and the seasonal

trend from the original data,

ǫi = yi(s, t) − f̂(s) − ϕ̂(t). (9)

The mixture density of the ith residual (i = 1, ..., n) is then given by

g(ǫi|θ) =
J

∑

j=1

pjψj(ǫi|αj) (10)

where pj (pj ∈ [0, 1],
∑J

j=1 pj = 1) is the mixing proportion and ψj(ǫ|αj) is a density function in

the parameter αj . Collecting all parameters into one vector, we write θ = (p1, ..., pJ ,α1, ...,αJ).

Moreover, assuming normal group-conditional densities we can write

ψj(ǫi|αj) = ψj(ǫi|µj , σj),αj = (µj , σj) (11)

where µ denotes the mean and σ denotes the variance, respectively. The log-likelihood is then

logL(θ|ǫ) =

n
∑

i=1

log







J
∑

j=1

pjψj(ǫi|αj)







. (12)

One can maximize above log-likelihood by appealing to the missing information principle which

makes the mixture likelihood very appealing for the use of the EM algorithm. Specifically, we

assume that ǫi arises from one of the J groups. Let zi = (zi1, ..., ziJ) be the corresponding J-

dimensional group indicator vector; that is, zij = 1 if and only if ǫi belongs to group j; otherwise it

equals zero. Notice that zi is unobserved (or missing). By writing ǫ = (ǫ1, ..., ǫn) for the observed

data and Z = (z1, ...,zn) for the unobserved data we get the complete data as Ω = (ǫ,Z). The

log-likelihood of the complete data can then be written as

logLc(θ|Ω) =

n
∑

i=1

J
∑

j=1

zij {log pj + logψj(ǫi|αj)} . (13)

2.4 Mixtures and Local Optima

One of the biggest challenges for the EM algorithm is that it only guarantees convergence to a

local solution. The EM algorithm is a greedy method in the sense that it is attracted to the locally

optimal solution closest to its starting value which can be a problem when several locally optimal

solutions exist. This problem frequently occurs in the mixture model.

Consider Figure 2. The top panel of Figure 2 shows 40 observations, y1, . . . , y40, simulated

according to a mixture of two univariate normal distributions, yi
iid
∼ [p1N(µ1, σ

2
1) + p2N(µ2, σ

2
2)],

with p1 = p2 = 0.5, µ1 = −1, µ2 = 2, σ2
1 = 0.001 and σ2

2 = 0.5. Notice that this is a special case
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Figure 2: Log-likelihood function for a simple two-component mixture problem. The top panel

shows the simulated data. The bottom panel shows the log-likelihood function for µ1, the mean of

the first likelihood component, holding all other parameters constant at their true values.

of the normal mixture model in (10) with J = 2. Notice also that the first mixture component

has almost all its mass centered around its mean µ1 = −1. This results in a log-likelihood for µ1

depicted in the bottom panel of Figure 2. We can see that, as expected, the global optimum of

this log-likelihood is achieved at µ1 = −1. However, we can also see at least five local optima,

located around the values µ1 = 1, 1.5, 2, 2.5 and 3. Clearly, depending on where we start EM, it

may be trapped very far away from the global (and true) parameter value. In the following, we

propose a new version of EM that, by borrowing ideas from the Genetic Algorithm, can overcome

this problem.

3 A Genetic Algorithm Version of EM

The EM algorithm is an iterative procedure which alternates between two steps: an E-step and

an M-step. The E-step computes the conditional expectation of the complete data log likelihood,

conditional on the observed data (flight departure delays in our case) and the current parameter

values. Let

Q(θ|θ(k−1)) = E[logLc(θ|Ω)|ǫ; θ(k−1)] (14)
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where k denotes the kth iteration. Using equation (13), (14) can be simplified to

Q(θ|θ(k−1)) =
n

∑

i=1

J
∑

j=1

η
(k−1)
ij {log pj + logψj(ǫi|αj)} (15)

where η
(k−1)
ij = E(zij |ǫi; θ

(k−1)) is the posterior probability that ǫi belongs to the jth component

in the mixture. The M-step maximizes Q(·|θ(k−1)). That is, the kth M-step finds the value θ(k)

which satisfies

Q(θ(k)|θ(k−1)) ≥ Q(θ|θ(k−1)) (16)

for all θ in the parameter space.

