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(When) Do Hub Airlines Internalize Their Self-Imposed Congestion Delays?

By JOSEPH I DANIEL AND KATHERINE THOMAS HARBACK*

We develop theoretical models of airport congestion with non-atomistic traffic and

implement them empirically using data from twenty-seven major US airports to

determine whether dominant airlines internalize or ignore self-imposed congestion.

Estimates of minute-by-minute delay patterns at each airport calibrate structural models

of landing and takeoff queues as dynamic functions of traffic rates and airport capacities.

These functions determine the internal and external congestion that aircraft impose on

one another. Specification tests largely reject the internalization model. Optimal pricing

values all time using non-dominant aircraft cost coefficients and treats all delays as

external—i.e., fees equal opportunity costs of allocating peak capacity to dominant

airlines. (JEL H2, L5, L9, D6)

Airport congestion reasserted itself as a significant policy issue during the summer of 2004, after

disappearing for several years following the highjacking attacks of September 11th, 2001 on the World

Trade Center and the Pentagon. The highly congested airports are now at or above their pre 2001 traffic

levels. Congestion is nearly certain to remain the industry’s primary long-term nemesis, even more serious

than recent airline concerns over bankruptcy, labor disputes, and fuel prices. According to the Federal

Aviation Administration (FAA), twenty percent of flights in 2004 were delayed more than fifteen minutes.

The industry estimates such delays will cost 154 billion dollars cumulatively over the next ten years even

with the FAA’s current modernization plans.1 Historically, we have attempted to build our way out of the

airport capacity problem, but planning and construction can take decades and cost over ten billion dollars

per major airport. At best, airport construction offers a distant solution to an immediate problem—at worst,

it is politically and financially infeasible in the foreseeable future.

For over forty years, economists have argued that congestion pricing of scarce airport capacity is

an inexpensive way to achieve efficient use of existing resources. During that time, economic modeling of
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the airport-pricing problem has undergone numerous refinements, but nearly all of the research is based on

models adapted from the highway congestion-pricing literature. Recently, however, several authors have

questioned the practice of applying highway-pricing models to airports. In highway models, travelers are

individual (atomistic) decision-makers whose travel decisions are unaffected by the congestion they impose

on other travelers—a classic instance of externality. Authors who question this framework argue that a

dominant airline at a hub airport schedules many flights that impose congestion on one another. Rather than

facing a classic externality problem, these dominant airlines may already internalize their self-imposed

congestion. The optimal pricing solution for purely external congestion entails charging a fee equivalent to

the additional congestion burden one flight imposes on all other flights. Imposition of atomistic congestion

prices would cause dominant carriers to react inefficiently because such fees would overcharge for already

internalized congestion. If dominant carriers internalize their self-imposed congestion, optimal pricing

would only charge them for the purely external congestion they impose on other airlines. Understanding if

and when carriers internalize their self-imposed congestion delays, therefore, is critical to determining

optimal congestion prices.

This article presents a theoretical model of a dominant airline’s decision regarding whether it

should internalize self-imposed delays and provides detailed empirical evidence from disaggregate data on

every flight at twenty-seven major hub airports between July 28th and August 3rd, 2003. The theory and

empirical results indicate that in most cases dominant airlines do not internalize—they ignore self-imposed

congestion in the manner of highway models. If dominant airlines attempt to reduce self-imposed delays by

rescheduling some flights away from the peak traffic periods, then non-dominant airlines will respond by

shifting flights into peak periods—thereby counteracting the dominant airline’s efforts to reduce peak

traffic rates. Dominant airlines behave like Stackleberg leaders by anticipating such reactions by non-

dominant aircraft and schedule their flights to preempt other aircraft from operating during their peak-

period service intervals—even though this means that dominant aircraft impose delays on one another. The

resulting Stackleberg equilibrium is similar to that of an atomistic model in which dominant aircraft act as

if they have the (lower) time values of the non-dominant aircraft that they preempt.

Section I places our model in the context of the recent research literature. Section II extends the

deterministic bottleneck model of William S Vickrey (1969) and Richard Arnott, Andre DePalma, and
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Robin Lindsey (1990) to include a dominant airline that must decide whether or not to internalize its self-

imposed delays. We show that atomistic, Stackleberg, or internalizing behavior can result—depending on

traffic levels, airport capacity, costs of queuing delay, and costs of deviation from preferred operating

times. Section III develops an empirical model for estimating minute-by-minute landing and takeoff delays

using data on every flight at twenty-seven major US airports for a peak-demand week during Summer

2003. Section IV fits congestion functions based on dynamic, stochastic queuing theory to our airport delay

estimates. These congestion functions embody the structural relationship between congestion delays and

airport service (landing and takeoff) rates, number of parallel runways, and time-varying arrival and

departure rates. The congestion functions enable us to calculate each flight’s own (directly experienced)

delay, the (indirect internal) delay it imposes on other aircraft of its own airline, and the (fully external)

delay it imposes on aircraft of other airlines. Section V presents j-tests of the hypothesis that dominant

airlines minimize queuing-and schedule-delay costs of each aircraft individually against the hypothesis that

they internalize self-imposed delays to minimize such costs of all their aircraft jointly. Section VI

concludes with a discussion of the policy implications of our finding that dominant airlines do not

internalize most of their self-imposed delays.

I. The Literature

Joseph I Daniel (1995) initially noted that dominant airlines might internalize their self-imposed

delays and discussed the implications of this possibility for congestion pricing. Proliferation of hub-and-

spoke route networks following deregulation of the airline industry caused dominant airlines to obtain

control over large shares of traffic at many major airports. According to Daniel, this creates three important

distinctions between the problems of airport and highway congestion pricing. First, dominant airlines can

strategically coordinate their aircraft operations to influence aggregate traffic patterns, so it is important to

explicitly model the dynamic scheduling decisions of the airlines. Second, dominant airlines coordinate

arrivals and departures at hub airports to facilitate passenger connections, leading to rapid fluctuations in

traffic rates. Models with static on-peak and off-peak periods with steady-state traffic and delays ignore

important dynamic aspects of intertemporal traffic adjustment. Third, dominant airlines may face incentives

to internalize their own delays. To address the first issue, Daniel adapts a bottleneck model from the
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highway congestion literature in which dominant airlines schedule their aircraft to minimize connection

costs at their hub airports. To address the second, he uses a time-inhomogeneous stochastic queuing model

as a dynamic congestion function. Together, the bottleneck and queuing models are capable of

distinguishing between internalizing and non-internalizing behavior on the part of dominant airlines. For

the third issue, he performs a series of empirical tests using tower log data from Minneapolis-St. Paul

(Minneapolis-St Paul) airport that reject the hypothesis that Northwest Airlines fully internalizes its self-

imposed delay.

In spite of Daniel’s empirical rejection of the internalization hypothesis, subsequent researchers

find the theoretical position that dominant airlines internalize their self-imposed delays to be a compelling

argument. They note that Daniel’s empirical data is limited to a single airport and airline. His simulation

model does not have a closed-form solution, so it is not transparent what drives the non-internalization

result. Moreover, he does not have direct observations on actual delays—so he is unable to validate his

simulation model of queuing delays against observed delays. To address these issues we develop a closed-

form theoretical model showing when a dominant firm internalizes its delays and when it does not. We also

extend Daniel’s empirical analysis to include all major US airports and to estimate their diurnal delay

patterns from data on aircraft flight times so that we can calibrate and verify our dynamic congestion

function against time-dependent airport delay patterns that are implicit in the data.

Recent articles by Jan K Brueckner (2002) and Christopher Mayer and Todd Sinai (2003) use

newly available data on flight delays from a broad range of major airports to test for econometric

relationships between airline dominance of airports and the levels of delays. Brueckner relies on aggregated

annual counts of flights delayed more than 15 minute from their scheduled operating time (the FAA’s

primary measurement of delay). Mayer and Sinai use disaggregated, flight-level data, with delay measured

as the deviation from the minimum observed flight time between each city pair. Both find statistically

significant—although weak—relationships showing that delays decrease as airport dominance increases,

ceteris paribus. The authors argue that the inverse relationship between airport concentration and delays is

evidence of internalization by dominant airlines and that their congestion fees should reflect internalization

of self-imposed delays. Brueckner proposes that a dominant airline’s fees should be inversely proportional

to its share of aircraft operations at the airport.
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A third study, Anonymous (2004),2 uses an econometric approach similar to Mayer and Sinai with

an alternative definition of flight delay based on deviations of actual flight times from average flight times

between city pairs. This alternative approach understates delays because it excludes average flight delays

that are part of average flight times. Mayer and Sinai defines flight delay as the excess of actual flight time

over minimal flight time between city pairs. Their approach overstates delays because it includes normal

flight time in excess of atypical flight times resulting from unusual conditions such as high tailwinds or the

most favorable flight path. Anonymous finds very small relationships between airline dominance and

amount of delay, and the author(s) argue(s) that the effect is too small to be of practical significance.

The latter three econometric studies are more general than Daniel’s—as they do not rely on a

specific theoretical model of minute-by-minute scheduling of flights by airlines. As a consequence,

however, they must infer internalization (or not) from the statistical relationship between airport

concentration and delay experienced by each aircraft, rather than comparing the dominant airlines’

treatment of additional delay experienced by an aircraft and the additional delay imposed by it on the

airlines’ other aircraft. Brueckner, Mayer and Sinai, and Anonymous test whether dominant aircraft

experience less delay at more concentrated airports, while controlling for other effects. Daniel and the

analysis presented here directly test whether dominant airlines schedule each aircraft to minimize the

aircraft’s individual delay or to minimize its contribution to all delays experienced by the dominant

airline’s aircraft.

