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Do Airlines that Dominate Traffic at Hub Airports Experience Less Delay?

BY KATHERINE THOMAS HARBACK AND JOSEPH I DANIEL*

The desirability of airport congestion pricing largely depends on whether

dominant airlines otherwise fail to internalize their self-imposed

congestion delays. Brueckner (2002) and Mayer and Sinai (2003) find

(weak) statistically significant evidence of internalization. We replicate

and extend these models by refining their measures of delay and

controlling for fixed and random airport effects. For twenty-seven large

US airports, we estimate every flight’s congestion delay attributable to its

operating time. These time-dependent queuing delays result from traffic

rates temporarily exceeding airport capacity, and are precisely the delays

susceptible to peak-load congestion pricing. As modified, the models

reject the internalization hypothesis. (JEL H2, L5, L9, D6)

Forty years of conventional economic wisdom holds that replacing weight-based

pricing of aircraft operations at major airports with congestion-based pricing would

reduce delays and improve airport efficiency by internalizing the costs of delays that

aircraft impose externally on one another. Now, just as the Federal Aviation

Administration (FAA) finally seems ready to take this wisdom seriously, several recent

articles question whether airlines with dominant shares of airport traffic already

internalize their self-imposed congestion delays, making conventional congestion pricing
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proposals inappropriate for airports. The stakes involved in how we resolve this policy

issue are large. According to the Federal Aviation Administration (FAA), twenty percent

of flights were delayed by more than fifteen minutes in 2004. Air transport delays cost

the United States economy $9.4 billion in the year 2000 and will cost $154 billion over

the next ten years (Boeing, 2002). Building additional airports or substantially expanding

existing airports can cost $10 billion each, and require at least a decade for planning and

construction. Understanding internalization is essential to choosing the appropriate

policy response to airport congestion. If dominant airlines internalize, then the congestion

costs they impose on their own flights need not be included in congestion prices because

they are already accounted for in airline scheduling decisions. If they do not internalize,

however, then congestion fees should reflect costs that each flight imposes on all other

flights—even flights by the same carrier.

Daniel (1995), Daniel and Harback (2005), and Morrison (2005) argue that the

internalization effect is negligible, while Mayer and Sinai (2002) and Brueckner (2003)

find significant (but weak) statistical relationships between airport concentration levels

and the amount of delay dominant airlines experience. The latter authors infer from their

results that dominant airlines do internalize self-imposed delays. Brueckner argues that

congestion fees of dominant airlines should be reduced by their share of airport traffic.

This paper replicates the models of Mayer and Sinai (2002) and Brueckner (2003) using a

refined measure of delay and controlling for fixed and random airport and airline effects.

Brueckner measures delay using the FAA’s annual on-time arrival statistics that are

aggregated by airport. The FAA measures delay as the percentage of flights that are over

fifteen minutes later than their scheduled arrival times. While this statistic may be
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relevant to passengers who want to compare the likelihood of on-time arrivals across

several airlines, it does not measure the extra flight time required due to congestion delay

because it ignores any padding of flight times that airlines build into their schedules.

Mayer and Sinai measure each flight’s delay as the travel time in excess of the minimum

observed travel time by any flight between the same city-pair during a given month. This

measurement overstates airport congestion delay by including some of the normal flight

time and other delays that are unrelated to regularly scheduled traffic exceeding airport

capacity. We estimate the delay from queuing to land or takeoff by regressing each

flight’s travel time on dichotomous variables for each minute of the day at each airport

while controlling for flight distance and speed. This measure includes the delays common

to flights operating at an airport at a particular time, while it excludes delays of flights

that are uncorrelated with those of other aircraft (with different origins or destinations)

operating at the same airport at the same time. Coefficients on the dichotomous time

variables represent the time spent waiting for a turn to use the runway. It is this regular

diurnal pattern of queuing delay attributable to a particular airport that is susceptible to

peak-load congestion pricing.

Accounting for temporal aspects of delay also enables us to take advantage of

variation in the dominant airline’s share of traffic at a particular airport over time. Traffic

at large congested airports generally exhibits periodic peaks that are largely caused by

dominant airlines coordinating arrivals and departures of their aircraft to facilitate rapid

exchange of passengers at their hub airport. Airlines refer to such groups of aircraft as

flight banks. Non-dominant aircraft also operate during peak periods associated with the

dominant airline’s flight banks because the banks are scheduled at travel times that are
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particularly convenient for passengers. The share of dominant flights varies from bank to

bank, however, because the number of hub-airline operations is more constant than the

number of non-dominant aircraft. The number and frequency of operations during a bank

affect the delays of other aircraft operating during the same bank, but usually have

negligible effects on delays experienced by aircraft operating during other banks because

banks are separated by periods of relatively low traffic when the queues disappear. If

dominant airlines internalize more delay when they have larger shares of traffic, then this

should be true from bank to bank as well as from airport to airport. On the other hand,

airlines have different strategies with respect to congestion. Some tightly schedule rapid

passenger interchanges at hub airports to minimize layovers, while others schedule more

relaxed interchanges to connect more city-pairs over longer periods. These strategies

differ across airports with varying capacities and degrees of direct versus hub-and-spoke

service. Panel data techniques can isolate the effects of market share on delay while

controlling for airline and airport effects.

The purpose of this research is to investigate the empirical evidence of

internalization to inform the choice of appropriate airport pricing policies. Section 1

places the internalization issue in the context of the recent literature. Section 2 details the

data and econometric estimation of take off and landing queues. Section 3 fits dynamic-

stochastic congestion functions to twenty-seven major hub airports and uses these

functions to calculate the queuing times that aircraft experience directly, that they impose

on other aircraft operated by their own airline, and that they impose on other aircraft

operated other airlines. Section 4 presents the results of using our measure of delay with

Brueckner’s (2002) and  Mayer and Sinai’s (2003) econometric models. It also presents



5

our own econometric models using panel data techniques. Section 5 presents a final

summary of our results and conclusions.

Section 1—Literature Survey

While there is an extensive literature on congestion pricing, only five papers focus

on whether dominant airlines internalize their self-imposed congestion at hub airports:

Daniel (1995), Brueckner (2002), Mayer and Sinai (2003), Morrison (2005), and Daniel

and Harback (2005). Of these, Brueckner (2002) and Mayer and Sinai (2003) find

statistically significant relationships between airport dominance and decreased delay,

while the remaining papers argue that whatever relationship exists is negligible. Morrison

(2005) tests for the same relationship as Brueckner and Mayer and Sinai, while defining

flight delay as excess flight time over the average—instead of minimal—observed flight

times by city pair. This approach underestimates delay time by counting average delays

as part of normal flight times. Morrison finds very little evidence that airport dominance

reduces delays experienced by dominant airlines. Daniel (1995) and Daniel and Harback

(2005) take a different approach based on specification tests of alternative optimizing

models that determine the internal and external delays generated by each aircraft—rather

than using a general regression model to test for relationships between airport dominance

and delays experienced by each aircraft. These specification tests generally reject

internalization in favor of non-internalization, under the assumption that the modeling

framework is correct. We focus onBrueckner’s and Mayer and Sinai’s studies that

support the internalization hypothesis to show that their results are not robust to
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alternative definitions of delay and/or panel data techniques that control for fixed or

random effects of airlines or airports.

Brueckner (2002) developed an analytical model that characterizes airlines’

incentives to internalize when they have significant market share. InBrueckner’s model,

travelers have uniformly distributed travel values. Profit maximizing airlines set prices to

separate travelers between higher-valued periods with peak congestion and lower-valued

periods with off-peak congestion. Airline congestion costs increase with the number of

peak-period travelers. Brueckner considers cases of perfect price-discriminating

monopoly, non-discriminating monopoly, Cournot duopoly, and perfect competition. The

model predicts that more concentratedairports experience less congestion delay—

controlling for the amount ofhubbing activity—because dominant carriers internalize

more congestion costs.

Brueckner tests this prediction using the FAA’s data on aggregate annual delays

at the twenty-five most congested US airports in 1999. His dependent variable is the

FAA’s standard measure of airport congestion—the number of flights that operate more

than 15 minutes behind schedule. This measure strictly understates delay because it

ignores the additional flight time airlines add to their schedules to allow for anticipated

delays. Brueckner regresses delay counts by airport on a dichotomous slot-control

variable, 1 a dichotomous major-hub variable, the amount of precipitation, the number of

annual operations, and a measure of market concentration. He tries three different

specifications of market concentration: the Herfindahl index, the market share of the

largest airline, and a dichotomous variable that is equal to one when the dominant

airline’s share is greater than 65%. To support the internalization hypothesis, the
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estimated coefficients on the particular concentration measure must be significant and

negative indicating that the more concentrated an airport is the greater share of

congestion is internalized and thus the less delay the airline experiences, controlling for

other factors.

The results ofBrueckner’s regressions consistently produce the predicted negative

relationship between delay and concentration under all three measures of concentration.

The significance of his coefficient estimates, however, is not consistent, and ranges from

insignificant in most of the regressions, to significant in regressions omitting the intercept

term. Brueckner attributes the lack of overwhelming statistical significance to the fact

that his data set has only twenty-five observations on annual delays aggregated by airport.

Brueckner’s result that the incidence of delayed flights is lower at more concentrated

airports could be due to less exposure to volatility of non-dominant operations (which is

not the same as internalization). The primary thrust ofBrueckner’s article is his

theoretical model and he makes rather modest claims for the basic econometric results on

the internalization hypothesis, calling them “encouraging” rather than definitive evidence

for the model.

Mayer and Sinai propose a model of hub-and-spoke airlines that face strong

incentives to cluster flights at airports that serve as hubs for their route networks. Airlines

achieve network economies by scheduling flights close together to facilitate connections

between many origins and destinations. An additional spoke city in a network with N

spokes creates 2N possible new itineraries, implying increasing returns to network

connections. Non-dominant airlines that are not part of a network at the hub at the airport

do not face the same incentives to cluster flights as the hub airline. Congestion is more of
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a problem at hub airports and increases with the number of spoke cities connected

through a hub. Delay is primarily caused and experienced by the dominant hub airlines(s)

at an airport. Mayer and Sinai argue that controlling for the level of hubbing activity,

however, more concentrated airports will have less delay because the dominant airline

will internalize its self-imposed delays.