One appeal of assuming a normal mixture distribution (11) is that we obtain closed-form updates

for the E- and M-steps (McLachlan and Peel, 2000):

• E-step : For i = 1, ..., n and j = 1, ..., J we compute

ηij(θ
(k)) =

p
(k)
j ψ(ǫi|µ

(k)
j , σ

(k)
j )

∑J
j=1 p

(k)
j ψ(ǫi|µ

(k)
j , σ

(k)
j )

. (17)

• M-step : Write θ(k+1) = (p
(k+1)
1 , ..., p

(k+1)
J , µ

(k+1)
1 , ..., µ

(k+1)
J , σ

(k+1)
1 , ..., σ

(k+1)
J ) for the param-

eter update where its components are given by

p
(k+1)
j =

1

n

n
∑

i=1

ηij(θ
k) (18)

µ
(k+1)
j =

∑n
i=1 ηij(θ

k)ǫi
∑n

i=1 ηij(θ
k)

(19)

σ
(k+1)
j =

∑n
i=1 ηij(θ

k)(ǫi − µ
(k+1)
j )(ǫi − µ

(k+1)
j )T

∑n
i=1 ηij(θ

k)
. (20)

The E-step and M-step are repeated until convergence. Convergence is often assessed by monitor-

ing the improvements in the parameter estimates and/or the improvements in the log-likelihood

function.

As pointed out earlier, one of the biggest challenges for EM is that it only guarantees convergence

to a local optimum and thus, especially in the mixture model, can get trapped in a sub-optimal

solution, possibly far away from the global optimum. In the following we propose a new variant

of EM that can overcome this challenge. To do so, we borrow ideas from the literature on global

optimization and in particular from the Genetic Algorithm.

The Genetic Algorithm (GA) was first proposed by Holland (1975). It has been applied to

many functional areas including marketing, biology, and engineering (Goldberg, 1989). The basis

for the algorithm comes from the observation that a combination of sexual reproduction and natural
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selection allows nature to develop living species that are highly adaptive to the natural environment.

In the following we propose a Genetic Algorithm version of EM. Our algorithm shares similarities

with other efforts on the same topic (Heath et al., 2006; Jank, 2006a; Pernkopf and Bouchaffra,

2005).

The Genetic Algorithm begins with an initial population of chromosomes. One evaluates their

structure and allocates reproductive opportunities in such a way that those chromosomes which

represent better solutions to the target problem are given a better chance to produce offspring. The

expectation is that some members of the resulting offspring population acquire the best charac-

teristics of both parents and, as a consequence, can better adapt to the environmental conditions,

providing an improved solution to the problem.

For this problem we can think of each parameter-component p1, ..., pJ ,α1, ...,αJ as one individ-

ual gene. Then the vector θ = (p1, ..., pJ ,α1, ...,αJ) is a string of parameters just as a chromosome

consists of a string of genes. The fitness function is the likelihood function (12). The resulting

EM-based Genetic Algorithm can then be implemented as follows:

Step1 Initialization: Randomly generate an initial population of l chromosomes, which

serves as the pool of parents. Initial parent pool =
{

θ
p
1, ....θ

p
l

}

.

Step2 Evaluation: Evaluate the fitness of each chromosome by calculating maxθ{logL(θ|ǫ)}

in (12) via the EM algorithm using θ
p
k, k = 1, . . . , l, as the starting value. Record the corresponding

maximum likelihood value MLKp =
{

MLKp
1, . . . ,MLKp

l

}

Step3 Crossover: Randomly choose a pair of parents θ
p
k and θ

p
k′ from the initial pool, and

exchange their genes at random positions to generate a pair of children. Specifically, crossover the

pj ’s or αj ’s between two parents randomly. Repeat this step until we get l children. Children pool

= {θc
1, ....θ

c
l}.

Step4 Mutation: Specify a fixed and small probability of mutation pm. Draw a random

number between 0 and 1; if that number is smaller than pm, then the new child chromosome is

randomly mutated, which means pj or αj are changed at random.

Step5 Update: Take the fitness of all parents MLKp =
{

MLKp
1, ....MLKp

l

}

. Similarly,

compute and record the fitness of all children MLKc = {MLKc
1, ....,MLKc

l }. Choose the best l

chromosomes from the combined parents and children to remain in the gene pool. Update MLK

from {MLKp ∪ MLKc}; update the gene pool correspondingly.