II. The Theoretical Model

In this section, we present a deterministic bottleneck model characterizing cost-minimizing

airlines that operate non-negligible shares of airport traffic, but may nevertheless choose to ignore their

self-imposed delays. Although airlines would like to reduce self-imposed delays, air-traffic controllers

allocate landing and takeoff times on a first-come first-served basis so that dominant airlines cannot prevent

other aircraft from operating during peak periods unless they use the periods themselves. In Nash

equilibria, dominant airlines do not expect other airlines to respond to their reduction of peak traffic rates;

while in Stackleberg equilibria, dominant airlines anticipate that other airlines will respond by shifting

traffic back towards the peak. So in Nash equilibria, dominant airlines internalize delays by spreading their
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operations out thereby tempting other aircraft to operate during their peaks. In Stackleberg equilibrium,

however, dominant airlines appear to ignore their self-imposed congestion in order to preempt other aircraft

from operating during their peaks.

The FAA’s recent attempt to help United and American Airlines to reduce congestion at Chicago

O’Hare Airport by coordinating their operating times provides anecdotal evidence supporting the

Stackleberg interpretation. United and American each reduced their peak-period flights by seven and a half

percent, only to have regional airlines shift traffic into the vacated operating times.3 Such agreements by

dominant airlines to reduce traffic and congestion during peak periods are inherently unstable because they

create incentives for non-dominant airlines to unilaterally deviate from their previous operating times.

Congestion pricing would solve the capacity allocation problem by confronting each aircraft with the true

(time-dependent) social cost of its operation and allowing airlines to adjust their operating times

accordingly. Dominant airlines could rely on higher fees to dissuade other aircraft from operating during

their peak periods.

Peak traffic periods at hub airports arise because hub airlines schedule their aircraft from spoke

cities to arrive at hub airports in groups of flights (arrival banks) in time to exchange passengers with

groups of flights (departure banks) that pick up passengers and leave the hub bound for spoke cities.

Suppose the hub airline operates nd aircraft in an arrival bank. In the absence of capacity constraints, hub

carriers would ideally schedule all incoming flights to land at the same time, provide an interchange period

exactly long enough for passengers to transfer to connecting flights, then schedule all outgoing flights to

departure at the same time. Airport capacity constrains the rate at which landings and takeoffs may occur,

forcing carriers to spread out arrivals and departures around their most preferred operating times. Arriving

and departing aircraft have separate queuing systems with independent bottleneck equilibria. The basic

framework applies to both arrival and departure banks, but the equilibria are not exactly the same.4 We

derive the arrival equilibrium and discuss how the departure equilibrium differs. The behavioral

implications and welfare results apply equally to both equilibria.

The airport has fixed capacity of k landings or takeoffs per minute. Non-dominant aircraft do not

participate in the passenger exchange. Their most-preferred-operating times are uniformly distributed at the

rate of f k aircraft per minute, where f is the ratio of fringe operations to capacity, k. In deterministic
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bottleneck models, capacity is fully utilized during congested periods, regardless of whether congestion is

priced or unpriced. It takes nd/(k(1-f)) minutes to process all the aircraft in the congested period surrounding

the hub airline’s interchange period. It follows that the total number of aircraft operating during the

congested period is nd + f k nd/(k(1-f)) = nd/(1-f).

The dominant airline’s problem is to schedule its arrivals and departures to minimize the cost of

its delays and deviations from preferred operating times resulting from the airport bottleneck. Because of

limited capacity, it must schedule some aircraft to arrive before and some to arrive after the interchange

begins. Early arrivals experience additional layover time that costs ce dollars per minute. Arrivals after the

beginning of the interchange, later than the most preferred operating time, increase the chance of missed

connections and increase passenger and baggage handling costs at the rate of cl dollars per minute. Aircraft

in an arrival queue have longer flight times (departures have longer block5 time waiting to takeoff) at the

cost of cq dollars per minute. Since non-dominant aircraft do not face the same time constraints for

operations associated with connecting flights at the hub airport, the cost of deviating from their most-

preferred-operating times is almost certainly lower than that of the dominant airline.6 The costs per minute

of early and late deviations by fringe aircraft from their most preferred operating time areĉe andĉl. The

time fringe aircraft spend in landing and takeoff queues costsĉq dollars per minute. Fringe queuing-time

values should be no greater than those of dominant aircraft. The following inequalities summarize these

assumptions about time values:

ĉece;ĉlcl;ĉqcq;ĉe,ĉl ĉq; ce, cl cq;ĉece;ĉece;ĉe /ĉqce /cq;ĉl /ĉqcl /cq.

A. The Atomistic Equilibrium

First consider the fully-atomistic unpriced equilibrium, in which every aircraft operating at the

airport is essentially independently governed as in highway-congestion models. Every aircraft chooses its

operating time to minimize the sum of its early, late, and queuing time costs:

(1) ĉ[t] =ĉq q[t]+ĉe max[0, ti -(t + q[t])] +ĉl max[0, t + q[t] - ti], fringe aircraft, i, and

C[t] = cq q[t]+ ce max[0, t0 -(t + q[t])] + cl max[0, t + q[t] - t0], dominant aircraft.

For aircraft with identical cost parameters, the sum of costs in Expressions (1) must be identical over their

arrival times—otherwise aircraft with higher cost would have incentive to shift to lower-cost periods,
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meaning equilibrium is not yet achieved. Differentiating (1) with respect to t and solving for the rate of

change in q[t] gives:

(2) qt ce

cqce
, for tto qt, and qt cl

cl cq
, for ttoqt.

Equilibrium queues adjust so that queuing costs just offset changes in early or late time costs, adjusting for

the effect of queuing times on service completion times. The rate of change in queues depends on the

relationship between the arrival rate and the capacity of the deterministic queuing system:

(3) qtrtk
k .

Setting these expressions for the rates of change in queues equal to each other and solving for the arrival

rates gives:

(4) rtk
1 ce

cqce

, for tto qt, and rt k
1 cl

cq cl

, for ttoqt.
Clearly, the rates of change in queues and the arrival rates must be different for the periods in which

dominant and fringe aircraft arrive. During the hub airline’s arrival periods, the queues will change rapidly

enough to shift the fringe aircraft away from the hub airline’s preferred arrival time, establishing a

separating equilibrium with the hub operations in the center of the congested period, and the fringe on the

edges.

Let hb and he be the beginning and ending of the nd/(k(1-f)) minute period occupied by the hub

airline’s arrivals. There are f k nd/(k(1-f)) fringe aircraft displaced from this period. Fringe airlines regard

the cost of time deviations between hb or he and their preferred operating times as fixed, so they only

consider the additional time between hb or he and their scheduled time. At the beginning and ending of the

congested period, tb and te, there are no aircraft in the queue. The change in queuing costs from tb to hb and

from he to te must just offset the change in early or late costs. It follows that:

(5) ĉe (hb-tb)=ĉq q[hb]=ĉq q[he]=ĉl (te-he)=ĉ[t].



9

Equation (5) implies that the lengths of the queues at the end of the early fringe arrivals and the beginning

of the late fringe arrivals are the same. Using the rate of change in queues from Equation (2) we obtain the

relative length of these periods.

(6) tehe cecl cq
clcqcehb tb.

All fringe aircraft must arrive during these periods, so

(7) k
1 ce

cq ce

tb tbk
1 cl

cq cl

tete f nd1 f ,

and the lengths of the fringe arrival periods are:

(8) hbtb f ndcqcecl1f kce clcq
and tehe f ndcl cqce1f kceclcq .

The queues at hb and he are:

(9) qhbqhe f ndc

ec


l1f kceclcq .

Hub airline traffic spreads out around the most preferred arrival time, to, so that aircraft have the same cost

whether they have the longest layover, the longest queue, or the longest late time. Converting the costs per

minute from Equation (8) to cost per aircraft by multiplying by the arrival rate—or using the queuing costs

from Equation (9)—and then multiplying by the number of fringe aircraft gives equilibrium total cost for

all fringe aircraft. The fringe aircraft experience additional schedule delay time associated with deviations

from their most preferred times to tb or te.

(10)
f2 ce cl nd

2f 12 ceclk 
ce cl f k nd

2

2ce cl
Turning to the problem of dominant aircraft—assuming they behave atomistically—they face

similar incentives as the fringe, so their arrival rates and queues have the same relationship to their cost

parameters as previously derived:

(11) rtk
1 ce

cqce

, for tto qt, and rtk
1 cl

cqcl

, for tto qt.
(12) qt ce

cqce
, for tto qt, and qt cl

cl cq
, for ttoqt.
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The hub aircraft must also determine how to time their arrivals relative to their most preferred operating

time, to. As indicated in (11), the arrival rate shifts from high to low just when an aircraft joining the queue

will complete service at exactly to. The beginning and ending times of the hub’s arrival bank is determined

by the relative costs of early and late time, the total number of aircraft in the bank, and the condition that

the queue be in the same state at tb and te:

(13) k
1

ce

cq ce

tphbk
1

cl

cqcl

tehpnd ,

(14)

ce

cqce
tphb 

cl

cqcl
hetp .