Mayer and Sinai (2003) uses a significantly larger and more detailed data set to

address the question of internalization, the U.S. Department of Transportation (DOT)

Airline Service Quality Performance (ASQP) data and its somewhat more limited

precursor cover 250 airports from 1988 through 2000. ASQP covers operations of airlines

that account for at least 1% of domestic enplaned passengers. They avoid the FAA’s

biased measure of congestion delay based on on-time arrival statistics by using the excess

flight time over the monthly minimum flight time between each directional city pair.

There are still serious problems with this measure of delay because it implicitly assumes

that random shocks only make flights longer. A flight with a favorable tail wind,

however, can take substantially less time than a flight with no tail wind under otherwise

identical conditions. Excess flight time over such a minimum overstates congestion

delay. Using average travel time would not fix the problem—in that case delay is

understated because flights that experience delay are included in the calculation of the

average and thus pull the average travel time up.

Mayer and Sinai regress their measurement of delay on Herfindahl-Hirschman

Indices (HHI) of airport concentration; the degree of hubbing by the dominant airline as

measured by the number of spoke cities served at the origin, hub, and destination;

interaction terms to differentiate flights of the dominant carrier at its hub airports; control
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variables for population, employment, and per capita income; dichotomous variables for

the year and month of travel; and airport-level fixed effects. Their coefficient estimates

are of the predicted signs and are significant. The sign on the concentration variable is

negative, as wasBrueckner’s, indicating some degree of internalization when controlling

for network effects. UnlikeBrueckner’s results, the Mayer and Sinai internalization result

is usually statistically significant. However, the magnitude of the hubbing coefficients

dwarf the effects of concentration on the predicted levels of congestion. Mayer and Sinai

conclude that network effects associated with hub-and-spoke operations explain much of

congestion delay, while there is a slight internalization effect associated with increased

concentration.

Mayer and Sinai omit the effects of code sharing agreements under which some

non-dominant airlines coordinate flights with dominant airlines and use its name. Code

sharing agreements are numerous. Most regional code sharing airlines are small

compared to their dominant partners and international code sharing airlines have a small

domestic presence.2 This means that a majority of code sharing airlines do not appear in

the ASQP data which only include observations of airlines that fly at least 1% of the

domestic passengers. Regional code share airlines fly smaller aircraft and play an

important role in linking smaller communities to hubs. Ignoring them understates the size

of the network and leads to misspecification of the dichotomous hubbing variables. This

problem is exacerbated by large differences in the amount of code sharing across airlines

and airports. Table 1 details the major carriers and their code share carriers, showing the

disparate levels of code sharing by airlines. The middle columns of Table 2, labeled

Share 1 and Share 2, illustrate the significant effect that including code sharing airlines
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has on dominant airlines’ shares of airport traffic. The parties to the code sharing

agreements should have the same incentives to internalize delays imposed on each other

as dominant airlines have for their own aircraft because the agreements can divide

revenues so that joint profit maximization dominates individual profit maximization.

As the literature stands, Daniel and Daniel and Harback test alternative models to

determine whether dominant airlines treat delays their aircraft experience directly the

same as delays their aircraft impose on their other flights. They reject the internalization

hypothesis within a particular (bottleneck) modeling framework. Brueckner weakly

confirms the internalization hypotheses using a small aggregated data set with a

problematic measure of delay. Mayer and Sinai confirm a statistically significant

internalization effect using a large disaggregated data set, but find the internalization

effects are small. Their model does not account for code sharing relationships and their

measurement of congestion delay includes any increase in flight times relative to the

minimum, regardless of whether the increase is related to airport-specific delay.

Morrison uses an approach similar Mayer and Sinai, but with an alternative measure of

delay. He finds negligible evidence of internalization. The instant paper seeks to address

problems in the literature associated with the measurement of delay and the treatment of

code sharing airlines. It provides a general econometric specification using disaggregate

data that distinguish between delays experienced by aircraft and delays imposed on other

aircraft, while controlling for airline and airport effects.
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Section 2- Data and Delay Measurement

This section develops an empirical model for determining the diurnal pattern of

delay that is due to excessive airport traffic relative to capacity. Although many factors

effect flight time, it is the systematic, recurring delay at airport landing and take off

queues that is relevant to congestion pricing. Our approach improves on existing

methodologies that use aggregated annual delay counts, or the excess of observed flight

times over minimum or average flight times, to account for congestion delay. The

estimates generated in this section are further refined in the next section by applying a

dynamic-stochastic congestion function to separately identify the delays experienced by

an aircraft, the delays it imposes on other aircraft of the same airline, and the fully

external delays it imposes on other airlines.

Data from the Enhanced Traffic Management System (ETMS) for air traffic

control and flow management include every flight using navigational instruments that

files a flight plan, regardless of airline size—even including non-airline flights such as

freight, general aviation, and military. ETMS data report airborne flight duration, take off

and landing times, origin and destination, and type of aircraft. For departure queues, we

supplement the ETMS data with additional data from the Airline Service Quality

Performance (ASQP) data covering the same time period as the ETMS. The data sample

consists of flights at the twenty-seven busiest airports in the United States from July 28

through August 3, 2003. We treat arrivals and departures separately to determine both the

take off and landing queues. Table 2 contains a list of the airports, summary statistics,

and three letter airport abbreviations of the airports used in this study.
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Queue Estimation

Aircraft with different origins or destinations that operate at a particular time and

airport share a common element of delay associated with waiting in the landing or takeoff

queues. These queues are regular and predictable because they result from airlines

scheduling too much traffic relative to airport capacity at certain peak intervals during the

day. The queues depend on flight schedules that are highly stable from day to day. Queue

estimates can be developed by regressing duration of travel on dichotomous variables

representing the time of day that the aircraft lands or takes off, while controlling for flight

distance and speed. To do this, we consider one airport at a time with arrivals and

departures treated independently. Flights arriving at an airport experience airborne flight

times that depend on several variables: the airport of origin, the distance of that airport

from the destination airport, the type of plane used for the flight, time spent in the landing

queue, and stochastic shocks from things like weather. Translating this statement into an

equation yields:

Airborne time = uncongested time for destination (1)

+ adjustment for specific plane type

+ queuing time + random shock

A dichotomous variable equal to one when a particular airport is the origin and zero

otherwise captures the portion of flight time that varies systematically by origin for a

given destination airport. Likewise, dichotomous variables control for different aircraft

types according to engine type, number of engines, and weight class. We interact these

aircraft-type variables with the number of miles between the origin and destination

airports to account for differences in speed and flight procedures for different kind of
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airplanes. If queuing time depends on scheduled traffic rates exceeding capacity and

flight schedules are stable from day to day, then inclusion of dichotomous variables for

each minute of the day captures the part of flight time that varies systematically with the

time of arrival at the destination airport. We interpret the portion of airborne time that

varies systematically by time of day and thus by schedule as an estimate of the queuing

time. Rewriting the equation above as a regression equation produces:

airborne = ß1(city) + ß2(plane*distance) + ß3(minute) + e (2)

There is no need to account for the destination city because the equation is estimated for

fixed destinations (e.g. all of the airborne times will be for flights arriving at the same

airport and each of those airports will have its own regression). Each ß represents the

vector of coefficient estimates. Each flight has a single city of origin, plane type, and

minute of the day dummy (some aircraft operating during the entirely uncongested late

night and early morning hours have no minute of the day dummy in order to allow the

model to be full rank).3 Using multiple days of data to estimate the queues in this way

allows for minute-by-minute level of resolution.

This regression was carried out for each of the 27 airports individually, with the

city, plane, and minute arrays being of dimensions unique to each airport. The results are

better suited to graphical than tabular representation, as some airports have upwards of

800 minutes represented by dummy variables. Figures 1 and 2 illustrate the diurnal

queuing patterns for six representative airports—ATL (Hartsfield Atlanta), DFW

(Dallas/Fort Worth), EWR (Newark), LAX (Los Angeles), MSP (Minneapolis-St. Paul),

and ORD (Chicago O’Hare)—that characterize the range of delay patterns exhibited by

the twenty-seven major hub airports. The units on the horizontal axis are minutes of the
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operating day. Units on the vertical axis in each graph are minutes of queuing delay for

the delay estimates.

A common pattern emerges from hub and spoke operations by strongly dominant

hub airlines at congested airports. The graphs for ATL and MSP in Figures 1 and 2 typify

such airports that exhibit well-defined peaks at regularly occurring intervals throughout

the day separated by periods of very low levels of traffic. Airports with similar banking

patterns include CLT (Charlotte), CVG (Cincinnati), DEN (Denver), DTW (Detroit

Wayne County), IAH (Houston), PHL (Philadelphia), PHX (Phoenix), PIT (Pittsburgh),

SLC (Salt Lake City), and STL (St. Louis). A few additional airports have similarly

strong banking patterns, but fewer peaks in their operating day—these include MEM

(Memphis), MIA (Miami), and IAD (Washington Dulles). Two particularly busy

airports—ORD (Chicago) and DFW (Dallas-Ft. Worth) exhibit the same clear banks but

have two strongly dominant carriers (American and United or American and Delta,

respectively) whose banks typically do not overlap. While DFW exhibits banking, the

magnitude of its arrival queues is quite small due to its ample capacity.

LAX (Los Angeles) and LGA (New York LaGuardia) have several dominant

carriers, but unlike DFW and ORD, are not highly concentrated and exhibit a low degree

of banking. Both LAX and LGA serve very large local populations and do not have

sufficiently central locations as required to serve large volumes of connecting domestic

passengers like ORD and DFW. There are additional airports that serve high levels of

origin and destination traffic and have a low number of connecting flights. EWR, along

with JFK (New York Kennedy) and SFO (San Francisco), exhibit even less banking

behaviors, though they do have a clear diurnal delay pattern. These airports all have low
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queuing estimates for the early part of the day and high queuing estimates later in the

day.

Several airports do not exhibit banking and have low levels of queuing, including

BWI (Baltimore-Washington), BOS (Boston Logan), DCA (Washington National), and

SEA (Seattle). BWI is unique in the set of airports in that it is the only Southwest hub

represented that does not also have a high level of traffic from another carrier. Southwest

is known for operating with a modified approach to hub and spoke networking that

results in less peaked banks.SEA’s is similar to BWI in that its dominant carrier, Alaska,

also has less peaked banks. DCA was regulated by slot control under the High Density

Rule, as was LGA and JFK.