Step6 Iteration: Repeat Step 2-4 until the Nth generation is produced. N is typically a

number fixed in advance.

We refer to our Genetic Algorithm version of EM as the GA-EM algorithm. Practical implemen-
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tation of a GA-EM requires the selection of several algorithm parameters such as the population

size l, the number of generations N , and the mutation rate pm. In our application, we chose these

parameters as l = 100, N = 100 and pm= 1/(number of parameters+1) (see e.g. Willighagen,

2005). However, the algorithm performance is very robust to different choices (see Section 4.5).

4 Case Study

We select Denver International Airport and United Airlines for our case study. We train and

validate our model on data from the year 2000. We also investigate its forecasting capabilities for

data from 2001 (see Section 5). Notice that our method is general and can also be applied to data

from other airports/airlines/time-ranges.

4.1 Data

The data used in this study is based on Airline Service Quality Performance (ASQP) data, which

are collected by DOT (US Department of Transportation) under authority of 14 Code of Federal

Regulations (CFR). Any airline with more than 1 percent of total domestic enplanements is required

to report performance data to DOT.

In the year 2000, 10 carriers met the reporting requirement threshold. Among them, Ameri-

can, Northwest, United, and US Airways use ACARS (Aircraft Communications Addressing and

Reporting System) exclusively; Continental, Delta, and Trans World Airlines use a combination

of ACARS and manual reporting system; and America West, Southwest, and Alaska Airlines rely

solely on their pilots, gate agents and/or ground crews to record arrival times manually (FAA,

2002).

We choose the year 2000 to avoid the September 11th terrorist attacks and their consequential

impact on airline performance. We split our data into a training and a validation set: we estimate

our model on 70% of the data; the remaining 30% are used for model validation.

4.2 Data Preparation

In the year 2000, a total of 92,865 UA flights departed from Denver International Airport, which

equals an average of about 254 flights per day. Delay considered in this study is the pushback delay

which measures the difference between the actual and scheduled departure time. Let tidep denote

the actual departure time and let tisch be the scheduled departure time for flight i. Pushback delay

yi(s, t) in equation (5) is defined as yi(s, t) := tidep − tisch. Descriptive statistics for pushback delays
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Figure 3: Average Daily Delay in Year 2000

Table 1: Summary Statistics of the Pushback Delay (minutes)

Min 1st Quartile Median Mean 3rd Quartile Max Std.

-18.00 -1.00 3.00 18.16 20.00 802.00 37.16

(in minutes) are shown in Table 1. We notice that the mean is much larger than the median,

suggesting that delay is heavily right-skewed.

Figure 3 shows a time-series plot of average daily delay over the 366 day period under study.

We identify an extreme value around observation 90 (March 20th). On that day, average delay is

significantly larger than on any other day. The following excerpt from the NCAR (the National

Center for Atmospheric Research) news release explains what happened on that particular day (see

NCAR, 2002) :

Cancellations and delays due to icy weather can cost airlines millions of dollars in a

single day. On March 20, 2000, icing conditions at Denver International Airport forced

Air Wisconsin to cancel 152 flights. United canceled 159 outbound and 140 inbound

flights the same day, most because of weather.

March 20th is a special case with extreme icing condition. Politovich et al. (2002), describe the

results of a survey sent out to pilots that flew in and out of Denver. On one of the question “Was

March 20th an extremely unusual event for DEN?”, 23 out of 26 pilots answered Yes. Therefore

we consider that observation an outlier and exclude March 20th from our study.
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4.3 Estimating the Seasonal Trend

Note that the year 2000 has 366 days. Since we exclude March 20th, we remain 365 days in our

dataset. A smoothing spline fit to these 365 daily delays is depicted in Figure 4(a). The vertical

axis gives the average delay in minutes and the horizontal axis shows the day of the year. Delays

are high in summer and winter but low in spring and fall, which suggests a strong seasonal pattern.

The solid line corresponds to a cubic smoothing spline for the seasonal trend f̂(s), using λS = 1.03.
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Figure 4: Estimating the Seasonal Trend: (a) A fitted smoothing spline that represents the seasonal

trend; (b) The compromise between goodness of fit and fluctuation for the smoothing parameter.