Solving for the beginning, ending, and peak times, we obtain:

(15) tb to
cl ndceclk ; te to 

ce ndce clk ; tp to 
ce cl ndce clcqk .

At tp =to-q[to], the queue attains a maximum of:

(16) qhb
clndceclk  fcec


lnd1f ceclcqk


ceclndceclcqk

The full cost of the dominant airline’s arrivals when it acts atomistically is:

(17)
f cq cec


lnd

21fcq ceclk 
ce cl nd

2ce cl k .

The first term of (17) represents the additional queuing cost imposed on the hub airline by the fringe

aircraft. The second term is the self-imposed delay.

The solid lines in Figures 1-4 illustrate the fully atomistic equilibrium. In Figure 1, the fringe

arrivals begin at time zero and cumulate at a linear rate until about time eight. This corresponds to the

graph of the arrival rate that is just below six aircraft per time unit in Figure 2. The dashed horizontal line

in Figure 2 represents the service capacity of five aircraft per time unit. Since the arrival rate exceeds the

service capacity, a queue forms—as represented by the vertical distance between the cumulative arrivals

and cumulative service completions (the dashed line) in Figure 1. The number of aircraft in the queue can

also be seen in Figure 3. At about time eight, the fringe arrivals cease and the aircraft of the dominant hub

airline (acting atomistically) begin arriving at a rate that causes the queue to increase more rapidly than
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before. The fringe queuing cost increases at a faster rate than its layover cost decreases, so fringe aircraft

either operate before this time or they wait until later. The queue increases such that the queuing cost of

dominant aircraft increases at a rate that just offsets the rate at which its layover time cost decreases. After

about time seventeen, dominant aircraft that join the queue will finish service later than they prefer. The

arrival rate must now fall below the service rate so that the rate of decrease in queuing costs just offsets the

rate of increase in the dominant aircraft late-time cost. For fringe aircraft, the queuing time cost is falling

faster than the increase in late time, so it pays for them to continue waiting. Finally at about time twenty-

eight, all the dominant aircraft have completed service, and the fringe aircraft resume operations. Their

arrival rate is faster than the late-arriving dominant aircraft (but below the service rate) so that the reduction

in their queuing costs just equals the increase in their late-time costs. In this equilibrium, the dominant

aircraft preempt their peak-period operating times by using the queuing cost to discourage fringe

operations. The solid line in Figure 4 represents the cost of queuing for aircraft that are completing service

at the time given on the horizontal axis. A congestion fee schedule equal to this queuing cost could replace

queuing by providing the same incentives as the queuing cost and result in aircraft arriving at the

deterministic queuing system at a rate exactly equal to the service rate throughout the entire peak period.

There would be no queues, and the airport authority would capture all of the social welfare that would

otherwise be lost to queuing delay.

Note that atomistic behavior by the dominant hub airline actually causes more queuing than

necessary to dissuade the fringe from operating during the peak period. All that is necessary is that the

queue increase and decrease at the rates given by the dotted line in Figure 3, or that the congestion fee vary

as the dotted line in Figure 4. In the following sections, we calculate and compare equilibria in which the

dominant airline spreads its operations out to completely eliminate queuing (full internalization) or behaves

atomistically but adopts the fringe time costs so that it creates just enough queuing to preempt the peak

period. This latter behavior arises from a Stackleberg equilibrium and may be thought of as partial

internalization, but is indistinguishable from an atomistic equilibrium in which the dominant and fringe

airlines have the same time costs.
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B. The Nash-Dominant (full-internalization) equilibrium

The dominant airline may reduce total costs by coordinating its aircraft in ways that do not satisfy

the atomistic optimization conditions for each individual aircraft. The deterministic queuing system allows

the arrivals to equal capacity without creating any queuing delay. The Nash assumption specifies that the

dominant airline always chooses its best response taking the fringe arrivals as given. The dominant airline

shifts aircraft off the peak to take advantage of unused capacity before and after the peak period. Each

individual aircraft that shifts experiences higher costs, but total queuing costs of the dominant airline

diminish as long as the fringe arrival rates are unchanged. Out of equilibrium, the dominant airline’s

expectation that the fringe will not shift its operations is erroneous. The fringe aircraft shift into the peak

towards their most preferred operating times. Since layover time is less expensive than queuing time, it is

always better at the margin for the dominant airline to spread arrivals until the queue is eliminated. When

the dominant and fringe arrivals are uniformly distributed at rates k(1-f) and f k, there are no queues and no

incentives for any aircraft to shift operating times assuming the other aircraft are fixed.

The remaining problem for the dominant airline is to choose the beginning and ending time for its

arrival bank. The number of dominant aircraft and the residual capacity after serving the fringe aircraft,

k(1-f) determines the length of the bank. Solving the condition that the costs of the first and last aircraft are

equal to obtain the optimal starting time gives:

(18) totbce kd f cl kd f nd

kd f
to tb to tb

cl ndceclkd f.

It follows that the total cost of the Nash dominant airline is:

(19) 
0

cl ndcecl kd f ce tkd f t
0

ce ndcecl kd f cltkd f t 
ce cl nd

2

2cecl1 fk .

Figure 2 shows the fringe arrival rate just equal to the rate of distribution of preferred arrival times. The

hub airline arrivals use up the remaining capacity by spreading out beyond the atomistic arrival bank

period. In Figure 1, total Nash arrivals just equal the service rates, and in Figure 3 the Nash equilibrium

queues are zero throughout. Given the fringe arrival pattern, any change in hub arrivals would either
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increase schedule delay without decreasing queuing or increase queuing and schedule delay

simultaneously.

C. The Stackleberg-Dominant Equilibrium

If the dominant hub airline acts first and anticipates the optimal response of fringe aircraft to its

own schedule, then an intermediate solution may be feasible. The dominant airline adopts the arrival rates

of the atomistic fringe airlines to create a queuing pattern that will just pre-empt the fringe aircraft from

operating during the hub’s arrival bank. If the fringe is less sensitive to schedule delays, then equilibrium

queues can be significantly lower than in the atomistic case. The resulting traffic pattern is not a Nash best

response to the fringe’s schedule because the hub airline could reduce its cost by moving towards the Nash

solution—but only if the fringe arrivals were actually fixed. But now the hub airline anticipates that fringe

aircraft will shift into the bank period whenever the arrival rates and queues fall below the fringe’s

atomistic levels. The hub airline accepts self-imposed delays as necessary to discourage fringe aircraft from

operating during its arrival bank.

For fringe aircraft, the Stackleberg solution is exactly as in the atomistic case. Hub airlines,

however, recognize that atomistic queuing levels are higher than necessary to discourage the fringe from

interfering with their flight banks. High atomistic queues are only necessary to establish atomistic

bottleneck equilibria for hub aircraft with relatively higher schedule-delay values than fringe aircraft.

Stackleberg dominant airlines need only establish queuing patterns required for equilibria among atomistic

fringe aircraft. They schedule their aircraft as if they were acting atomistically and had the fringe time

values. When the hub airline’s bank begins and ends, the queues are in the same states as in the atomistic

case. Since the service completion times are completely determined by the service rate, the total early and

late times are the same. The only difference in cost is due to queuing costs decreasing by:

(20)
 cl ce

2ceclnd
2

k

 cl cecq

2ceclcq

nd

2

k

 ce cl

ce cl


ce clcqce clcq

nd
2

2k .
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The hub airlines’ total cost for the Stackleberg dominant airline is the atomistic cost less the reduction in

queuing cost:

(21)
cq cec


lnd

21f cq ceclk .

Figures (1)-(3) illustrate that Stackleberg equilibria arrival rates and queues are similar to atomistic

equilibria in which dominant airlines act as if their aircraft were atomistic and they all had the fringe time

values. There are, however, several important differences. Dominant airlines position the arrival-rate

changes so that the fringe aircraft begin and end their arrivals to correspond with the hubs’ optimal offsets

from the hubs’ most preferred operating times. The condition that the aircraft with the longest delay arrives

exactly on time is generally not satisfied. Other marginal conditions for atomistic equilibria do not apply to

dominant aircraft: individual hub aircraft could reduce their own costs by shifting towards the peak, while

dominant airlines could reduce total costs by further spreading arrivals—but, again, only if the fringe would

not react.

D. Cost Comparisons

Comparing the equilibrum costs from Equations (17), (19), and (21), the ratio of the Stackleberg-

dominant airline costs to the Nash-dominant airline costs is:

(22)

ceclcecl cq

cec

l

cq cecl
2 Nash Dominant
2 Stackelberg Dominant

The difference between the atomistic and Stackleberg equilibria is positive as:

(23)

ceclcecl cq

cec

l

cq cecl
1 Atomistic
1 Stackelberg Dominant

It follows that Stackleberg behavior weakly dominates purely atomistic behavior7 and that a sufficient

condition for Stackleberg behavior to dominate Nash behavior is that the dominant airline values schedule

delay (early and late time) more than twice as much relative to its queuing costs than the non-dominant

airlines.8 Schedule delay that affects a dominant hub airline’s coordination of its passenger interchange is

likely to be significantly more expensive than that of non-hub airlines or airlines operating hubs at other
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airports. This implies that airports with strong hub operations—like Atlanta, Denver, Dallas, Detroit,

Minneapolis, and Chicago—are more likely to exhibit Stackleberg behavior than airports with less

connecting traffic—like Boston, Baltimore, Washington-National, Miami, Philadelphia, Boston, and

Seattle.