The noisiness of the queue estimates evident in Figures 1 and 2 is largely due to

the fact that the data is drawn from seven separate realizations of the diurnal queuing

patterns. The queue estimates may also fold in some weather or other nonqueuing delays

that either varied systematically by time of day or occurred during a period of time where

observations from a particular day were significantly denser than observations from the

unaffected days. With sufficient data, it would presumably be possible to estimate the

entire distribution of queue lengths for each minute of the day, but instead we use a time-

series filter to approximate the movement of the expected queue levels over time, as

explained further below. The solid dark lines in Figures 1 and 2 represent the filtered

value of the queue estimates.

Creating departure queues requires a slightly different framework. Flights

experience time in the departure queue as taxiing after push back from the gate prior to

taking off. There are not explicit components to this taxi time in the way that there are for
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airborne times used for estimating arrival queues. The departure queue taxi time

regressions take the form:

taxi time = ß1 + ß2(minute) + e (3)

The ß1 constant represents the average taxi time it takes planes to get into position for

take off excluding delay that varies systematically by time of day and stochastic shocks.

The minute variables are defined in the same manner used for the arrival regressions.

Some aggregating of minutes is necessary for minutes with few observed flights, as with

the arrivals. While it takes different times to taxi from different gates at the airport, there

were no data available for controlling for this in the way that city of origin is controlled

for in the arrival regressions. This makes the R-squared values for the departure

regressions significantly lower than for the arrivals.

The ETMS data only monitor air traffic flow management and do not capture taxi

times, but the ASQP data do capture taxi times as an element of on-time performance.

The ETMS data accounts for all the traffic, while the ASQP samples only flights by the

larger carriers. Using ASQP data for the estimation of the departure queues is possible,

however, because major airline flights are spread throughout the day and sample queue

lengths during the relevant busy periods.

Figure 2 summarizes the coefficients on dichotomous variables for minute of

departure, which, like those for arrivals, are estimates of queues at the same six airports

detailed above. The output of departure queue estimates is qualitatively similar to the

arrival queue estimation. Airports like ATL, DFW, MSP, and ORD that exhibit hub and

spoke banking do so with respect to both departure and arrival queues. As with arrival

queues, DFW and ORD have more departure peaks than ATL and MSP because of
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having multiple hub airlines.EWR’s (non-hubbing) pattern of low morning delay and

high afternoon delay also holds for the departures, as doesLAX’s pattern of many small

peaks throughout the day. Departure queues generally peak more sharply than the arrival

queues because time spent on the ground waiting to take off is less costly than time in the

air circling the airport waiting to land, so airlines are willing to tradeoff more departure

queue time to save a given amount of schedule delay time.

Section 3—The dynamic-stochastic congestion function

Brueckner and Mayer and Sinai look for econometric relationships between

airport concentration and delay, without specifying any functional relationship between

traffic levels and congestion. Similarly, our queue estimates derive directly from the data

and are neutral with respect to any modeling assumptions associated with an explicit

economic or queuing model. It is common practice in the congestion pricing literature,

however, to fit a congestion function to traffic and delay data to facilitate calculation of

the marginal congestion created by an additional unit of traffic. In addition to replicating

Brueckner and Mayer and Sinai, we specify a congestion function so that we can

calculate the marginal delays and distinguish between those experienced by each flight

and those imposed by flights on other flights operated by the same or other airlines.

Following Daniel and Pahwa (2000), we base the congestion function on an M(t)/D/k/s

queuing theoretic model that accounts for the dependence of the queuing system on

current traffic rates and previous states of the queuing system as described by the

probability distribution on queue lengths.
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The function takes as inputs the observed traffic rates, (t), for each service

interval, t; the fixed service rate, d; and number of runways, s; and it outputs the state

vector, p(t), that is the probability distribution on queue lengths in each service interval, t.

For computational purposes, the queues have a finite maximum length k that is

sufficiently large that the probability of approaching it is negligible. The queues evolve

according to a transition matrix, T((t);d,s), that determines the next period’s state based

on the current state, the probability distribution on number of arrivals given (t), the

number of available servers s, and the length of service d:4

p(t+1)= T((t);d,s) p(t). (4)

In the initial period, the state vector has probability one of no queue, and probability zero

of any positive queue lengths.

Figures 1 and 2 compare the queue estimates based on the regressions with the

expected queue lengths from this congestion function to show that the diurnal patterns of

estimated airport delays are highly consistent with those calculated from the dynamic-

stochastic congestion function. To facilitate comparison, the queue estimates are filtered

through a Hodrick-Prescott filter to eliminate noise in the estimates and approximate the

expected queue levels over time. The dark solid lines in Figures 1 and 2 show the filtered

delay estimates that are directly comparable to the lighter zig-zag lines representing the

expected delays calculated from the congestion function.5 The congestion function is

clearly successful in reproducing the pattern and magnitude of the queue estimates at the

various airports. This strongly supports the contention that the estimated delays are those

caused by traffic rates exceeding the available capacity at a particular airport—in other
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words, the estimated delays are the relevant measure of delay for the purpose of

congestion pricing.

Given the dynamic congestion function specified above, we can calculate the rate

of change in the system state for each subsequent period with respect to the arrival rate

(t). Let D(t) be the matrix of derivatives of the elements of transition matrix T(t) with

respect to (t). The effect of (t) on the queuing system in n periods hence is:

d q(t+n)/d(t)=T(t+n)… T(t+2) T(t+1) D(t) q(t). (5)

The ith element of the state vector, qi(t+n), denotes the change in probability that the

queue is of length i in period (t+n) as a result of an arrival at time t. To account for

uncertainty over the actual arrival times, we weight the marginal queuing times by the

probability that an aircraft scheduled to arrive at t+n actually arrives at (t+n+s):

s {p(t+n+s) i i d qi(t+n)/d(t)}. (6)

Summing the expressions in (6) for each aircraft over all other aircraft operated by the

dominant airline gives the changes in indirect queuing times an aircraft arriving at time t

imposes on other aircraft operated by its airline.

Section 4—Testing for internalization

We now use the delays calculated from the congestion function to conduct

Brueckner-like tests with airport level observations, to conduct Mayer and Sinai-like tests

with flight level observations while controlling for hubbing behavior, and to conduct an

original panel data treatment with flight-level and bank-level observations.
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Brueckner-Like Test

Brueckner (2002) develops a theoretical model in which airlines internalize the

share of delay that their flights impose on one another, leading to the prediction that more

concentrated airports experience lower levels of delay than less concentrated airports,

holding everything else constant. Brueckner tests this hypothesis based on airport-level

delay from FAA’s count of flights that operate more than fifteen minutes late at the

twenty-five busiest US airports during 1999. The use of annual airport-level data means

he has twenty-five observations. His regression equation can be summarized:

delay count= ß1 + ß2(annual airport operations count) (7)

+ ß3(concentration) + ß4(hub airport dummy)

+ ß5(slot constraint dummy)

+ß6( annual precipitation in inches) + e

Brueckner performs six versions of the regression including three standard regressions of

Equation (7) with varying measures of concentration, one log specification, and two

specifications without intercepts (one for each of two of the concentration measures).

According toBrueckner’s hypothesis, coefficients on counts of annual airport operations

and dichotomous variables indicating hub airports and slot constraints should all be

positive, while the concentration coefficient should be negative. His estimated

operations-count coefficient is consistently positive and significant in all six versions of

his regressions, confirming that airports with more traffic experience more delay. The

hub-airport variable controls for airports that are hub-and-spoke network hubs. Its

coefficient is always positive and significant in two of his regressions. The coefficient for

slot constraints is positive and significant in all but one of his regressions. The
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precipitation variable attempts to control for effects of weather on delay, but precipitation

at the airport is insufficient to capture important effects of weather on aircraft including

wind, visibility, and convective action. Unsurprisingly, his coefficient on the precipitation

variable is never significant.

Brueckner tries three measures of concentration in his alternative versions of the

regressions. The Hirschman-Herfindahl Index achieves the highest significance (although

still very weak) of the alternatives when he omits the intercept from the regression. The

dominant airline’s share of airport traffic and a dichotomous variable for airports with a

dominant airline operating more than sixty-five percent of the traffic are either totally

insignificant or marginally significant depending on the versions of the regression.

Brueckner acknowledges that the internalization problem really deserves a larger,

more detailed data set. While our data set has flight-level observations, we initially

aggregate it by airport to compare results using our measures of delay withBrueckner’s.

To this end, we use three versions of the dependent variable to measure the magnitude of

airport delays during a typical day: the sum of delays that all flights directly experience

themselves, the sum of delays that non-atomistic airlines impose indirectly on their own

aircraft, and the sum of directly-experienced and indirectly-imposed delays. The queuing

time each flight experiences plus the increase in queuing time the flight imposes on the

airline’s other flights is the incremental queuing time that an internalizing airline takes

into consideration in optimizing the schedule.Brueckner measures delay using the FAA’s

count of aircraft operating more than fifteen minutes behind schedule because it is readily

available, not because it is the most appropriate metric. To test the sensitivity of the
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results presented here, we also try FAA’s count data for August, 2003 as a dependent

variable (a measure directly comparable toBrueckner’s).

We omit the precipitation variable in all our specifications because it is never

significant in any ofBrueckner’s regressions and it is not a valid way to capture the

complexity of weather effects, as noted above. We base our variable for traffic counts on

the number of operations during the typical day for July 28 through August 3, 2003. We

construct the same three concentration measures as Brueckner, while including code

sharing airlines as part of the dominant firm.6 Table 2 summarizes the airport level

characteristics used in our regressions.

Table 3 presents the regression results that replicateBrueckner’s six versions of

the regression using our data including direct (average) and indirect (marginal) delays

from our dynamic-stochastic congestion function. Standard errors appear in italics

underneath the coefficient estimates. Our first nine modifications ofBrueckner’s

regressions based on Equation (7) vary the dependent variable (total direct queuing, total

indirect queuing, and the sum of the two) and switch the measure of concentration

between the HHI, the dominant airline’s share of traffic, and the dichotomous indicator

that share exceeds 65%. These variations make little difference in the results—all

estimate positive, insignificant coefficient on the concentration variables. Coefficient

estimates that support internalization would be negative, indicating that when an airline

controls a greater share of airport traffic, it takes greater account of the congestion it

flights impose on one another, leading to less queuing time. The coefficients for the other

variables (slot control airports, hub airports, and operations) are all of the predicted sign,

although only the intercept and traffic-count coefficient are significant.
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Dropping the intercept term does produce a negative coefficient on the

concentration measure, whether using the share variable or the Herfindahl variable. These

estimates, however, are insignificant, and the regressions without intercepts produce the

incorrect signs on the hub and slot control dummy variables (they become negative). The

natural log specification of the model produces the most significant coefficients on

concentration, but they are positive, which does not support internalization.