Balancing data fit and smoothness, we choose λS in the following way. For different values of

λS , we calculate the mean squared error (MSE) between the fitted spline and a simple straight-line

regression through the data. We can think of this as a measure of local variation since a straight-line

regression provides the smoothest data fit. We also calculate the MSE between the spline and the

observed data as a measure of goodness of fit. Figure 4(b) shows the resulting two MSE measures

as a function of different λ-values.

MSE1 measures local variation (or departure from smoothness); local variation decreases (i.e.

smoothness increases) as λS increases. MSE2 measures data fit. As λS increases, MSE1 decreases

(i.e. smoothness increases) while MSE2 increases (i.e. data fit decreases). Figure 4(b) shows that

we achieve a good balance between local variation and data fit by choosing λS = 1.03 (i.e. the

point where MSE1 and MSE2 intersect). We also explore a range of alternative values for λS in

Section 4.6 and find that our model is very robust to changes in the smoothing parameter λS .

4.4 Estimating the Daily Propagation Pattern

After removing the seasonal trend, we use a similar smoothing approach for estimating the daily

propagation pattern. Figure 5 shows the resulting smoothing spline ϕ̂(t). The horizontal axis
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corresponds to the scheduled departure time (from 00:00 to 24:00 calculated in minutes), and the

vertical axis shows the delay in minutes. Note that no flight is scheduled to depart before 6:00 or

after 24:00. As a result, the horizontal axis covers only part of an entire day. We can see that

delay gradually builds up as the day goes on and decreases only deep into the night. The roughness

penalty λD is set at 0.44 using a similar rationale as before (see Figure 5(b)).
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Figure 5: Estimating the Daily Propagation Pattern: (a) A fitted smoothing spline that represents

the daily propagation pattern; (b) The compromise between goodness of fit and fluctuation for the

smoothing parameter.

We want to point out that the daily propagation pattern in Figure 5 is not really “daily” in the

true sense of the word. In fact, the propagation effect takes place over two consecutive days. The

break point between two “days” is in the early morning hours around 5:00 am or 6:00 am, when

the airport finally consumes all delays and no more flights depart.

Figure 6 shows the scatter of the average delay against the actual departure time. We notice a

very distinct spiky pattern: delay increases sharply within constant time intervals and then drops

at the interval-end. We can also see that the delay is extremely high in the very early morning. The

reason for this is that the horizontal axis is the actual departure time. Since no flight is scheduled

to depart in the very early morning hours, a flight that actually does depart at that time indicates

a flight that has been delayed for an extremely long amount of time (i.e. from the previous day).

When randomly sub-sampling 30% of the data, we notice that the pattern persists (Figure 6(b)).

This suggests that, surprisingly, it does not depend on only a few extreme values.

Airline scheduling and National Air Space (NAS) queueing effects may contribute to the spiky

pattern in Figure 6. When many flights are scheduled to depart in a very short time interval,

limitations on the airport departure rate result in long queues. Figure 6(c) shows the distribution

of flights scheduled to depart over the course of one day. Each bar corresponds to the number of
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flights scheduled within a 2-minute interval. We see several spikes above 1,500 (i.e. more than 1,500

aggregated flights were scheduled to depart during several 2-minute intervals). However, less than

800 flights actually did depart during these intervals (see Figure 6(d)). This difference between

scheduled and actual departures translates into delay which propagates itself over the day.
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Figure 6: Pattern in Delays vs Actual Departure Times: (a) Delay vs. actual departure time (b)

Delay vs. actual departure time for a random sample of only 30% of the data (c) Distribution of

number of flights scheduled to depart (d) Distribution of number of flights that actually departed

Queueing effects and “flight banks” in scheduling are well known in airline studies. However,

it is quite surprising to see the well shaped pattern in Figure 6 to persist even when we aggregate

over the entire year since one may expect queueing delays on different days to cancel each other

out.

4.5 Mixture Estimation using GA-EM

After removing both the seasonal trend and the daily propagation pattern, we estimate the mixture

distribution for the residuals. As pointed out earlier, we use our Genetic Algorithm version of EM

in the search for the global optimum.

We apply our GA-EM algorithm using l = 100 parents and N = 100 generations. Random
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Figure 7: Finding the Global Maximum via Genetic Algorithm

starting values were generated to form the pool of parents/chromosomes. The mutation rate was

set at pm= 1/(number of parameters+1) (see e.g. Willighagen, 2005). This results in the generation-

history shown in Figure 7: as more and more generations are calculated, the overall fitness improves.