III. THE DATA AND EMPIRICAL MODEL

We use a combination of the FAA’sEnhanced Traffic Management System (ETMS) data and

Airline Service Quality Performance (ASQP) data on all departures and arrivals at 27 major airports from

July 28 through August 3, 2003.9 The data include scheduled and actual arrival and departure times,

expected and actual flight distances, airborne time, taxi time, and aircraft type. The data do not include

direct observations on time spent in arrival or departure queues—a problem in common with the other

recent articles. Mayer and Sinai use the excess of airborne time over the minimum observed flight times for

the given city pair by date cohorts. Measurements based on minimum observed flight times overstate the

queue by using the best realization of random shocks (such as favorable tail winds or more direct flight

paths) as the standard flight time. Alternatively, Anonymous uses deviation above average flight time to

capture the magnitude of a flight’s delay. Measurements based on average flight time understate the

landing queue by including some queuing time in the average. To avoid these problems, we exploit the fact

that airport-specific delays due to capacity limitations are correlated with times of arrival and departure and

do not vary across aircraft with different origins or destinations that operate at the same time. Using data

from multiple days with virtually identical flight schedules largely eliminates effects of airport-specific

random effects that are not time dependent—such as weather. It is the component of travel time that is

common to flights with similar operating times at an airport—delay due to heavy traffic demand—that is

susceptible to congestion pricing.

To estimate landing queues, we assume there are four components to airborne times for flights: the

average time it takes to fly from the origin to the destination; an aircraft type specific component that

accounts for varying aircraft speeds; time spent in the landing queue; and the stochastic error associated

with random shocks like weather. The airborne time is the time from “wheels off” the runway on takeoff to

touchdown on landing. This excludes any taxi or gate access time. Because time spent in the landing queue



16

varies with the number of operations being completed at the airport, the queuing time is related to flight

schedules and thus varies systematically by time of day. To strip out the landing queue time from airborne

times for a given airport, we regress the airborne time of each arriving aircraft on sets of dichotomous

variables for each minute of the day, each city of origin, and each aircraft type10 interacted with flight

distances to account for different speeds. The regression equation can be stated:

(24) Airborne time = 1*minute + 2*city + 3*distance*plane type + .

The resulting vector, 1, of coefficients on the minute of the day dummy variables is the component of the

airborne time that is accounted for by the time of arrival at the airport—i.e., the landing queue estimates by

time of arrival.

For departures, we regress taxi time on a set of dichotomous variables for each minute of the day

and a constant representing the average time to reach the takeoff queue from a gate. The dependent variable

is the time elapsed between push back from the gate and wheels off time. Some of this taxi time includes

the actual time needed to get from the gate into position at a runway to take off, and some is due to time the

flight spends waiting its turn in the departure queue. The regression equations used to estimate the

departure queues at each airport is:

(25) Taxi time = 1*minute + 2.

The coefficients 1, as with 1 for arrivals, are vectors of estimates of the takeoff queues for each minute of

the day.

ETMS data derives from air traffic control, and as such does not include detailed information on

taxi times on the ground. The chief advantage of using ETMS data is that it includes all flights that conduct

instrument operations, including those of small carriers,11 cargo, and general aviation. This ETMS data was

used for the arrival regressions above, and the traffic counts for both the arrival and departure queuing

models that will follow. However, because ETMS does not include detailed taxi information, ASQP data

for the same time periods was used for the departure regressions above. ASQP data includes many fewer

flights, being restricted to the carriers that are individually responsible for more than one percent of total

domestic enplanements of passengers. ASQP has the advantage that it is focused on delay performance. It

has a more detail—specifically, it captures taxi time after a flight departs the gate up until it takes off. It is

not necessary to have every flight in the regressions for estimating takeoff queues, because the regression
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does not involve the departure rate and there is no sample-bias issue. When the traffic rate is an issue, we

use the ETMS data.

Figures 5 and 6 illustrate some representative cases of airport arrival and departure traffic and

estimated queues, Appendix A contains graphs for the remaining airports. The dark lines show the actual

number of arrivals or departures at the airport by minute of the day. The estimated queuing times are

subtracted from the service-completion times recorded in the data to show the times that the aircraft joined

the queue. The light lines represent these estimated queues by minute of the day.

The selected airports demonstrate several different traffic patterns that are common in the

remaining cases. Atlanta and Minneapolis-St. Paul, for example have the clear, regular, and distinct peaks

that are the result of a dominant hub-and-spoke airline’s flight banks. The traffic rates peak sharply every

couple hours at a rate that exceeds the airport capacity, so the estimated queuing delay closely follows the

traffic fluctuations. Between flight banks, the traffic rates drop below the airport capacity—often to nearly

zero. This pattern is the most common among the twenty-seven airports. In addition to Atlanta and

Minneapolis, this hub-and-spoke pattern is exhibited by: Charlotte, NC; Cincinnati, OH; Denver, CO;

Detroit, MI; Houston, TX; Philadelphia, PA; Phoenix, AZ, Pittsburgh, PA; Salt Lake City, UT; and St.

Louis, MO. In addition, Memphis, TN; Miami, FL; and Washington (Dulles) have a similar pattern but

with fewer peaks.

Another group of airports exemplified by Dallas-Ft. Worth—known for heavy traffic—exhibit

significant fluctuation in traffic rates but not as clearly coordinated peaking as those above. They also

exhibit (at least in August, 2003) fairly constant and modest queues. These include New York (LaGuardia)

and Los Angeles. Dallas has unusually high capacity with 6 runways. It has two major airlines so the traffic

peaks are not as distinct as the Atlanta group. New York and Los Angeles both have more than one

dominant carrier and they have even less distinct peaking. These airports have traditionally suffered from

capacity problems, however, so it is surprising that they have such modest queues.

Newark, NJ has a clear diurnal pattern to its traffic and queues with constant high traffic rates

during the afternoon that generate significant queuing. New York (JFK) and San Francisco have similar

patterns. Although they have heavy traffic, these airports are not strong hubs because they are not centrally

located for passenger connections. Their traffic patterns do not exhibit as regular periodic peaking as the
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hubs with more connecting traffic. These airports might be good candidates for the traditional congestion

pricing models with prices set by hour based on hourly arrival rates. Their traffic, however, is clearly

atypical of the large hub airports.

Chicago serves the hub airlines with the most connecting traffic and it is the focus of particular

concern as its delays often cascade through the entire national airline network, disrupting its connecting

airports. Chicago’s traffic pattern exhibits peaking from the two dominant airlines with hubs at O’Hare.

The queues and traffic peaks are similar to other hub-and-spoke airports, but are more frequent and allow

less time for the queues to recover between banks. The presence of two large hub operations makes

strategic interaction between the airlines more likely. Interestingly, the bank operations of the two

dominant airlines rarely—if ever—directly overlap. Dallas-Ft. Worth has a similar traffic pattern, but as

noted above, does not have as high queuing levels.

The remaining airports, including Baltimore-Washington, Boston, Washington National, and

Seattle do not exhibit significant peaking of traffic or queues. Baltimore-Washington is distinct in that it is

a Southwest hub with no other dominant carrier. National is regulated under the High Density Rule, but this

is not a distinction as JFK and LaGuardia are subject to the same regulation.

The theoretical bottleneck model has two implications that can be tested directly from the traffic

data and estimated queues, without requiring estimation of a congestion function. Fringe traffic should shift

away from the traffic peaks of the dominant airlines at airports with Stackleberg equilibria, and the

dominant airline should behave as if it has the same time costs as the fringe. The theoretical model makes

several simplifying assumptions that are not satisfied by the data—fringe time cost are not homogeneous;

preferred operating times of the fringe are not uniformly distributed; and the queuing system is not

deterministic. Nevertheless, the data is generally consistent the theoretical model at the airports where

internalization of congestion is most at issue.

Table 1 lists the twenty-seven airports in our data set and shows the HHI index, the dominant

airlines, their share of flights, and the amount of capacity used by fringe airlines. The sixth column of Table

1 shows the results of regressing the traffic counts of the fringe on those of the dominant airlines. The result

is nearly always negative and significantly so for most of the largest airports with major hub operations—

for example, Atlanta, Chicago, Dallas, Denver, Detroit, and Minneapolis. This indicates that the fringe
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tends to avoid periods in which the dominant airlines operate. The magnitude of the effect is typically

between -0.05 and –0.1—reflecting the disproportionate number of dominant aircraft at these hubs.

Random deviations in flight times prevent the fringe arrivals from clearly separating from dominant airline

arrivals as in the theoretical model. Moreover, some fringe aircraft with high schedule delay costs may

schedule their operations during the peak periods.

Figures 7 and 8 show the traffic patterns of the dominant and fringe airlines at representative

airports, the remaining airports are included in Appendix B. The fringe avoidance of dominant-airline peak

periods is most apparent at Atlanta, Minneapolis, and perhaps Newark. Fringe arrivals tend to peak during

off-peak periods of the dominant airlines. Charlotte, Dallas, Denver, and Detroit have comparable traffic

patterns. Chicago also exhibits this pattern statistically, but it is difficult to detect from the graph.