Using the FAA’s reported percentage of flights operating more than fifteen

minutes behind schedule in August of 2003 (the reporting period that most closely

resembles the period of the rest of that data) produces an interesting result. We include it

as a dependent variable to see whether using a measure of congestion delay more similar

toBrueckner’s would more faithfully replicate his results. Like all of the results above,

except the regressions that do not include an intercept, this specification produces a

positive, insignificant estimate of the concentration coefficient, which does not support

internalization. It also produces incorrect signs on the hub and slot coefficients, similar to

the regressions with no intercept. It is unclear whether these contrary results from

Brueckner’s are due to differences in the dependent variable, inclusion of code sharing

flights in the concentration measures, or significant changes in airline behavior between

his 2000 data and our 2003 data. It is clear, however, that our airport-level analysis based

onBrueckner’s model overwhelmingly fails to support the internalization hypothesis.

Mayer and Sinai-Like Test

As described in Section 1, Mayer and Sinai (2003) focuses on hubbing (the

clustering of flights to facilitate connections in a hub and spoke network) as an

explanation for delays. They regress the excess of actual flight times over minimal flight
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times by city pairs on a list of independent variables including concentration levels and

dichotomous variables controlling for level of hubbing activity. They average the

dependent and independent variables by month and city pair because of the large scope of

their dataset (250 airports from 1988 through 2000). Three dichotomous hubbing

variables represent ranges of the number of cities the airport connects (26 to 45 cities, 46

to 70 cities, and 71 or more cities). They distinguish the effects of dominant and non-

dominant airlines by interacting the hubbing variables with dichotomous variables for the

dominant airline. The basic regression equation takes the form:

excess travel time = ß1(hub size) + ß2(concentration) (8)

+ ß3(hub airline*hub size)

+ ß4(year, month, demand variables) + e

where ß1, ß3, and ß4 are vectors of coefficients on the vector of dichotomous variables in

parentheses. Like Mayer and Sinai, we use HHI to measure concentration, but we also

substitute the share of flights operated by the dominant airline and its code sharing

affiliates. We omit Mayer and Sinai’s income, population, and employment variables

because our data represents observations on a typical day rather than over several years,

so we do not need to control for variation in demand within airports over time.

Mayer and Sinai specify versions of their model with and without variables for

the hub airline, slot control airports, and airport fixed effects. They perform separate

regressions for arrivals and departures, but do not assign delays to the origin or

destination so their delays include en route congestion. Mayer and Sinai also specify an

instrumental variable model to address the possibility that the demand variables do not

appropriately capture local demand conditions and may instead be correlated with the
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probability of an airport being a hub. We omit this version for our data set because it does

not include variation in hubbing or local demand over time. Table 4 presents the number

of airport links that we use to define the hubbing variables. These differ from Mayer and

Sinai’s ranges because ours include connections made through code share carriers and

cover a different period of time.

Our modifications of Mayer and Sinai’s regressions use more precise measures of

delay than their original model. The three alternative dependent variables for each flight

include; the queue in minutes experienced by the flight, the indirect minutes of queuing it

imposes on other flights, and the sum direct and indirect delays. These are comparable to

the dependent variables in our modifications ofBrueckner’s airport level regressions, but

are at the flight level rather than aggregated by airport. We estimate airport-level effects

for our data set by letting concentration and hubbing vary by bank instead of by airport,

as discussed later in this section. In our modifications of Mayer and Sinai models, the

significance of coefficients is aided by having more than 12,907 arrival observations and

more than 14,5017 departure observations—compared to only 27 observations at the

airport level in the Brueckner models. Tables 5 and 6 present the regression results for

arrivals and departures, respectively, based on our modifications of Mayer and Sinai’s

models.

Like those of Mayer and Sinai, our arrival regressions support the internalization

hypothesis by consistently producing negative, significant coefficients on

concentration—in all cases, regardless of the dependent variable or concentration

measure. Likewise, our arrival regressions support the network hubbing hypothesis by

producing positive, significant coefficients on the dichotomous hubbing variables that
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increase in the degree of hubbing. Estimates of concentration and hubbing coefficients

are stable with respect to the inclusion or exclusion of the dominant-airline dichotomous

variables. These coefficients have the correct sign, but the coefficient on hub

classifications should decrease with hub size to be fully consistent with Mayer and

Sinai’s estimates. The R-squared values are lower than those of our modified Brueckner

model, but with only 27 observations it has much less variability and many more

explanatory variables.

The departure regressions in our modified Mayer and Sinai model tell a different

story than the arrival regressions. The four specifications with aircraft’s own queuing as

the dependent variable produce the correct sign for coefficients on the concentration and

hubbing variables. The hub-classification variables have the same problem as those in the

arrival regressions, with smaller hub classifications displaying more delay. The effect of

the concentration variables on indirect (internally-imposed) queuing is different for

departures than it is for arrivals. The dependent variable in Regressions 5 through 8 of

Table 6 is the indirect queuing that each flight generates at the margin. These models

have significant, positive coefficients on the concentration measures for both the

Herfindahl specification and the traffic-share specification. When the dependent variable

is sum of direct and indirect queuing, the positive relationship between concentration and

indirect delay is larger than the negative relationship between concentration and direct

queuing (regressions 9 through 12). The significance levels for the departure models are

generally more variable than for the arrival regressions.

The inclusion of indirect queuing also produces conflicting signs on the

dichotomous hubbing variables when the dominant-airline indicator variables are present.
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Regressions 6, 8, 10, and 12 estimate negative coefficient for the three ranges of hubbing,

though some of them are insignificant or only marginally significant. In those regression

models, therefore, flights at airports with low hubbing levels experience more delay than

mid, moderate, or high hubbing levels, contrary to the Mayer and Sinai hypothesis. The

robustness of the relationships in the arrival regressions with respect to the dependent

variable and the inclusion or exclusion of the dominant carrier dummies makes them

seem more trustworthy. The sensitivity of the departure results to inclusion of the

dominant carrier variables and indirect queuing in the dependent variable (whether

exclusively or as part of the sum) makes them seem less trustworthy. This is somewhat

troubling for the Mayer and Sinai model because one of their predictions is that the

relationship between hubbing and delay is even stronger for departures than arrivals.

Bank Level Panel Data Test

Daniel and Harback (2005) points to individual flight banks as the appropriate

level of analysis in testing for internalization, because (according to its J-tests) dominant

aircraft do not internalize delays they impose on one another during most flight banks,

but do but internalize such delays during a few flight banks. Daniel’s (1995) theory holds

that the dominant airline acts as a Stackelberg leader in scheduling its aircraft by taking

into account the reactions of non dominant airlines. The dominant airline realizes that

reducing traffic and delay in the middle of a bank may prompt entry by non dominant

aircraft. Different banks may have different potential for entry. As noted above, banking

of flights is a common and crucial practice in connecting spoke cities across a hub and

spoke network. Daily patterns of arrivals and departures exhibit significant variation in

market shares within and across airports. For example, at Dallas/Ft. Worth (DFW), the
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second bank is highly concentrated, while the third has a large share of non dominant

traffic. If the internalization hypothesis is correct, flights in the second bank should

experience less delay, holding everything else constant. Setting the concentration

variables at the airport level ignores this bank level variation. Table 7, for example,

presents characteristics by bank for Hartsfield Atlanta (ATL) showing substantial

variation in concentration between banks.

The hubbing variables in Table 7 are redefined to reflect potential city-pair

connections by bank, as defined in Table 8. The thresholds for the four classes of hubbing

are lower than the thresholds defined at the airport level because not all spoke cities

served via the hub are served in every single bank (further emphasizing the relevance of

bank-level variation).HHI’s and the dominant airline’s share of flights are also

recalculated by bank. By adding bank-level variation to the Mayer and Sinai set up, the

data now have 264 observations on concentration and hubbing for arrivals and 251 for

departures.

We also perform fixed- and random-effects regressions to control for airport

heterogeneity. Tables 9 and 10 show these results for arrivals and departures that are

comparable to the results in Tables 5 and 6 except that dichotomous hubbing and

concentration variables are defined at the bank level. The results from Tables 5 and 6 that

support internalization with significant negative coefficients are largely reversed by the

results in Tables 9 and 10 based on bank-level hubbing and concentration variables. Of

the sixteen regressions (out of twenty-four) that produced negative coefficients, only five

retain negative coefficients and only three of these are significant. Only one regression

switched signs from positive to negative, and this coefficient was insignificant.
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An F-test test confirms that the fixed effects model with airport level dichotomous

variables is superior to the standard model.Hausman’s chi-square test rejects the random

effects models except when the dominant airline variables are excluded (these are

regressions 6, 12, 18, 24, 30, and 36 for both the arrivals and departures). In all of these

instances where the random effects model cannot be rejected, the coefficient on the

concentration variable is positive and significant, not supporting internalization. In

general, the signs and magnitude of the concentration coefficient estimates produced by

the fixed effects model are similar to those produced in the model with a common

intercept. The exceptions are those six coefficient estimates that were negative,

supporting internalization. With the inclusion of airport fixed effects, these all switch

from negative to positive, making every single fixed effects concentration coefficient

estimate positive, dealing another blow to the internalization hypothesis. While support

for internalization in the results of the modified Mayer and Sinai models was weak

before, this addition of bank level variation weakens support for internalization

considerably.

Because there are compelling reasons to think that bank-level characteristics are

appropriate for looking for evidence of internalization, we extend the models to include

specifications with bank-level observations—placing this treatment somewhere between

Brueckner’s approach with airport-level observations and Mayer and Sinai with flight-

level observations. We maintain separate regressions for arrival and departures.

Brueckner uses an operations count variable to measure for prevailing traffic levels in his

model. Aggregation at the bank level allows for more detailed treatment of traffic levels

to isolate the relationship between concentration and congestion delay. In addition to the
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flight count for the bank (comparable toBrueckner’s annual flight count), we include the

width of the bank in minutes (or spread) and average traffic rates by bank as potential

explanatory variables. The three dependent variables for arrivals and departures are

constructed by summing the queuing minutes for the bank, summing the indirect queuing

minutes for the bank, and summing the two. We drop the dichotomous variable for

dominant carriers out of necessity because it only applies at the flight level. The hubbing

dummy variables are the same as in Table 8. The variables for bank-level HHI and

dominant airline’s traffic shares are also the same as in the flight-level regressions

discussed previously, except that they apply to bank observations rather than flight

observations.