Moreover, the convergence rate is fast since both average fitness per generation (solid line) and best

fitness per generation (dashed line) increase quickly and join (at least almost) at generation 100.

The roughness of the average fitness stems from the fact that mutation inflicts shocks into the

evolution process which may cause the method to temporarily seek worse solutions. In effect, this

allows the method to overcome local solutions and, eventually, visit the global optimum.

The performance of the GA-EM algorithm may depend on the choice of the algorithm param-

eters l, N and pm. Figure 8 shows the performance of the method when we vary these parameters.

We can see that, regardless of the mutation rate, the population size or the number of generations,

GA-EM converges to the same likelihood value after about 100 generations. We also investigated

the method’s dependence on its inherent randomness (e.g. due to the choice of the starting values

etc.), and, similarly, found that the method converges to the same likelihood value after about 100

generations. We take this as evidence that 100 generations is a reasonable generation-size for this

application.

The computing effort of our method is reasonable. Each EM-step takes about 0.25 seconds and

it takes on average 10 iterations for EM to converge. Thus, one run of GA-EM with 100 parents

and 100 generations takes about 0.25× 10× 100× 100 = 25, 000 seconds or 6.94 hours. This is the

time-investment necessary for one data set. In practice, we may have to update the parameters
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Table 2: Values of the Parameters in Mixture Density Fitting

p1, p2, p3, p4 µ1, µ2, µ3, µ4 σ2

1
, σ2

2
, σ2

3
, σ2

4

Solution 0.34,0.41,0.18,0.07 -17.05,-8.69,19.20,92.69 108.49,84.92,721.27,4184.54

occasionally because of newly arriving data. This can be done in a computationally efficient manner

as we discuss in Section 5.
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Figure 8: Robustness of GA-EM to algorithm parameters

One important decision in mixture-modeling is to choose the number of mixture components

J . As J increases we typically get a better data fit, however we also run the risk of over-fitting.

Moreover, model-parsimony considerations suggest the lowest possible value of J . From a global

optimization point of view, the optimization problem becomes harder with increasing J since the

solution space becomes more and more complex, showing more and more locally sub-optimal so-

lutions. Thus, the chances of finding the global optimum decrease with increasing J . Figure 9

shows the trade-off between J and the best solution found by GA-EM. Notice that for J = 2 we

have to determine 2*3-1 = 5 parameter components; however, for J = 8 this increases to 8*3-1 =

23 components. Unsurprisingly, Figure 9 suggests that J should not be chosen too large. In fact,

J = 4 mixture components provide a good balance between data fit, model parsimony and problem

complexity. We will therefore use this value throughout the remainder of this study.

Table 2 shows the parameter values of our best solution. In Figure 10 we compare the distribu-

tion of the true residuals (left panel) versus the estimated distribution based on our mixture model

using the parameters in Table 2 (right panel). Notice that our model provides a very good fit: the
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Figure 9: Exploring the Number of Components in GA-EM Algorithm

Table 3: Quantiles of the true and the fitted distribution

Percentile 10% 20% 30% 40% 50% 60% 70% 80% 90%

Original Residuals -24.86 -19.52 -15.72 -12.32 -8.97 -5.35 -0.75 7.99 35.17

Fitted Residuals -25.19 -19.77 -15.78 -12.28 -8.89 -5.31 -0.73 7.49 36.32

distribution in the right panel is almost indiscernible (at least visually) from the one in the left

panel. Notice also the negative values in the left half of each distribution. These negative values

indicate flights that have shorter delays compared with the seasonal and daily average.

Our mixture model has four mixture components. The individual components are overlaid in

Figure 10(b). We notice that two components form the center of the distribution, accounting for the

most “typical” delay. The third component captures medium delays while the fourth one accounts

for the extremely large delays.

As pointed out earlier, the true and fitted delay distributions are very similar (at least visually).

A more objective way of gauging their differences is via comparing their quantiles (see Table 3).