Boston, Las Vegas, New York LaGuardia, Seattle, and Washington National, exhibit a distinctly

different traffic pattern characterized by more frequent and less extreme peaking and no apparent shifting

of the fringe out of the peaks. JFK could be added to this group, except that it has a single extreme peak in

the mid-afternoon. Of this group, Las Vegas and Seattle are the most consistent with an internalization

equilibrium because they have the most uniformly distributed traffic patterns and fairly steady queues. The

other airports in the group are not strongly dominated by any airline and lack regular periodic peaking

associated with hub-and-spoke traffic. The airlines at these airports probably lack the degree of dominance

needed to internalize delays.

The final column of Table 1 shows the ratio of cost coefficients as given in Inequality (22). We

determine the value of the coefficients by solving Equation (1) for the queue length as an endogenous

function of the equilibrium time cost (ĉ[t] or C[t]), early time (max[0, ti -(t+q[t])]), and late time

(max[0,t+q[t] - ti]):

(26) q[t]=(ĉ[t] /ĉq )- (ĉe /ĉq )max[0, ti -(t + q[t])] -(ĉl /ĉq )max[0, t + q[t] - ti], fringe aircraft, i, and

q[t]=(C[t]/ cq )- (ce/ cq )max[0, t0 -(t + q[t])] -( cl/ cq )max[0, t + q[t] - t0], dominant aircraft.

We estimate the constants and coefficients in equation (26) by regressing each aircraft’s queuing delay on

its early and late time and a bank-specific constant term. When the dominant airline behaves as if it has the

same costs as the fringe, its estimated coefficients are these counter-factual values, not the true values. If



20

the estimated ratio from Inequality (22) as show in Table 1 is equal to one, then the cost estimates are

consistent with Stackleberg behavior. Notice that all of the airports (except Dulles) with statistically

significant relationships between fringe traffic and the dominant-airline peaks have cost-ratio values

between 0.90 and 1.10. All of the airports (except Washington National, Newark, and St. Louis) with non

significant relationships between fringe traffic and the dominant peaks have a cost ratio outside of this

interval. These two tests are consistent with Stackleberg equilibira at Atlanta, Denver, Dallas, Detroit,

Houston, Las Vegas, Los Angeles, Minneapolis, Chicago, and Salt Lake City. The tests do not lend support

to Stackleberg equilibria at Baltimore, Charlotte, Cincinnati, Memphis, Miami, Philadelphia, Pittsburgh, or

San Fransisco.

IV. THE DYNAMIC CONGESTION FUNCTION

In this section we show that stochastic queuing theory provides a highly accurate dynamic model

of congestion based on its structural relationship to traffic rates, number of runways, and length of service

intervals. Most empirical work on airport pricing uses congestion functions for which delays are functions

of current-period traffic rates that vary by hour. The primary purpose of congestion pricing in these models

is to toll off traffic during peak-demand hours rather than to shift traffic inter temporally. Figures 5 and 6,

however, clearly show that traffic rates and delays fluctuate rapidly within hourly periods and that inter

temporal shifting of traffic has great potential for improving airport capacity utilization.

While we assume deterministic queuing in the theoretical model of Section I to obtain closed-form

solutions, time-varying stochastic queuing models are much better at modeling delays over a wide range of

arrival rates. (see, Daniel and Pahwa, 2000). Our empirical specification, therefore, uses a dynamic

congestion function that is based on a stochastic queuing model with Poisson-distributed arrivals with time-

varying traffic rates and multiple deterministic servers representing runways. The function takes the

observed arrival rates, (t), for each service interval as arguments and the fixed service rate, d, and number

of runways, s, as parameters. The state vector in each service interval, p(t), is the probability distribution on

queue lengths. For computational purposes, the queues have a finite maximum length that is sufficiently

large that the probability of approaching it is negligible. The queues evolve according to a transition matrix,
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T((t);d,s), that determines the next period’s state based on the current state, the probability distribution on

number of arrivals given (t), the number of available servers s, and the length of service d:12

(27) p(t+1)= T((t);d,s) p(t).

In the initial period, the state vector has probability one of no queue, and zero probability of all positive

queue lengths.

We could simply use the arrival rates depicted in Figures 5 and 6 as the (t)’s, to calculate the

queues. In the next section, however, we want to attribute delays to particular aircraft and distinguish

between delays imposed internally or externally to the dominant airline. We also want the delay costs to

reflect uncertainty caused by random deviations of actual operating times from scheduled operating times.

We use the mean of each flight’s seven observed operating times as its intended operating time. For each

airport, we determine the distribution of deviations of aircraft operating times about their means. The

expected arrival rate in each period is the sum over all the aircraft of the probabilities that the aircraft

operate within that period. This smoothes the variation in expected traffic rates over time more than the

observed traffic fluctuations in our data, but the queuing model treats arrivals as a Poison process with

mean (and variance) (t), so it accounts for the whole distribution of traffic rates and queue lengths. The

number-of-servers parameter in the queuing model is equal to the maximum number of non-intersecting

runways at the airports. We set the service-rate parameter to calibrate the queuing model to fit the

simulated queuing pattern to the delays estimated from the regression model.13

Figures 9 and 10 compare the expected delays from the dynamic congestion function with the

regression estimates at representative airports—Appendix C shows the remaining airports. The congestion

function only has two parameters, yet it is able to reproduce the delay patterns at airports with very

different traffic patterns. The model is particularly good at matching hub-and-spoke queuing patterns. Since

the congestion function embodies the structural relationship between traffic rates, capacity, and service

intervals, these graphs represent an overwhelming case that airport delays are largely a consequence of

regular traffic patterns—not, as the FAA sometimes maintains, an unavoidable consequence of bad

weather. The congestion function also matches the more constant queuing patterns that Baltimore-

Washington, Dallas-Ft. Worth, Las Vegas, and Los Angeles exhibit. The model does less well at airports

with long steady periods of elevated demand—but such airports are the exception, not the rule. Of these
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airports, the congestion function successfully approximates delays at Newark, but is less successful with

New York-JFK or San Francisco.

The empirical analysis of traffic rates and delays in this and the previous section demonstrates that

the congestion problem at nearly all major airports is characterized by rapid fluctuation of queues caused

by airlines scheduling arrivals and departures to coordinate passenger exchanges between origin and

destination flights. Modeling of airport congestion, therefore, requires a dynamic model of airline

scheduling and a congestion function that reproduces the observed fluctuations in queues. The dynamic

congestion function developed above is generally successful in matching the regression estimates of

minute-by-minute delays based on their structural relationship to time-varying arrival rates, service

capacity, and service intervals. In the next section, we use the bottleneck theory to model airline scheduling

and the congestion function to determine the internal and external delays generated by each aircraft.

V. SPECIFICATION TESTS

We base our specification tests directly on the model’s cost minimization conditions by

calculating internal and external delay times of each aircraft using the dynamic congestion function and

disaggregate traffic data. Brueckner and Mayer and Sinai must infer whether airlines internalize based on

relationships between airport concentration levels and the amount of direct delay experienced by aircraft. If

the internalization hypothesis is correct, then dominant airlines should treat indirect delays their aircraft

impose on one another the same as they treat delays each aircraft experiences directly. They will adjust the

operating times of their aircraft to minimize the sum of direct and indirect delays. If dominant airlines

behave atomistically or as Stackleberg leaders, then they will adjust the operating times of their aircraft to

minimize only the direct costs each aircraft experiences—ignoring the indirect delays. In either

equilibrium—assuming homogeneous aircraft—airlines schedule each aircraft such that it contributes the

same amount to the relevant measure of additional delay. The equilibrium condition for each aircraft in

either case can be written as:

(28) (queuing time)=C-ce/cq (early time) - cl/cq (late time),
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where the time values are those experienced directly by the aircraft for the non internalization case or the

sum of direct and indirect delays for the internalization case. Queuing time adjusts endogenously with the

traffic rates so that Equation (28) is satisfied for all aircraft scheduled during a bank.

The fundamental idea of the specification tests is to treat Equation (28) as a regression equation

for estimation under both hypotheses. We then enter the predicted value from each specification as an

independent variable in the alternative model to test whether it has any explanatory power against the

independent variables of that specification. If the coefficient on the predicted value from the alternative

model is significantly different from zero, we reject the specification of the model to which the predicted

values has been added.

Given the dynamic congestion function specified in the previous section, we can calculate the rate

of change of the system state in each subsequent period with respect to the arrival rate (t). Let D(t) be the

matrix of derivatives of the elements of transition matrix T(t) with respect to (t). The effect of (t) on the

queuing system in n periods hence is:

(29) d q(t+n)/d(t)=T(t+n)… T(t+2) T(t+1) D(t) q(t).

The ith element of the state vector, qi(t+n), denotes the change in probability that the queue is of length i in

period (t+n) as a result of an arrival at time t. It follows that the change in early time of an aircraft arriving

at period t+n with respect an arrival at t is:

(30) d e(t+n)/d(t)=i<t*-(t+n) qi(t+n) {t*-[(t+n)+i]}.

Similarly, the change in late time of an aircraft arriving at period t+n with respect an arrival at t is:

(31) d l(t+n)/d(t)=i>t*-(t+n) qi(t+n) {t*-[(t+n)+i]}.