Tables 11 and 12 report the results arrival and departure bank respectively. As

was the case before, regressions that do not control for airport-level effects are rejected in

favor of the fixed effects models. The Hausman test rejects all of the random-effects

models for arrivals except for regressions 15, 18, 30, 33, and 45. It fails to reject all of the

random-effects models for departures except 3, 6, 33, and 36. Five of fifteen fixed-effects

arrival models estimate negative concentration coefficients, but they are all insignificant.

Likewise, five of fifteen fixed-effects departures models produce negative, insignificant

coefficients on the concentration variable. The five specifications that fail to reject the

random-effects model for arrivals all produce negative but insignificant coefficient

estimates on the concentration variables. Of the eleven specifications that fail to reject the

random-effects models for departures, five produce negative coefficients, four of which

are insignificant (regression 30).
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The traffic variables—spread, flight count, and average traffic rate by bank—

produce significant coefficients with the expected signs across all of the regressions. A

negative coefficient on the spread variable indicates longer banks have less queuing

delay, holding everything else constant. Positive coefficients on the flight count and

average traffic rate by bank indicate that more traffic increases queuing in that bank.

There is a pattern that emerges with the inclusions of these variables: the regression that

includes traffic rates produces negative but insignificant coefficient on the concentration

measure.

These results for bank-level observations are basically consistent with the other

treatments (the modified models of Brueckner, Mayer and Sinai, and our panel model)

presented in this chapter. While some specifications in each framework produce evidence

of internalization—negative coefficient estimates on concentration variables—these are

few and rarely significant.

Section 5--Conclusion

Two of the previous tests for internalization (Brueckner and Mayer and Sinai)

find significant (but weak) negative relationships between congestion delay and airport

concentration. A third (Morrison), using a similar approach, finds a negligible

relationship between airport concentration and congestion. A fourth approach (Daniel and

Daniel and Harback) relies on J-tests that explicitly account for scheduling behavior

using a bottleneck model. It finds that dominant airlines do not schedule most of their

aircraft in a way that internalizes the delays they impose on one another. The instant

paper seeks to use a measure of delays similar to that of Daniel and Daniel and Harback
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to implement econometric models similar to Brueckner, Mayer and Sinai, and Morrison

to account for the differing results. The regressions constructed in section 2 explicitly

estimate takeoff and landing queues from the data. Econometric estimation of the queues

provides a new unbiased measure of congestion delay. Section 3 fits a dynamic-stochastic

congestion function to the time-dependent queuing estimates to separately calculate the

additional delay each aircraft experiences directly, the delay it imposes on other aircraft

operated by the same airline, and the delay it imposes on aircraft of other airlines. In

Section 4, the queue values from Section 3 are used to carryout regressions comparable to

previous treatments, as well as some new regressions controlling for bank level variation.

Considered as whole, the regression results presented here do not support

internalization— the negative sign on the concentration term required to illustrate

internalization is not robust across inclusion different traffic variables or the different

dependent queuing variables and is more often than not insignificant.

Results supporting internalization in the original Brueckner and Mayer and Sinai

regressions may be spurious and sensitive to the flaws in the data and the specifications

of the regressions. Extending the regression treatment to allow bank level variation in the

Mayer and Sinai-like regression framework and constructing a new regression framework

with bank level observations fail to find any consistent, robust evidence of internalization

in the form of negative coefficients on concentration variables. Of the 195 regressions

presented here, only 72 contain negative coefficient estimates on the concentration

variables, regardless of significance. Only 27 are significant.

The results presented in this paper synthesize all of the previous treatments of

internalization and find little evidence of internalization. The lack of internalization is an
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important result. Congestion pricing has greater impact on reducing delays if congestion

is purely external. If carriers internalize some congestion, then the internalized portion

should not be subject to congestion pricing—thereby reducing the welfare gains from

imposing congestion prices. Congestion pricing is especially desirable as a solution to the

runway capacity problem given the expense of expanding runways. Finding little

evidence of internalization supports using congestion pricing to obviate the need for

additional airport capacity.
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ENDNOTES

 Harback: Department of Economics, Purnell Hall, University of Delaware, Newark,

DE 19716.

 Daniel: Department of Economics, Purnell Hall, University of Delaware, Newark, DE

19716, (e-mail: Joseph.Daniel@verizon.net);

1 In 1999, these included O’Hare, Regan National, JFK, and LaGaurdia. These airports

are regulated under the high density rule, which creates hourly take off and landing caps

and rations them as rights to conduct operations to carriers operating at these airports,

with special provisions to ensure service to small communities and access for competing

carriers. In theory, definition of property rights over congestible airports resources should

eliminate excess congestion and ensure allocation to the highest value users for each

hourly interval. However, because carriers will not sell slot rights to competing carriers,

provisions to ensure competition have resulted in the granting of waivers for new entrant

operations and other problems that result in a misalignment of available “slots” with the

actual number of operations that can be conducted. In practice, slot control is regarded as

failure due to poor design.

2 They are prohibited from serving passengers between cities in the US.

3 The majority of minute dummy variables across the 27 airports correspond to a single

minute of the day. Even with the additional arrivals per minute associated with using the

entire week of data, some minutes were thin on observations. These thin minutes are

minutes with 2 or fewer flights observed and are dealt with by including them with

adjacent minutes in a common dummy. In the case when many “thin” minutes occur in
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sequence they get aggregated into a common dummy variable or several aggregated

dummy variables.The results in the small “flat” regions that appear in the results.

4 The mathematical form of this transition matrix is derived and specified in Daniel

(1995), Appendix A.

5 The zig-zag is due to sampling the queue lengths at minute intervals that alternately fall

just before or after the service completion intervals.

6 All of the regression results presented here were also carried out using a specification

of the concentration variables that does not include the code share carriers as part of the

dominant carrier’s operations. The results do not vary significantly on the verdict of

internalization.

7 In general, there are nearly the same number of arrivals and departures at an airport

each day. The difference between the number of arrivals and departures in the typical

day’s data constructed from the week of ETMS observations and the Daniel queuing

simulation comes from the definition of the relevant operating day—relative to

departures, more flights came in the uncongested hours of the early morning and late

night and were excluded from the operating day in the simulation framework.



Figure 1--Examples of Arrival Rates and Delay Data by Minute of the Day
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LAX--Expected Queues, Delay Estimates, and Mean Congestion Function Value
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Figure 2--Examples of Departure Rates and Delay Data by Minute of the Day

ATL--Expected Queues, Delay Estimates, and Mean Congestion Function Value
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Table 1-- Code-Sharing Partners for Major Air Carriers
American Airlines (AAL) Alaska Airlines (ASA) Delta Airlines (Con't) United (Con't)
American Trans Air (AMI) Horizon Airlines (QXE) Comair (COM) Deutsche Lufthansa (DLH)
Alaska Airlines Inc. (ASA) Japan Airlines (JAL) Sky West (SKW)
British Airways (SAW) America West (A E) Korean Airlines (KAL)
United Express (BLR) Mesa Aviation Services (ASH) Sky West (SKW) U.S. Air (USA)
Big Sky Airlines (BSY) Continental Express (BTA) Pennsylvania Commuter Airlines (ALO)
Corporate Express (CEA) Hawaiian Airlines (HAL) Northwest Airlines Air Midwest (AMW)
Chautauqua Airlines (CHQ) Arizona Express Airlines (TMP) Continental Express (BTA) Mesa Aviation (ASH)
Comair, Inc. (COM) Northwest Airlink (FLG) Chautauqua Airlines (CHQ)
Cathay Pacific Airways (CPA) Continental Airlines (COA) Mesaba Aviation (MES) Colgan AIR (CJC)
American Eagle (EGF) Continental Express (BTA) Deutsche Lufthansa (DLH)
Aer Lingus (EIN) Virgin Atlantic (VIR) United Airlines (UAL) Jetstream International (JIA)
EVA Airways (EVA) Asiana Airlines (AAR) Trans World Express (LOF)
Japan Airlines (JAL) Delta Airlines (PAL) Air Canada (ACA) Midway Airlines (MOW)
Trans World Express (LOF) Air France (AFR) Air Wisconsin Airlines (AWI) Mid-West Express (MEP)
LOT-Polskie (LOT) Aerovias De Mexi o (AMX) United Express (BLR) USAir Express (PDT)
Swissair (SWR) Alitalia (AZA) British Midland Airways (BMA) Shuttle America (TCF)
Taca International Airlines (TAI) Atlantic Southeast Airlines (CAA) Katitta Air (CKS)



Table 2 Airport Characteristics for July 28 through August 3, 2003

Name Symbol Location
Parallel
Runways Sharel1 Share22 HHI3

Average
Daily

Arrivals

% of
Arrivals

Delayed >
15 min Dominant Carrler(s)