We notice that 8 out of the 9 quantile-pairs have differences less than 1 minute. Only the largest

quantile (i.e. the right tail of the distribution) has a slightly larger difference. We will investigate

the tail-behavior in more detail below.
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Figure 10: Fitting the Residuals: (a) Density distribution of the original residuals (b) The fitted

distribution with its four components

4.6 Model Validation

In this section, we validate our model by checking its predictive ability on the holdout sample

(30% of the data). Notice that the holdout sample stems from the same time period as the

training sample; that is, both samples are from the year 2000. This approach provides a measure of

performance when the model is viewed as a static model for characterizing delays in the same year.

Of course, many interesting applications focus on predictions for future time periods. In Section 5,

we describe the Monitor Alert application in detail. Since this application requires predictions of

future delays, we suggest an approach for using our model to predict future delays by iteratively

executing it in a rolling horizon mode. In that section, we also provide additional validation for its

predictive capabilities.

We check predictive performance on the holdout sample by investigating our model’s ability to

predict the probability of a delay. To that end, we investigate its predictive performance around

the center of the distribution and in its tail. Specifically, let Cp = [a, b], where [a, b] is the interval

centered around the mean of the distribution of X such that P (X ∈ Cp) = p, i.e. Cp denotes

“middle” p-percent of the distribution. As an example, C80% denotes the middle 80% of the

distribution (i.e. b is the 90th percentile and a is the 10th percentile); and similar for Tp = [a,+∞)

where a is defined so that P (X ∈ Tp) = p, i.e. a denotes the (1-p)th percentile. To check the

performance of our model, we first compute intervals Cp or Tp from our model for given values of p.

We then compare p with the corresponding empirically-computed probabilities p̂ calculated from
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Table 4: Model Robustness With Different Smoothing Penalties: Parameter Sensitivity Test

λS λD C80% C90% T3.00%

1.03 0.41 81.07% 90.11% 2.60%

1.03 0.47 81.15% 90.12% 2.60%

1.03 0.44 81.11% 90.13% 2.60%

1.00 0.44 81.12% 90.08% 2.60%

1.06 0.44 81.04% 90.04% 2.59%

the observed data.

Table 4 illustrates the predictive capability of our model using C80%, C90% and T3.00%. For

instance, the value 81.07% in the first row implies that the interval associated with the middle 80%

of our predicted distribution contains 81.07% of the true data. Similarly, the value 2.60% implies

that the predicted upper 3.00% tail holds 2.60% of the true data. Thus, our model predicts well in

the center of the distribution and in the tail.

Table 4 shows the performance for different values of the smoothing parameters λS and λD.

The third row shows the results for the values we use in this study; the remaining rows illustrate

the robustness of our results to varying values of λS and λD. We can see that our model manages

to predict the middle of the distribution and its tail with only little error. Also, the predictive

capabilities do not vary by much for slight changes in the smoothing parameters.

5 Application

We now describe how our model can be applied to improve congestion prediction within the National

Airspace System (NAS). Our long-term research objective is a fairly complete overhaul of the

current mechanism for predicting airspace congestion. Here, we show that our model in its current

form can be used to improve the current process. In Section 5.1, we describe a basic approach

to generating new congestion predictions. When used in this setting, our model would need to

predict future delays. In Section 5.2, we show how this can be accomplished using a rolling horizon

execution mode.

5.1 Improving Monitor Alert Predictions

In order to manage air traffic flows within the U.S., the Federal Aviation Administration (FAA) has

contracted with the Volpe National Transportation Systems Center to operate the enhanced traffic

management system (ETMS). Airspace sectors are three-dimensional volumes of airspace managed
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by a single team of controllers. Safety concerns dictate that controller workload should be kept

within certain bounds and limits are placed on the number of aircrafts that can simultaneously

occupy a sector. The Monitor Alert function within ETMS provides predictions when such overloads

will occur (VNTSC, 2003). The goal of our work is to replace the current deterministic model for

providing such predictions with a stochastic one.

We now provide a slightly simplified version of how Monitor Alert operates and then describe

our approach to enhance it. We start by defining a set of variables defining future states, which we

initially assume are deterministic. Later we will relax this assumption, by treating them as random

variables.