To account for uncertainty over the actual arrival times, we weight the marginal queuing, early, and late

times by the probability that an aircraft scheduled to arrive at t+n actually arrives at (t+n+s):

(32) s {p(t+n+s) i i d qi(t+n)/d(t)},

s {p(t+n+s) d e(t+n)/d(t)}, and

s {p(t+n+s) d l(t+n)/d(t)}.

Summing the expressions in (32) for each aircraft over all other aircraft operated by the dominant airline

gives the changes in indirect queuing, early, and late times an aircraft arriving at time t imposes on other

aircraft operated by its airline.
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We estimate two versions of Equation 28—the non-internalization case uses the aircrafts’ own

(direct) queuing, early, and late times, and the internalization case uses the sum of the aircrafts’ direct and

indirect delay times. For the non internalization case, the bottleneck model implies that the most prefered

operating time t* is the service completion time of the aircraft expereincing the maximal queue. There is no

equivalent simple rule for determining t* for the internalization case, so we chose the best t* from those

spaced at five percent increments of the bank period. The “best” t* is the one that leads to the strongest case

for rejection of the non-internalization hypothesis from among those consistent with the internalization

hypothesis.14 While this approach is based directly on the bottleneck model, it also applies to a more

general class of models. We are essentially testing the best model that is piecewise linear in time costs

where the dominant airline tradesoff schedule delay against queuing delay to minimize the sum of delay

costs. We further generalize the empirical model by adding a specification with squared schedule-delay

terms to allow for non-linear delay costs that may vary disporportionately with very long schedule delays

or as a result of inhomogeneous aircraft time values that airlines order by decreasing schedule delay.15

The dependent variable in the alternative versions of Equation 28 differs by the amount of the

indirect queuing delay. We modify the standard j-test to account for this difference in dependent variables

by adding the indirect queuing delay to the direct queuing delay predicted by the non internalization model

before entering it as an additional regressor in the internalization model. Similarly, we subtract the indirect

queuing delay from the queuing delay predicted by the internalization model before entering it in the non

internalization model. The resulting test equations are:

(33) (direct & indirect queuing time) = C/cq + ce/cq (direct & indirect early time) +

cl/cq (direct & indirect late time) + ch0 (predicted direct + indirect queuing time) + ,

(34) (direct queuing time) = C/cq + ce/cq (direct early time) + cl/cq (direct late time) +

ch1 (predicted direct & indirect - indirect queuing time) + ,

where the observations are by dominant aircraft.

Equations 33 and 34 essentially pit each alternative set of regressors against eachother. The

coefficients ch0 and ch1 indicate whether the alternative hypothesis has any effect on the dependent variable

when the model’s own independent variables are included. If the t-statistics indicate that these coefficients

are significantly different from zero, then we reject the original model to which the predicted value was
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added. When ch0 is significantly positive, then the airline appears to be adjusting its aircrafts’ operating

times in response to their direct delay costs even when we are already accounting for their full internal

costs. We reject the internalization model. When ch1 is significantly positive, then the airline appears to be

adjusting its aircraft operating times to respond to the full internal delay costs even when we are accounting

for their direct delay costs. We reject the non-internalization model.

We perform sets of j-tests for flight data pooled by bank and for data pooled across flight banks

within airports. Pooling by bank implies that cost coefficients are the same for aircraft within each bank,

but may vary across banks at each airport. Pooling across banks at each airport forces the delay cost

coefficients to be identical across all the banks (each bank still has its own equilibrium cost level, C), while

allowing variation across airports. Airport specific estimates are desirable if the cost coefficients are

primarily determined by characteristics of the dominant aircraft that do not change from bank to bank.

Bank-specific estimates are desirable if dominant airlines strategically preempt fringe operations during the

banks by adopting fringe cost coefficients, as in the theoretical model of Section 1. The fringe cost

coefficients may vary by bank as the composition of fringe aircraft changes. Fringe airlines’ demand

elasticities and their propensity to shift operations into the dominant airline’s peak operating times may also

vary by bank—thereby changing whether the dominant airline chooses to internalize its self-imposed

delays from one bank to the next.

We also test versions of the models assuming costs vary either linearly or non-linearly with length

of schedule delay times. While the theoretical model maintains the assumption of linear time costs for the

sake of simplicity, there are several reasons to believe that schedule delay costs may not vary

proportionately with the length of delay. Aircraft operating close to the beginning or ending of the

interchange period may disrupt passenger connections disproportionately to their expected schedule delay

times. Moreover, aircraft are not actually homogeneous in delay costs—so dominant airlines may schedule

smaller low-cost aircraft further from their interchange periods, causing schedule delays to cost

disproportionately less with length of delay. To control for these non-linear schedule delay effects, we add

specifications of the internalizing and non-internalizing models that have both linear and squared schedule

delay terms. As shown below, the j-tests for linear specifications of the models have many indeterminant
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results—where both or neither model is rejected—but the j-tests on non-linear specifications often resolve

these cases in favor of the non-internalization model.

Table 2 displays the cost coefficients for the linear specification of the internalization and non-

internalization versions of Equation (28) along with the coefficients ch0 and ch1 from Equations (33) and

(34). The j-tests for linear versions with pooled banks reject the internalizing specifications at every airport,

while failing to reject the non-internalizing specification for arrivals the following airports: Boston,

Baltimore-Washington, Cinncinatti, Washington National, Detroit, Newark, Dulles, Las Vegas, New York-

Laguardia, Miami, Philadelphia, Pittsburgh, Seattle, San Francisco, Salt Lake City, and St Louis. For

departures, the tests fail to reject the atomistic specification at: Atlanta, Baltimore-Washington, Cinncinatti,

Detroit, Dulles, Las Vegas, New York-Laguardia, Memphis, Miami, Minneapolis-St Paul, Philadelphia,

Pittsburgh, Seattle, Salt Lake City, and St Louis. Both the internalizing and non-internalizing models are

rejected for either arrival or departures by the pooled linear j-tests at the remaining airports: Atlanta,

Charlotte, Denver, New York-JFK, Los Angeles, Memphis, Miami, Minneapolis-St Paul, Chicago, and

Pheonix. In many of these cases, while the coefficient on the internalizing model is significant, it is close to

zero. The non-linear j-tests resolve many of these indeterminant cases by rejecting the internalizing model.

For arrivals, the pooled, non-linear j-tests only reject the non-internalizing model for New York-JFK, Los

Angeles, Memphis, Miami, Minneapolis-St Paul, Chicago, and Pheonix, and for departures only at Boston,

Cinncinatti, Dallas, Houston, New York-JFK, and Pheonix.

In summary, the j-tests for specifications with common cost coefficients across banks within

airports never unambiguously support the internalization model, while they do support the non-

internalization model for about three-fifths of the airports in the linear versions and about three-quarters of

the airports in the non-linear versions. Nevertheless, the non-internalizing model is rejected at several

airports that are most often suggested as candidates for congestion pricing, namely Boston, Dallas, New

York-JFK, Minneapolis-St Paul, and Chicago. As we show next, the bank specific j-tests show that flights

operating during typical large interchange banks at nearly all the highly congested airports do not

internalize delays.

Table 3 summarizes the j-test results for the bank-specific non-linear j-tests for all banks of fifteen

or more aircraft. Of these banks, 188 or 54.6% reject internalizing behavior while failing to reject non
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internalizing behavior; 27 banks or 7.8% reject non internalizing behavior while failing to reject

internalizing behavior; and 128 banks or 37.5% are inconclusive. Airports with a high percentage of non

internalizing banks and little or no internalizing banks include: Atlanta, Charlotte, Washington National,

Denver, Dallas, Detroit, Newark, Houston, New York-JFK, Minneapolis-St Paul, Chicago, Pittsburgh, San

Francisco, and St Louis.16 This list includes all the airports that are usually thought to be candidates for

congestion pricing, except for Los Angeles and New York-LaGuardia. Congestion pricing that is limited to

periods with large interchange banks at the listed airports would be an appropriate policy for reducing

congestion and would only price otherwise uninternalized delays. Traffic at Los Angeles and New York-

LaGuardia is atypical of large hub airports because it is more uniformly high relative to capacity than

traffic at airports that have rapidly fluctuating traffic associated with serving connecting passengers. Los

Angeles and New York-LaGuardia are more suited to flat rate landing fees designed to toll off excess

traffic rather than optimize the scheduling of operations. We believe our j-test results constitute

overwhelming evidence favoring the non internalizing specification for traffic data across a wide spectrum

of the major US airports.

VI. CONCLUSION

This article seeks to answer two basic questions. First, is it sensible to believe that an airline with a

dominant share of an airport’s traffic would ignore the indirect delays its aircraft impose on one another?