Hartsfield Atlanta International ATL Atlanta, GA 4 0.708 0.446 0.519 1188 25 Delta
Boston Logan International BOS Boston, MA 2 0.208 0.08 0.094 575 17.5 American, US Air, United
Baltimore-Washington International BWI Washington, DC 2 0.391 0.391 0.149 386 20 Southwest
Charlotte Douglas International CLT Charlotte, NC 2 0.749 0.749 0.615 556 17.2 US Air
Cincinnati/Northern Kentucky International CVG Covington, KY 2 0.699 0.219 0.487 685 15.4 Delta
Ronald Reagan Washington National DCA Washington, DC 1 0.429 0.181 0.247 343 11.6 US Air, Delta, American
Denver International DEN Denver, CO 4 0.504 0.355 0.276 713 27.6 United
Dallas/Ft. Worth International DFW Dallas, TX 5 0.639 0.435 0.456 1060 22.4 American, Delta
Detroit Metropolitan Wayne County DTW Detroit, Ml 4 0.746 0.474 0.559 677 19.5 Northwest
Newark International EWR Newark, NJ 2 0.599 0.345 0.37 566 23 Continental
Washington Dulles International IAD Washington, DC 2 0.494 0.156 0.263 469 16.6 United
George Bush Intercontinental/ Houston IAH Houston, TX 3 0.764 0.455 0.658 646 21 Continental
John F Kennedy International JFK New York, NY 2 0.285 0.2 0.15 390 27.6 American, Jet Blue, Delta
Las Vegas McCarran International LAS Las Vegas, NV 2 0.321 0.321 0.123 540 13.4 Southwest, America West
Los Angeles International LAX Los Angeles, CA 4 0.316 0.128 0.157 827 13.5 United, American, Southwest
LaGuardia LGA New York, NY 1 0.324 0.13 0.198 546 17.2 American, Delta, US Air
Memphis International MEM Memphis, TN 3 0.44 0.181 0.3 533 15.5 Northwest
Miami International MIA Miami, FL 3 0.493 0.368 0.223 505 12.4 American, United
Minneapolis-St. Paul International MSP Minneapolis, MN 2 0.739 0.485 0.558 718 22.7 Northwest
Chicago O'Hare International ORD Chicago, IL 2 0.483 0.286 0.359 1222 17.7 United, American
Philadelphia International PHL Philadelphia, PA 3 0.606 0.309 0.373 611 29.8 US Air
Phoenix Sky Harbor International PHX Phoenix, AZ 3 0.45 0.299 0.277 678 20.7 Southwest, America West
Pittsburgh International PIT Pittsburgh, PA 3 0.758 0.258 0.582 488 26.5 US Air
Seattle-Tacoma International SEA Seattle, WA 2 0.642 0.279 0.413 545 23.4 Alaska Airlines
San Francisco International SFO San Francisco, CA 2 0.547 0.325 0.279 455 26.8 United
Salt Lake City International SLC Salt Lake City, UT 3 0.659 0.252 0.426 453 12.1 Delta, Southwest
Lambert-St. Louis International STL St. Louts, MO 2 0.698 0.365 0.512 559 14.3 American
1 - Share1 is the market share in flights counts of the dominant carrier including its code share partners.
2 - Share2 is the market share of the dominant carrier in flight counts not including its code sharing partners.
3 - HHI is the Hirschman-Herfindahl Index calculated for share by flight counts including code major carriers and code sharing partners as one entity.



TABLE 3-Brueckner-like regressions

Dependent
Variable:

Total Minutes
Spent Queuing

Total Indirect
Queuing

Log of Total
Queuing Plus

Indirect
Queuing

FAA Share of
Arrivals

Delayed
Regression 1 2 3 4 5 6 7 8 9

Variable:

Herfindahl 3652 12175 15826 -160 0.07923
2900 10682 13475 17391 0.07241

Share 17288 -12611 2.14027
13098 14790 0.58159

Share > 65% 7578
4235

Operations 18 50 68 70 70 43 47 0.00002629
2 8 10 10 9 11 11 0.00005239

Log Operations 2.67783
0.30914

Hub Airport 372 1789 2161 1406 1737 -13687 -9348 0.04226 -0.04493
1433 5277 6656 6714 6359 7500 8293 0.29723 0.03577

Slot-control 2778 8217 10995 12025 11189 -8960 -7980 0.82667 -0.01597
1641 6045 7626 7689 7319 8214 8165 0.35028 0.04098

Intercept -8920 -30360 -39279 -43457 -36915 -9.55274 0.19176
1923 7084 8936 10055 8291 1.99925 0.04802

R-squared 0.798 0.6979 0.7271 0.7313 0.7468 0.6538 0.6644 0.8262 0.1124

Total Queuing Plus Indirect Queuing



Table 4 Definition of airport-level hubbing dummy variables
Hubing Dummy
Variable Connections Airports
Hub1 >115 ATL, CVG, DFW, DTW, IAH, MSP, ORD
Hub2 86-115 CLT, EWR, PHL, PIT, STL
Hub3 56-85 DEN, IAD, MEM, MIA, PHX, SEA, SLC
Hub4 <56 BOS, BWI, DCA, JFK, LAS, LAX, LGA, SFO





Table 5 Meyer and Sinai-like regressions for arrivals
Dependent
Variable:
Concentration
measure
Regression 1 2 3 4 5 6 7 8 9 10 11 12

Variable:

Herfindahl -5.762 -5.819 -32.292 -32.712 -38.054 -38.532
0.379 0.377 0.939 0.900 1.146 1.104

Share -6.044 -6.009 -36.327 -36.223 -42.371 -42.232
0.321 0.321 0.773 0.743 0.947 0.916

Hub 1 5.390 4.680 5.524 4.893 16.796 10.873 18.351 12.949 22.186 15.553 23.874 17.842
0.146 0.180 0.132 0.173 0.361 0.430 0.318 0.399 0.441 0.528 0.390 0.492

Hub 2 3.245 2.828 3.568 3.215 11.961 9.888 14.662 12.947 15.206 12.717 18.231 16.162
0.158 0.210 0.153 0.210 0.392 0.501 0.368 0.485 0.479 0.615 0.451 0.597

Hub 3 2.233 1.416 2.579 1.827 7.373 5.222 9.809 8.078 9.606 6.637 12.389 9.904
0.106 0.143 0.110 0.148 0.263 0.342 0.265 0.343 0.321 0.420 0.324 0.422

Dominant Carrier
Hub 1 1.035 0.967 8.646 8.228 9.680 9.195

0.117 0.116 0.278 0.269 0.342 0.331
Dominant Carrier
Hub 2 0.666 0.618 3.728 3.511 4.394 4.129

0.180 0.179 0.428 0.413 0.526 0.509
Dominant Carrier
Hub 3 1.426 1.391 4.516 4.298 5.942 5.689

0.130 0.130 0.311 0.300 0.382 0.370
Dominant Carrier
Hub 4 0.189 0.344 1.669 2.656 1.858 3.000

0.130 0.130 0.310 0.301 0.381 0.371

Intercept 2.871 2.810 3.910 3.770 6.102 5.554 12.752 11.729 8.973 8.364 16.662 15.499
0.091 0.100 0.125 0.129 0.225 0.239 0.300 0.299 0.275 0.294 0.368 0.368

R-squared 0.1543 0.1681 0.1621 0.1751 0.1562 0.2324 0.2137 0.2854 0.1887 0.2545 0.2377 0.2995

Herfindahl-Hirschman
Index Share

Queuing Experienced by Arriving Flight
Herfindahl-Hirschman

Index Share

Indirect Queuing caused by Arriving Flight
Herfindahl-Hirschman

Index Share

Experienced + Indirect Queuing for Arriving
Flight



Table 6 Meyer and Sinai-like regressions for departures
Dependent
Variable:
Concentration
measure
Regression 1 2 3 4 5 6 7 8 9 10 11 12

Variable:

Herfindahl -4.446 -4.831 11.917 11.159 7.471 6.329
0.384 0.383 2.387 2.291 2.579 2.478

Share -5.679 -5.786 11.062 12.799 5.383 7.013
0.333 0.332 2.081 1.997 2.249 2.162

Hub 1 5.537 4.707 5.989 5.156 14.842 -3.052 15.032 -3.885 20.379 1.654 21.021 1.271
0.150 0.182 0.138 0.175 0.930 1.090 0.861 1.049 1.005 1.180 0.930 1.136

Hub 2 1.947 0.711 2.581 1.327 0.910 -5.502 0.708 -6.726 2.857 -4.791 3.289 -5.399
0.157 0.199 0.155 0.201 0.977 1.193 0.971 1.209 1.055 1.290 1.049 1.309

Hub 3 0.751 -0.021 1.207 0.456 0.066 -3.761 -0.375 -4.754 0.817 -3.782 0.832 -4.297
0.105 0.141 0.110 0.146 0.654 0.846 0.688 0.878 0.707 0.915 0.743 0.950

Dominant Carrier
Hub 1 1.204 1.148 24.509 24.630 25.713 25.778

0.114 0.114 0.683 0.683 0.739 0.739
Dominant Carrier
Hub 2 1.810 1.782 9.752 9.834 11.562 11.616

0.170 0.169 1.018 1.014 1.101 1.098
Dominant Carrier
Hub 3 1.260 1.245 7.035 7.075 8.295 8.320

0.134 0.133 0.800 0.799 0.865 0.844
Dominant Carrier
Hub 4 -0.121 0.001 1.142 0.881 1.021 0.882

0.130 0.130 0.778 0.780 0.841 0.844

Intercept 3.800 3.909 4.930 4.965 0.930 0.635 -0.723 -1.624 4.730 4.544 4.206 3.341
0.090 0.100 0.127 0.131 0.562 0.600 0.793 0.790 0.607 0.649 0.856 0.855

R-squared 0.2148 0.2315 0.2231 0.239 0.1187 0.1994 0.1189 0.2004 0.1467 0.2227 0.1465 0.2229

Herfindahl-
Hirschman Index Share

Queuing Experienced by Departing Flight
Herfindahl-

Hirschman Index Share

Indirect Queuing caused by Departing Flight
Experienced + Indirect Queuing for

Departing Flight
Herfindahl-

Hirschman Index Share



Table 7 Arrival bank characteristics for Hartsfield Atlanta
Bank Hub Variable Share Herfindahl
1 Hub2 77.03 0.6196
2 Hub1 75.71 0.5917
3 Hub1 71.91 0.5353
4 Hub2 74.67 0.5719
5 Hub1 73.04 0.5554
6 Hub1 73.33 0.5534
7 Hub1 73.45 0.5571
8 Hub1 76.03 0.5864
9 Hub2 63.64 0.434
10 Hub1 70.34 0.5235



Table 8 Definition of bank-level hubbing dummy variables
Hubing Dummy Bank-level Number of Number of
Variable Connections Arrival Banks Departure Banks
Hub1 >60 20 38
Hub2 40-59 61 56
Hub3 20-39 76 68
Hub4 <20 107 89
Bank Totals 264 251



Table 9 Meyer and Sinai-like regressions with bank level variation in concentration and hubbing
Queuing Experienced by Arriving Flight Experienced + Indirect Queuing for Arriving Flight

Concentration
measure

Regression 7 8 9 10 11 12 19 20 21 22 23 24 31 32 33 34 35 36

Airport Fixed
Effects: no yes no no yes no no yes no no yes no no yes no no yes no

Random Effects: no no yes no no yes no no yes no no yes no no yes no no yes

Dominant Airline: yes yes yes no no no yes yes yes no no no yes yes yes no no no
Variable:
Herfindahl

Share 1.029 2.397 2.317 2.150 2.709 2.664 -0.722 6.280 6.048 5.055 8.571 8.465 0.306 8.677 8.416 7.205 11.280 11.160
0.226 0.338 0.331 0.221 0.335 0.330 0.549 0.777 0.766 0.571 0.792 0.786 0.687 0.951 0.939 0.709 0.965 0.958