F = set of flights under consideration

Ii(w, t) = 1 if flight i occupies sector w at time t

0 otherwise

N(w, t) = the number of flights occupying sector w at time t

ETMS continuously updates estimates of N(w, t). The monitor alert function then compares

these with sector capacities so as to determine if an alert is necessary. SinceN(w, t) =
∑

i∈F Ii(w, t),

the process of computing N(w, t) can be reduced to computing Ii(w, t) for each flight i. ETMS

maintains a prediction of the flight plan for each flight. Given an estimate of flight i’s departure

time, tidep, the flight plan provides a deterministic prediction of the times at which the flight will

pass through a series of airspace locations along its planned route. Specifically, it predicts the time

at which the flight will pass over sector boundaries, and thus determines Ii(w, t). Let τ denote the

present time and tisch the scheduled departure time of flight i, then ETMS and monitor alert operate

as follows: if τ ≤ tisch, tidep is set equal to tisch and if the flight has not departed but τ > tisch, tidep is

set equal to τ . Once the flight has departed, its airspace position and flight plan are dynamically

updated based on current information.

There are many stochastic elements to this problem—our goal here is to address one of them,

namely the possible variation in the flight’s departure time. Specifically, for the case where τ ≤

tisch, we treat tidep as a random variable, which implies that Ii(w, t) and N(w, t) are also random

variables. Then, in the above procedure we can use E[N(w, t)] =
∑

i∈F E[Ii(w, t)]. We note that

generally flights have three states: on ground when τ ≤ tisch, on ground when τ > tisch, and

airborne. Our modifications only apply to flights in the first category. For these flights, since

E[Ii(w, t)] = Pr[Ii(w, t) = 1], we need to consider the problem of computing the probability that

a flight is in a sector at a given time. Now, let ti,win be the time required for flight i to reach the

sector boundary of w under the current flight plan estimate and ti,wpass be the time required for fight
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i to pass through sector w under the current flight plan (see Figure 11). Then,

Pr[Ii(w, t) = 1] = Pr(t− ti,win − ti,wpass ≤ tidep ≤ t− ti,win )

In previous sections, we provide methods for estimating the departure delay, which measures the

discrepancy between the actual departure time and the scheduled departure time. The departure

time tidep is just the summation of the departure delay and the scheduled departure time.

For example, suppose a flight i is scheduled to depart at 9:50 am (tisch=9:50) on Jan 10th. Let

ti,win =9 min and ti,wpass=15 min. Given the observation time t at 10:10 am, t− ti,win − ti,wpass=9:46 and

t − ti,win =10:01. That is, in a deterministic model, since the scheduled departure time falls within

this time interval, the flight will be predicted, with probability one, to be in sector w at 10:10 am.

However, because of the possibility of delays, this may or may not be the true. Our model provides

a way to calculate the actual probability of this event,

Pr(9 : 46 <= tidep <= 10 : 01)

= Pr(9 : 46 <= tisch + yi(Jan10th, 9 : 50am) <= 10 : 01)

= Pr(9 : 46 <= tisch + f(Jan10th) + ϕ(9 : 50am) + ǫi <= 10 : 01) (21)

where the seasonal delay f(Jan10th) equals 10.7 minutes and the daily propagation delay ϕ(9 :

50am) equals 4.56 minutes, as predicted by our model.

It is easily demonstrated that equation (21) can be written as

Pr(−19.27min <= ǫi <= −4.27min)

= Pr(ǫi <= −4.27min) − Pr(ǫi <= −19.27min)

= 0.628 − 0.205 = 0.42

Therefore the probability that flight i is in sector w at observation time t=10:10 am is 0.42.
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By applying the same rationale to other flights, we can compute the expected number of flights in

sector w at a specific time t.

5.2 Dynamic Model Updates and Future Predictive Performance

There are a number of factors that can cause substantial yearly shifts in air traffic delays. Air traffic

levels (demand) can vary from year to year. For example, there was a substantial decrease in traffic

from 2001 to 2002 and a corresponding decrease in delays. Also, the extent of adverse weather

conditions can vary substantially from year to year to a degree that a noticeable impact on delay

statistics is seen. Another factor is the relatively steady introduction of performance-improving

technologies (e.g. new avionics) and infrastructure (e.g. new runways). We consider the problem

of generating a model that adapts to such changes over time an interesting research topic and view

the work in this paper as a fundamental basis on which to build such models. On the other hand, it

is also the case that our model can be adapted in fairly simple ways to get quite reasonable results

for this problem.