Second, assuming that airlines adjust their aircraft operating times to minimize (some measure of) queuing

and schedule delay costs, is the data on the timing of individual aircraft operations by dominant airlines

consistent with the minimization of all internal costs or only the aircraft’s direct costs? We answer the first

question by providing a theoretical model in which dominant airlines act as if they ignore their self-

imposed delays. They can only exclude fringe aircraft from their peak periods by scheduling their aircraft

preemptively as if they were fringe aircraft. The resulting (Stackleberg) equilibrium has less delay than a

fully atomistic equilibrium because fringe aircraft have relatively lower schedule-delay cost and more

readily shift off peak than dominant aircraft. The appropriate fee schedule is identical to that for an

atomistic bottleneck equilibrium in which all aircraft have the fringe time costs. The answer to the second

question is that our specification tests of alternative versions of the model fail to reject the hypothesis that
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dominant airlines behave consistently with the Stackleberg and atomistic equilibria at nearly all the major

airports. The specification tests usually reject the internalization specification. The data also indicate that

dominant aircraft operations tend to deter fringe aircraft from operating during the peak periods. Estimates

of the cost coefficients reveal that dominant airlines act as if they have similar delay-time values as the

fringe at many airports—while these coefficients vary across airports indicating that dominant aircraft

adjust to local conditions rather than using their aircrafts’ true time values.

So, what should be done? We argue that any policy to reduce airport congestion should be seen

part of a system-wide effort to improve hub airline efficiency and promote inter-hub competition. The

result of any airport congestion policy should be to allocate airport capacity in a way that recognizes that

hub airlines generally have higher values of schedule delay than other aircraft operating at their hubs.

Properly implemented, congestion pricing would improve flight connection times for airlines at their own

hub airport, while imposing only minor scheduling delays (often less than 15 minutes) from their most

preferred operating times at their non hub airports. We believe that hub-and-spoke networks will continue

to be the core components of the national air-traffic network due to their economies of scale and scope.

Some direct-service airlines will continue to “cream” high-density city-pair markets—but when older

airlines finally shake off the high-cost legacies of the regulated era, the natural advantages of hub-and-

spoke operations will prevail. Hub airlines should support congestion pricing as a means of reducing self-

imposed congestion while pricing other airlines out of their periods of peak bank operations. This approach

is pro-competitive because—while it strengthens the local hub—it means that other airlines will be able to

provide more rapid connections at competing hubs. By improving connecting service, there would be more

viable competition or potential competition in many origin-destination markets—putting downward

pressure on fares. Direct-service airlines can operate during off-peak periods (by shifting their schedules

slightly) and have lower landing fees than they would under the weight-based system, or they can operate

during peak periods with higher fees but less delay. Since there are real resource savings from reduced

delay, it is possible in principle to make all parties better off. The airport will have additional revenues with

which to enhance capacity.

Our empirical analysis shows that large hub airline operations like those at Atlanta, Denver,

Dallas, Detroit, Newark, Minneapolis-St Paul, Chicago, San Francisco, Salt Lake City, St Louis, and
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Washington National generally have traffic patterns that are consistent with the bottleneck model.17 While

they sometimes show some small degree of internalization, it is limited to a few atypical banks. Most of

these airports also exhibit evidence that dominant operations deter fringe operation during peak periods.

These are the airports that are usually considered candidates for congestion pricing, and it appears safe to

treat them as instances of Stackleberg equilibria in which dominant airlines apparently ignore the delays

they impose on themselves. It follows that there is a significant role for congestion pricing in reducing

delay at most US airports.

We leave the determination of equilibrium congestion prices for future research. The external

delays used in our j-tests are calculated form the congestion function given the actual unpriced traffic rates

and are not the equilibrium external delays under congestion pricing. Unlike the deterministic model,

stochastic queuing systems have positive expected queues even when the traffic rate is below the capacity

rate. Consequently, the deterministic result that optimal fees equal the monetary value of the queuing time

that an aircraft with a given service-completion time would experience in the unpriced equilibrium does not

hold for the stochastic model. Because it is impractical to totally eliminate stochastic queues, the

endogenous traffic rates must balance some queuing costs against early- and late-time costs even in the

priced equilibria. Daniel (1995) provides an algorithm for calculating the equilibrium arrival pattern for the

stochastic model. A fully satisfactory treatment of system-wide congestion pricing also requires

endogenizing traffic flows across airports as fees at highly congested airports shift aircraft to less-congested

airports. Addressing these issues is beyond the scope of this paper.18
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Endnotes

* Daniel: Department of Economics, Purnell Hall, University of Delaware, Newark, DE 19716, (e-mail:

Joseph.Daniel@verizon.net); Harback: Department of Economics, Purnell Hall, University of Delaware,

Newark, DE 19716.

1 Current delay estimates are from the FAA as published at http://www.bts.gov/help/aviation.html. This

measure understates "delay" by excluding systematic congestion delay that carriers anticipate and build into

their scheduled flight times. Projected delay costs are from a study by Global Insight and the Campbell-Hill

Aviation Group published at http://www.boeing.com/news/releases/2002/q3/nr_020930d.html.

2 Although the paper has been distributed as a working paper, it is currently under review and the author(s)

request it not be cited.

3 “FAA Targets O'Hare Airport Congestion; United, American Begin Cutting Flights” Facts on File World

News Digest, September 9, 2004, p. 694B1.

4 The symmetry of the arrival and departure bottlenecks is not perfect because arriving aircraft do not begin

their layover time until they complete service, while departing aircraft end their layover time as soon as

they join the takeoff queue.

5 “Block” time refers to the elapsed time between removal of the aircraft wheel blocks just before push

back from the departure gate and placement of the blocks around the wheels at the arrival gate. Block time

is the period during which the aircraft engines are running and it is used to calculate crew compensation.

6 Lower time-deviation costs of the fringe are an essential condition for the dominant airline to benefit from

strategically pre-empting fringe traffic during its arrival and departure banks.

7 Stackleberg and Atomistic equilibria are identical in the limiting case where the dominant airline has the

same cost ratios as the fringe.

8 The ratio of the dominant airline’s early-time to queuing-time values can be less than twice as high as the

non-dominant airlines if its ratio of late-time to queuing-time values is sufficiently more than twice as

high—and vice versa.

9 Thanks to Robert Hoffman and Julia Korey at Metron Aviation, and Dipasis Bhadra and Brendan Hogan

at MITRE for assistance obtaining the data. The analysis in this article is solely that of the authors and does

not represent the position of Metron Aviation or MITRE or its employees.
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10 Aircraft types depend on type of engine, number of engines, and weight.

11 Small carriers are extremely important for consideration of airport level concentration because many of

them code share with the large dominant carriers, meaning they operate coordinated schedules because of

fare cross marketing arrangements.

12 The mathematical form of this transition matrix is derived and specified in Daniel (1995), Appendix A.

13 The complete mathematical specification of the queuing model is provided in Daniel (1995). We adopt

the same specification.

14 Values of t* very early or late in the bank often result in incorrect signs on the time coefficients,

indicating that if the t* value was valid the airline does not trade off queuing time against schedule delays.

Occasionally, these regressions resulted in the strongest rejection of the alternative hypothesis. In the few

cases where there was no t* consist with non internalization, or all values were equally bad, we chose the

one with the highest R-squared. In the vast majority of cases, however, there was a clearly best value

somewhere in the middle of the bank.

15 There are at least three factors that could contribute to non-linear schedule delay costs. Aircraft with

short schedule delays may cause disproportionately more problems for passengers connecting with other

flights. With inhomogeneous aircraft, airlines should schedule aircraft with lower schedule delay costs

further from the interchange. Passengers may be proportionately more adverse to long schedule delays.

16 The non-linear specification significantly affects the j-test results at Atlanta, Denver, Detroit, and

Chicago by increasing the rejection of the internalizing specification. The other airports are not greatly

affected by inclusion of squared schedule delay terms. Results of the linear specification are available from

the authors upon request.

17 Two notable exceptions, New York (JFK) and Boston, yield inconclusive results. Neither of these is

dominated by a hub-and-spoke airline and their traffic patterns appear more typical of purely atomistic

aircraft without the distinct peaking caused by coordinated banks of flights.

18 Note to editors and referees: We can include the optimal congestion prices for all the airports given the

existing demand and network traffic patterns, if you think it strengthens the paper. Since we sought to focus

on the internalization issue, and the paper is already long, we felt it better to include these results in an

upcoming paper on system-wide congestion pricing and optimal capacity of US airports.
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Figure 1—Cumulative Atomistic, Stackleberg, and Nash arrivals and service completions
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Figure 2—Atomistic, Stackleberg, and Nash arrival rates
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Figure 3—Atomistic and Stackleberg queue lengths
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Figure 4—Atomistic and Stackleberg congestion fee schedules
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Figure 5--Examples of Arrival Rates and Delay Data by Minute of the Day
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Figure 6--Examples of Departure Rates and Delay Data by Minute of the Day
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Firgure 7--Selected Arrival Rates of Dominant and Fringe Airlines
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Firgure 8--Selected Departure Rates of Dominant and Fringe Airlines
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Figure 9--Examples of Delay Data by Minute of the Day, Compared with Delay from Queueing Model
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Figure 10--Examples of Delay Data by Minute of the Day, Compared with Delay from Queueing Model
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Table 1--Airport Concentration, Airline Shares, Dominant v Fringe Traffic Correlation, Cost Ratios