Hub 1 4.030 2.133 2.148 2.678 1.986 1.990 0.116 -1.099 -1.108 -3.294 -0.125 -0.138 4.145 1.034 1.034 -0.615 1.860 1.851
0.213 0.214 0.213 0.128 0.149 0.149 0.519 0.491 0.491 0.331 0.353 0.353 0.649 0.601 0.601 0.411 0.430 0.430

Hub 2 1.468 1.426 1.423 0.514 1.518 1.512 0.361 -0.136 -0.147 -4.326 -0.779 -0.792 1.829 1.290 1.278 -3.812 0.738 0.724
0.161 0.152 0.152 0.110 0.108 0.108 0.391 0.349 0.348 0.284 0.256 0.256 0.489 0.427 0.426 0.353 0.312 0.312

Hub 3 -0.141 0.702 0.688 -0.989 0.585 0.574 0.019 1.257 1.237 -5.142 -0.587 -0.602 -0.123 1.959 1.932 -6.131 -0.002 -0.021
0.130 0.127 0.126 0.090 0.093 0.316 0.291 0.290 0.233 0.221 0.221 0.396 0.356 0.356 0.289 0.269 0.269

Dominant Carrier
Hub 1 0.100 0.267 0.266 5.550 5.641 5.642 5.650 5.909 5.908

0.210 0.183 0.183 0.512 0.421 0.421 0.641 0.515 0.515

Dominant Carrier
Hub 2 0.667 0.590 0.591 4.010 3.534 3.538 4.678 4.124 4.128

0.132 0.115 0.115 0.321 0.265 0.265 0.402 0.325 0.325

Dominant Carrier
Hub 3 0.660 0.312 0.316 2.482 1.826 1.832 3.142 2.138 2.146

0.126 0.112 0.112 0.308 0.258 0.258 0.385 0.315 0.315

Dominant Carrier
Hub 4 2.167 0.557 0.567 11.599 5.436 5.461 13.766 5.993 6.022

0.111 0.112 0.111 0.271 0.256 0.256 0.339 0.314 0.313
Intercept 1.641 0.820 2.240 0.921 0.469 -3.376 3.769 -1.913 2.110 -2.588 6.009 -1.014

0.115 0.305 0.109 0.356 0.280 0.819 0.283 1.072 0.350 1.034 0.351 1.351

R-squared 0.14053 0.34971 0.1124 0.34673 0.17384 0.44399 0.03741 0.40784 0.16632 0.46226 0.044 0.43361

Hausman (Fixed
vs. Random) 25.69 7.65 21.64 3.32 23.55 4.06
Degrees of
Freedom 8 4 8 4 8 4

ShareShare

Indirect Queuing caused by Arriving FlightDependent Variable:

Share



Table 10 Meyer and Sinai-like regressions with bank level variation in concentration and hubbing
Queuing Experienced by Departing Flight Experienced + Indirect Queuing for Arriving Flight

Concentration
measure

Regression 7 8 9 10 11 12 19 20 21 22 23 24 31 32 33 34 35 36

Airport Fixed
Effects: no yes no no yes no no yes no no yes no no yes no no yes no

Random Effects: no no yes no no yes no no yes no no yes no no yes no no yes

Dominant Airline: yes yes yes no no no yes yes yes no no no yes yes yes no no no
Variable:
Herfindahl

Share -2.578 1.670 1.537 -1.930 2.383 2.307 1.860 0.401 0.541 8.036 10.351 10.318 -0.718 2.070 1.995 6.105 12.734 12.539
0.229 0.315 0.311 0.225 0.311 0.309 1.327 1.961 1.926 1.359 2.041 2.004 1.439 2.093 2.062 1.473 2.174 2.145

Hub 1 4.009 4.072 4.046 5.121 4.486 4.477 0.930 -7.057 -6.835 19.066 10.177 10.358 4.940 -2.986 -2.838 24.187 14.664 14.778
0.166 0.178 0.177 0.123 0.144 0.143 0.964 1.109 1.101 0.742 0.943 0.936 1.045 1.183 1.177 0.805 1.005 0.999

Hub 2 1.639 1.892 1.874 3.002 2.611 2.604 -1.985 -0.356 -0.319 5.384 5.041 5.083 -0.347 1.536 1.541 8.386 7.652 7.669
0.167 0.159 0.159 0.121 0.123 0.123 0.970 0.991 0.988 0.732 0.806 0.802 1.052 1.058 1.055 0.794 0.859 0.856

Hub 3 0.559 0.927 0.917 0.965 0.957 0.952 -0.806 0.922 0.898 1.429 2.181 2.168 -0.247 1.849 1.815 2.393 3.138 3.117
0.134 0.123 0.123 0.103 0.101 0.101 0.776 0.768 0.767 0.619 0.662 0.660 0.842 0.820 0.818 0.671 0.706 0.704

Dominant Carrier
Hub 1 1.730 1.013 1.021 28.022 27.290 27.285 29.753 28.302 28.310

0.131 0.113 0.113 0.762 0.704 0.704 0.827 0.751 0.751

Dominant Carrier
Hub 2 2.008 1.435 1.439 12.782 11.954 11.966 14.790 13.389 13.405

0.137 0.118 0.118 0.796 0.734 0.734 0.863 0.784 0.783

Dominant Carrier
Hub 3 0.736 0.456 0.452 5.704 6.041 6.041 6.440 6.498 6.492

0.122 0.109 0.108 0.708 0.676 0.676 0.768 0.722 0.721

Dominant Carrier
Hub 4 -0.188 0.326 0.320 0.621 2.184 2.158 0.433 2.510 2.479

0.160 0.139 0.139 0.926 0.868 0.868 1.005 0.926 0.926
Intercept 3.647 1.024 3.340 0.823 1.347 1.706 -0.714 -1.675 4.994 2.788 2.626 -0.787

0.123 0.332 0.114 0.422 0.716 1.705 0.686 1.815 0.776 1.932 0.743 2.135

R-squared 0.19475 0.41878 0.17139 0.40893 0.2119 0.34363 0.12169 0.26092 0.23081 0.37989 0.14361 0.30409

Hausman (Fixed
vs. Random) 30.29 5.34 14.84 6.05 14.93 4.39
Degrees of
Freedom 8 4 8 4 8 4

Share

Indirect Queuing caused by Arriving FlightDependent Variable:

Share Share



Table 11a Regressions with bank level obervations

Regression 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Airport Fixed
Effects: no yes no no yes no no yes no no yes no no yes no

Random Effects: no no yes no no yes no no yes no no yes no no yes

Variable:

Herfindahl -86.1 -8.3 -30.8
50.6 48.7 46.3

Share -241.2 -11.5 -108.5 143.6 169.1 142.7 83.0 37.1 48.7 -178.4 -135.8 -153.6
79.3 99.8 82.5 82.9 99.8 82.2 79.8 97.7 81.1 71.7 94.3 78.6

Hub 1 623.4 464.3 512.1 672.3 464.6 535.5 -15.4 73.7 28.3 -3.6 76.9 40.9 465.4 373.4 397.8
50.5 52.7 48.6 53.6 53.7 50.3 92.5 87.6 84.7 88.1 82.9 80.5 54.7 51.7 50.0

Hub 2 306.6 290.8 295.5 359.6 291.0 313.0 -61.5 39.9 -13.6 -44.2 48.6 7.8 217.2 210.0 212.5
36.3 36.2 33.8 41.6 38.2 36.9 60.9 58.3 56.1 58.1 55.2 53.4 41.4 37.5 36.7

Hub 3 112.3 121.0 117.4 145.1 121.0 127.8 -82.4 -13.0 -49.5 -68.2 3.9 -28.1 64.6 78.8 74.5
32.1 30.7 29.3 34.2 31.9 30.8 40.0 38.8 37.2 38.2 36.9 35.5 32.3 30.2 29.5

Spread -1.7 -2.2 -2.0
0.33 0.41 0.35

Flight Count 7.6 4.9 6.4 8.7 7.3 7.9
0.88 0.90 0.84 0.86 0.96 0.86

Count/Spread 381.6 428.5 409.8
48.0 67.2 55.9

Intercept 70.6 52.9 147.7 94.4 -229.8 -193.8 -116.6 -63.6 -58.6 -84.2
22.9 28.8 37.6 45.3 54.8 55.4 56.5 58.0 42.6 49.8

R-squared 0.4339 0.6578 0.4473 0.6578 0.5716 0.6969 0.6129 0.7295 0.5474 0.7089
Hausman (Fixed
vs. Random) 16.59 21.8 23.79 18.3 8.71
Degrees of
Freedom 4 4 5 6 5

Sum of Queuing Experienced by Arriving Flights in Each BankDependent Variable:



Table 11b

Regression 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Airport Fixed
Effects: no yes no no yes no no yes no no yes no no yes no

Random Effects: no no yes no no yes no no yes no no yes no no yes

Variable:

Herfindahl -202.1 23.6 -11.5
134.4 117.6 114.3

Share -700.0 65.5 -140.8 44.0 280.0 129.4 -117.0 55.9 -75.9 -538.1 -136.8 -284.6
210.0 241.1 213.3 233.8 252.4 220.0 226.4 255.3 221.4 190.9 238.4 208.1

Hub 1 552.3 395.8 411.1 709.2 390.9 437.9 -620.6 -73.3 -237.1 -589.3 -67.7 -219.6 175.8 242.6 223.0
134.3 127.2 121.7 141.7 129.8 124.8 260.7 221.6 216.7 249.9 216.6 212.0 145.6 130.6 127.6

Hub 2 471.0 411.3 413.8 641.8 405.7 439.2 -172.3 107.6 15.5 -126.6 122.2 45.2 274.8 273.9 268.2
96.5 87.4 84.1 110.0 92.2 90.4 171.8 147.6 143.9 164.9 144.3 140.9 110.2 94.8 93.4

Hub 3 176.2 139.0 139.9 283.6 135.2 157.6 -156.3 -24.0 -67.3 -118.8 4.7 -31.8 76.0 66.5 66.2
85.3 74.1 72.3 90.5 77.0 75.5 112.8 98.1 95.6 108.4 96.3 93.9 86.1 76.3 75.1