We propose an approach that can be viewed as a forward rolling horizon method. Consider

our model as a method for generating delay distributions over a s-day time horizon (of course, as

described in this paper, we use s = 365 and initiate the model on the January 1). Now consider

the possibility of applying the model to predict delays on day s + 1. A seasonal trend value for

day s+ 1 can be obtained by functionally extending the seasonal trend for one additional day, i.e.

f(s + 1). A daily propagation value can be obtained via the daily propagation component ϕ(t)

estimated from the prior s days of data. This approach has appeal for several reasons since the

daily propagation effect is based on the past s days of history as is the degree to which daily and

seasonal effects are separated.

With this point of view it is quite natural to apply the model in a rolling horizon mode, where,

in order to produce an estimate for a particular day, we create a model based on the previous s

days. Over time we simply add the most recent day and delete the earliest day and update the

model appropriately. For our particular application, we start by using all data from one year (say,

year #1) to predict delays on the first day of the next year (say, January 1 of year #2). Once the

true delay for January 1 of year #2 becomes available, we drop January 1 of year #1 (i.e. we drop

the oldest observation in the data) and replace it for January 1 of year #2 (i.e. we replace it with

the most recent observation). Based on this updated data set, we update the seasonal trend and

daily propagation pattern and predict the next day, Jan 2 of year #2. We continue to iterate (or

“roll”) in this manner so that the predictions for any arbitrary day is always based on the data

from the prior 365 days.
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Table 5: Forecasting performance on year 2001 data.

C80% C90% T3.00%

82.93% 92.91% 2.65%

Notice that in the above rolling horizon method we update seasonal and daily trends with

every incoming new observation. We could also update the error component in the same way;

however, updating the error component is computationally much more expensive as pointed out

earlier. Moreover, it may not even be necessary to update the error every day. It is unlikely that

the error distribution changes by much over the period of a week or a month. Thus, rather than

updating it with every new observation, we update it in blocks. In that form, the resulting GA-

EM algorithm resembles the block-update EM algorithm proposed by Ng and McLachlan (2003).

In the following we use the same error component for a period of three months. The resulting

predictive performance of our model is strong, suggesting that the error component may not have

to be updated too frequently in practice.

We apply the above approach to predict delays for each day of the first quarter (i.e. first

three months) of the year 2001. Notice that this data is “new” in the sense that it has not been

used in the building of our basic model which was based on year 2000 only. In that sense, it

provides an estimate of the model’s forecasting performance in rolling horizon mode. To assess

its effectiveness, we use the same validation approach as in Section 4.6. That is, we compute the

empirical probabilities of the intervals C80%, C90% and T3.00%. The results, depicted in Table 5,

show good forecasting performance, only slightly different from those in Table 4.

6 Conclusions and Future Research

Our approach to estimating flight departure delays has several distinctive (and new) features.

First, we decompose observed delays into three components: seasonal trend, daily propagation

pattern and random residuals, which provides a new perspective for understanding pushback delays.

The additive model based on these three components is parsimonious, easy to implement and

update, and robust; most importantly, it demonstrates good fit and strong predictive performance.

Second, rather than providing only point estimates, we estimate the entire delay distribution. This

distribution can be used to predict expected airspace congestion levels and lead to more accurate

decisions. We also propose a new version of the EM algorithm that, by borrowing ideas from the

Genetic Algorithms, can overcome local solutions associated with finite mixture models. Finally,

we demonstrate a way to make our model dynamically adaptive, via a rolling horizon approach.
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This approach shows promising forecasting abilities for delay of future time periods.

In this paper, we focus on United Airlines and Denver International Airport only. Our ultimate

goal, of course, is to generate departure delay distributions for the entire NAS. Our model can be

applied readily to other airline/airport combination. An interesting (and open) research problem

is to combine individual airline/airport models into one general, NAS-wide model. As one step

into that direction, one could try to extract, from individual airline/airport models, the effects

that contribute to NAS-wide delay. Such an approach would provide more insight into the general

structure of delays and also would be easier to maintain and update on a NAS-wide basis.

Another general area for further research is the development of dynamic models. Our rolling

horizon approach represents a step into that direction. It could be augmented with other elements

that allow real-time reaction to dynamically changing conditions such as weather, disruptive events,

etc. Once a NAS-wide dynamic model is in place, it could be compared against Monitor Alert using

real test scenarios over an extended period of time.
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