Spread -4.6 -3.7 -4.1
0.94 1.08 0.95

Flight Count 14.7 5.8 8.5 17.7 9.9 12.3
2.48 2.27 2.18 2.45 2.52 2.31

Count/Spread 983.7 697.3 773.9
127.8 169.7 148.4

Intercept 72.3 8.5 308.3 73.8 -421.6 -280.4 -121.2 -23.2 -223.6 -238.0
60.9 85.3 99.4 125.1 154.5 150.3 160.2 159.4 113.4 134.9

R-squared 0.1137 0.5580 0.1428 0.5581 0.2457 0.5703 0.3102 0.5912 0.3029 0.5881
Hausman (Fixed
vs. Random) 3.09 9.41 22.78 17.17 2.74
Degrees of
Freedom 4 4 5 6 5

Dependent Variable: Sum of Indirect Queuing by Arriving Flights in Each Bank



Table 11c (Continued)

Regression 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
Airport Fixed
Effects: no yes no no yes no no yes no no yes no no yes no

Random Effects: no no yes no no yes no no yes no no yes no no yes

Variable:

Herfindahl -288.2 15.3 -34.8
172.7 152.4 147.8

Share -941.2 54.0 -228.2 187.7 449.2 265.7 -34.0 93.0 -36.9 -716.4 -272.6 -433.6
269.6 312.3 274.4 291.9 322.2 277.5 279.8 321.2 276.4 240.3 302.5 264.1

Hub 1 1175.7 860.1 904.1 1381.5 855.5 949.6 -636.0 0.4 -214.2 -592.9 9.2 -180.1 641.2 616.0 613.1
172.6 164.8 157.2 181.9 168.1 161.2 325.5 282.8 276.0 308.8 272.6 266.5 183.3 165.8 161.9

Hub 2 777.6 702.0 707.6 1001.3 696.7 746.0 -233.8 147.5 7.2 -170.8 170.8 58.2 492.1 483.8 479.9
124.0 113.2 108.6 141.2 119.4 116.9 214.5 188.3 183.2 203.8 181.6 177.1 138.7 120.3 118.5

Hub 3 288.5 260.0 258.8 428.8 256.1 284.2 -238.7 -37.0 -111.1 -187.0 8.6 -54.5 140.6 145.3 142.0
109.6 96.0 93.5 116.2 99.7 97.6 140.9 125.2 121.6 134.0 121.1 117.9 108.4 96.9 95.3

Spread -6.4 -5.9 -6.1
1.17 1.36 1.19

Flight Count 22.4 10.7 14.8 26.4 17.2 20.2
3.10 2.90 2.76 3.03 3.17 2.89

Count/Spread 1365.2 1125.8 1188.6
160.9 215.4 188.3

Intercept 142.9 59.2 456.0 159.2 -651.3 -467.9 -237.8 -77.8 -282.2 -327.1
78.3 108.1 127.7 159.6 192.9 188.9 198.0 198.8 142.7 171.2

R-squared 0.2165 0.6031 0.2437 0.6032 0.3705 0.6254 0.4360 0.6535 0.4088 0.6450
Hausman (Fixed
vs. Random) 5.05 11.68 24.63 17.07 2.06
Degrees of
Freedom 4 4 5 6 5

Dependent Variable: Sum of All Experienced + Indirect Queuing by Arriving Flights in Each Bank



Table 12a Regressions with bank level obervations

Regression 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Airport Fixed
Effects: no yes no no yes no no yes no no yes no

Random Effects: no no yes no no yes no no yes no no yes

Variable:

Herfindahl -209.3 217.8 72.6
594.6 725.2 624.9

Share -325.0 141.4 -10.8 1378.3 1292.7 1391.1 1128.4 484.6 877.1 332.8 -608.5 -62.4
593.9 760.9 645.5 722.6 819.9 738.3 687.8 834.5 719.3 560.0 757.5 602.6

Hub 1 2603.8 1448.3 1967.6 2644.1 1459.9 1988.7 232.6 -411.4 -138.1 106.1 -525.5 -196.5 1118.1 667.3 967.2
335.1 421.4 360.9 336.5 426.4 365.9 696.8 698.4 665.9 662.1 682.7 645.8 392.2 455.2 397.7

Hub 2 729.5 633.0 697.7 768.9 642.1 718.3 -790.5 -680.1 -709.6 -739.9 -770.0 -711.4 -243.8 -50.9 -79.9
307.6 322.3 300.4 308.9 330.6 307.9 498.5 511.1 486.5 473.4 499.7 470.9 327.0 361.5 326.5

Hub 3 254.8 241.0 244.0 279.6 243.4 253.7 -736.9 -596.9 -652.7 -681.7 -566.6 -598.8 -416.3 -170.6 -261.9
241.9 258.0 241.6 246.9 261.9 246.6 353.3 359.0 342.7 335.7 350.6 332.2 253.3 272.5 252.1

Spread -15.0 -15.0 -14.8
2.85 4.37 3.30

Flight Count 22.6 19.2 20.7 36.0 37.8 36.9
5.76 5.76 5.53 6.03 7.80 6.44

Count/Spread 2498.7 2622.1 2551.9
389.2 640.7 457.5

Intercept 107.5 68.7 184.9 92.8 -1069.5 -987.4 -384.9 -304.5 -1157.9 -1032.1
197.5 260.5 269.8 339.5 413.7 445.4 413.9 451.4 326.0 368.4

R-squared 0.2794 0.4965 0.2800 0.4964 0.3224 0.5208 0.3915 0.5453 0.3837 0.5322
Hausman (Fixed
vs. Random) 10.86 10.75 7.6 6.57 8.16
Degrees of
Freedom 4 4 5 6 5

Sum of Queuing Experienced by Departing Flights in Each BankDependent Variable:



Table 12b (Continued)

Regression 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Airport Fixed
Effects: no yes no no yes no no yes no no yes no no yes no

Random Effects: no no yes no no yes no no yes no no yes no no yes

Variable:

Herfindahl -340.3 -43.5 -129.2
100.4 110.2 101.4

Share -444.4 -76.6 -186.1 24.7 262.7 201.2 -38.6 76.5 26.0 -269.3 -261.2 -287.1
98.7 115.5 104.7 113.3 115.4 109.2 97.4 112.0 100.2 79.8 107.6 87.4

Hub 1 810.6 696.5 705.0 847.5 703.3 720.0 183.4 151.8 143.9 151.3 125.5 121.0 441.2 508.1 470.1
56.6 64.0 58.8 55.9 64.7 59.2 109.2 98.3 95.9 93.8 91.6 88.0 55.9 64.6 57.2

Hub 2 396.0 376.5 368.4 432.1 383.4 382.0 2.6 -6.3 -14.9 15.4 -27.0 -21.1 162.4 212.8 187.2
52.0 49.0 47.1 51.3 50.2 48.2 78.1 71.9 70.2 67.1 67.0 64.3 46.6 51.3 46.8

Hub 3 177.7 168.9 163.5 203.3 172.6 171.8 -76.6 -75.0 -80.1 -62.6 -68.0 -68.1 18.0 70.7 47.9
40.9 39.2 37.9 41.0 39.8 38.5 55.4 50.5 49.4 47.6 47.0 45.3 36.1 38.7 36.1

Spread -3.8 -3.5 -3.5
0.40 0.59 0.48

Flight Count 6.2 5.7 5.8 9.6 9.9 9.8
0.90 0.81 0.79 0.85 1.05 0.91

Count/Spread 665.3 645.5 650.9
55.5 91.0 67.1

Intercept 146.4 73.3 240.3 119.7 -105.2 -183.1 68.3 6.5 -117.2 -119.7
33.4 48.9 44.8 59.9 64.9 70.2 58.6 64.5 46.5 53.9

R-squared 0.5140 0.7252 0.5301 0.7255 0.6063 0.7757 0.7112 0.8064 0.7040 0.7768
Hausman (Fixed
vs. Random) 5.54 7.07 3.44 4.47 4.1
Degrees of
Freedom 4 4 5 6 5

Dependent Variable: Sum of Indirect Queuing by Departing Flights in Each Bank



Table 12c (Continued)

Regression 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
Airport Fixed
Effects: no yes no no yes no no yes no no yes no no yes no

Random Effects: no no yes no no yes no no yes no no yes no no yes

Variable:

Herfindahl -549.6 174.3 -84.0
669.5 804.4 703.5

Share -769.4 64.7 -227.7 1403.0 1555.4 1547.9 1089.8 561.2 872.0 63.5 -869.7 -367.6
668.0 844.0 727.3 805.5 901.0 820.6 755.1 910.8 792.0 615.6 831.8 666.8

Hub 1 3414.4 2144.8 2632.6 3491.7 2163.2 2673.8 416.0 -259.6 -23.6 257.4 -400.1 -93.0 1559.3 1175.4 1426.6
377.3 467.4 406.7 378.5 473.0 412.0 776.7 767.4 735.7 726.9 745.1 707.4 431.1 499.8 438.8

Hub 2 1125.5 1009.5 1060.8 1201.0 1025.4 1098.2 -787.9 -686.4 -721.4 -724.4 -797.0 -729.5 -81.4 162.0 110.4
346.4 357.5 335.6 347.5 366.7 344.0 555.7 561.6 538.0 519.8 545.4 516.3 359.4 396.9 359.7

Hub 3 432.5 409.9 406.3 482.9 416.0 426.5 -813.6 -671.9 -727.8 -744.3 -634.7 -662.6 -398.3 -99.9 -210.2
272.4 286.2 270.0 277.7 290.5 275.4 393.9 394.5 378.8 368.6 382.7 364.0 278.4 299.2 277.7

Spread -18.8 -18.4 -18.3
3.13 4.77 3.66

Flight Count 28.8 24.9 26.3 45.6 47.7 46.7
6.42 6.33 6.10 6.62 8.52 7.11

Count/Spread 3164.1 3267.6 3205.3
427.8 703.5 508.3

Intercept 253.9 161.5 425.2 236.3 -1174.7 -1136.4 -316.6 -277.0 -1275.1 -1143.0
222.4 301.1 303.4 388.9 461.2 500.0 454.4 499.5 358.4 408.9

R-squared 0.3311 0.5463 0.3328 0.5463 0.3835 0.5762 0.4629 0.6033 0.4546 0.5869
Hausman (Fixed
vs. Random) 9.44 9.55 6.09 5.11 6.69
Degrees of
Freedom 4 4 5 6 5

Dependent Variable: Sum of All Experienced + Indirect Queuing by Departing Flights in Each Bank