Airport HHI Carrier
Dominant

Share

Fringe
share of
capacity

Dominant v
Fringe
Arrivals

Correlation

Dominant v
Fringe

Departures
Correlation 1/Ce+1/Cl

Cost ratio--
Equals 1 for
Stackleberg

behvior
ATL 5036 DAL 70.8 0.217 -0.098 -0.076 11.53 1.00

BOS 816 AAL 20.8 0.389 0.023 -0.155 -86.46 1.21
USA 14.5 0.059 -0.116 -64.28 0.90
UAL 13.2 -0.024 -0.142 -150.77 2.11

BWI 1626 SWA 39.1 0.378 -0.030 -0.127 39.60 0.90

CLT 5640 USA 74.9 0.089 -0.041 -0.015 17.51 0.86

CVG 5059 DAL 69.9 0.112 0.029 -0.001 16.63 0.73

DCA 2513 USA 42.9 0.204 -0.019 -0.001 47.29 0.96
DAL 18.7 -0.004 -0.081 45.98 0.94
AAL 16.6 0.001 -0.064 50.24 1.03

DEN 2907 UAL 50.4 0.128 -0.048 -0.134 18.71 0.91

DFW 4560 AAL 63.6 0.068 -0.016 -0.052 43.87 0.91
DAL 22.5 -0.048 -0.083 41.30 0.85

DTW 5609 NWA 74.6 0.091 -0.042 -0.113 25.35 0.99

ERW 3748 COA 59.9 0.182 -0.031 -0.174 16.76 1.07

IAD 2500 UAL 49.4 0.112 -0.064 -0.145 25.02 0.80

IAH 5843 COA 76.4 0.060 -0.034 -0.071 13.49 0.98

JFK 1494 JBU 20 0.564 0.033 -0.013 10.96 0.96
AAL 28.5 0.010 -0.011 11.73 1.03
DAL 16.8 0.014 -0.022 11.53 1.01

LAS 1441 SWA 32.1 0.193 -0.064 -0.232 47.34 1.04
AWE 16.4 -0.063 -0.075 38.91 0.81

LAX 1882 UAL 31.6 0.158 0.030 -0.071 39.47 1.00
AAL 24.6 -0.050 0.034 42.29 1.02
SWA 14.6 -0.124 0.114 42.26 1.02

LGA 1978 AAL 21.7 0.353 -0.01 -0.053 45.98 1.00
DAL 21.4 -0.01 -0.085 43.87 0.95
USA 32.4 0.02 -0.111 51.48 1.12

MEM 2816 NWA 44.0 0.06 -0.020 -0.059 20.16 0.63

MIA 2703 AAL 49.3 0.159 -0.018 -0.065 33.08 0.87
UAL 14.0 0.008 -0.024

MSP 5488 NWA 73.9 0.109 -0.057 -0.030 11.95 1.04

ORD 3775 UAL 48.3 0.074 -0.086 -0.038 19.80 0.94
AAL 37.8 -0.100 -0.049 20.39 1.00

PHL 3747 USA 60.6 0.150 -0.035 -0.120 14.41 0.89

PHX 2796 SWA 26.0 0.100 0.054 -0.103 22.79 0.99
AWE 45.0 -0.015 -0.170 22.55 0.93

PIT 5775 USA 75.8 0.069 0.007 -0.081 27.32 0.90

SEA 5591 DAL 74.8 0.172 -0.026 -0.169 33.65 -1.63

SFO 3083 UAL 54.7 0.196 -0.042 -0.119 25.80 0.87

SLC 4424 DAL 65.9 0.113 -0.033 -0.068 17.00 1.08
SWA 8.5 -0.102 -0.010

STL 5032 AAL 69.8 0.121 -0.032 -0.028 14.81 0.96
Bold denotes significance at 95% level.



Table 2--J-Tests of Atomistic and Interalizing Behavioral Hypotheses, Flight Banks Pooled by Airport
Atomistic Model Internalizing Model

Early Late
R-Squared/

Observations

Internalizing
J-Test

Coefficient

Significant in
non-linear

model? Early Late
R-Squared/

Observations

Atomistic J-
Test

Coefficient

in non-
linear

model?
Atlanta

Arrivals -0.105 -0.162 0.8353 0.061 no -0.053 -0.118 0.9212 0.953 yes
0.010 0.018 486 0.017 0.003 0.006 486 0.016

Departures 0.290 0.010 0.9895 -0.026 no -0.083 -0.089 0.9464 1.029 yes
0.005 0.020 846 0.011 0.004 0.006 846 0.008

Boston
Arrivals -0.064 -0.027 0.9411 -0.182 no -0.040 -0.024 0.9381 1.182 yes

0.011 0.005 237 0.117 0.009 0.004 237 0.117

Departures 0.080 0.083 0.9232 0.389 yes -0.029 -0.011 0.8445 0.888 yes
0.013 0.012 132 0.092 0.010 0.011 132 0.081

Baltimore/Washington
Arrivals -0.016 0.006 0.7871 -0.712 no -0.008 -0.001 0.7624 1.711 yes

0.014 0.006 112 0.122 0.009 0.004 112 0.121

Departures 0.006 -0.012 0.9275 -0.292 no 0.000 -0.050 0.8915 1.245 yes
0.020 0.018 131 0.071 0.009 0.017 131 0.062

Charlotte
Arrivals -0.135 -0.212 0.8481 0.051 no -0.073 -0.120 0.8408 0.962 yes

0.019 0.015 400 0.024 0.007 0.007 400 0.023

Departures -0.023 -0.275 0.9297 0.095 no -0.073 -0.064 0.8608 0.906 yes
0.033 0.024 212 0.026 0.009 0.015 212 0.026

Cinncinatti
Arrivals -0.068 -0.097 0.7307 -1.040 no -0.065 -0.137 0.7375 2.037 yes

0.012 0.015 452 0.110 0.010 0.014 452 0.107

Departures 0.316 -0.051 0.9211 -0.031 yes -0.085 -0.070 0.848 1.066 yes
0.017 0.041 294 0.023 0.012 0.020 294 0.019

Washington National
Arrivals -0.002 -0.032 0.9125 -0.061 no -0.052 -0.027 0.9026 1.114 yes

0.009 0.007 160 0.106 0.015 0.005 160 0.096

Departures 1.815 1.516 0.9893 0.046 no -0.067 -0.397 0.9756 0.959 yes
0.123 0.037 175 0.007 0.022 0.044 175 0.006

Denver
Arrivals -0.117 -0.107 0.901 0.153 no -0.079 -0.044 0.8906 1.022 yes

0.016 0.019 347 0.051 0.010 0.011 347 0.051

Departures -0.210 -0.232 0.9402 0.091 no -0.098 -0.022 0.8824 0.909 yes
0.022 0.018 192 0.035 0.010 0.008 192 0.035

Dallas/Ft. Worth
Arrivals -0.018 -0.026 0.8931 0.067 no 0.001 -0.020 0.8231 0.939 yes

0.006 0.004 453 0.047 0.004 0.003 453 0.047

Departures 0.058 0.131 0.9146 0.146 yes -0.032 0.007 0.7306 0.946 yes
0.007 0.005 639 0.022 0.004 0.006 639 0.018

Detroit
Arrivals -0.143 -0.079 0.8463 -0.039 no -0.085 -0.066 0.8888 1.040 yes

0.016 0.013 360 0.028 0.008 0.005 360 0.028

Departures 0.316 -0.051 0.9211 -0.031 no -0.085 -0.070 0.848 1.066 yes
0.017 0.041 294 0.023 0.012 0.020 294 0.019

Newark
Arrivals -0.596 -0.112 0.9264 -0.023 no -0.097 -0.077 0.9738 1.023 yes

0.039 0.020 241 0.022 0.007 0.007 241 0.022

Departures 1.815 1.516 0.9893 0.046 no -0.067 -0.397 0.9756 0.959 yes
0.123 0.037 175 0.007 0.022 0.044 175 0.006

Washington/Dulles
Arrivals -0.098 -0.058 0.8027 -0.337 no -0.101 -0.101 0.863 1.295 yes

0.018 0.015 196 0.088 0.011 0.012 196 0.069

Departures 0.282 -0.296 0.9317 0.034 no -0.012 -0.143 0.8854 0.994 yes
0.068 0.065 66 0.068 0.025 0.031 66 0.064

Houston
Arrivals -0.172 0.026 0.8155 0.004 no -0.178 -0.101 0.8901 0.998 yes

0.029 0.025 395 0.022 0.010 0.009 395 0.019

Departures -0.043 -0.254 0.9483 0.371 yes -0.131 -0.308 0.8208 0.765 yes
0.035 0.025 259 0.041 0.022 0.042 259 0.035

New York/JFK
Arrivals -0.249 0.015 0.942 0.747 yes -0.071 -0.009 0.8904 0.779 yes

-0.051 0.013 227 0.083 0.016 0.018 227 0.131

Departures -0.065 -0.103 0.9584 0.498 yes -0.065 0.049 0.8901 0.619 yes
0.017 0.021 143 0.080 0.016 0.026 143 0.082

Italics indicate significance at 90% and bold indicates significance at 95% confidence levels. P-values shown below coefficients.



Table 2--Continued

Las Vegas
Arrivals -0.023 0.016 0.8786 -0.210 no -0.009 0.030 0.8606 1.241 yes

0.013 0.012 194 0.053 0.006 0.009 194 0.050

Departures 0.049 -0.024 0.6562 -0.629 no -0.008 -0.089 0.6789 1.701 yes
0.011 0.011 152 0.191 0.006 0.011 152 0.104

Los Angeles
Arrivals -0.050 -0.018 0.8873 0.062 yes -0.007 -0.025 0.8708 1.004 yes

0.010 0.005 213 0.095 0.004 0.006 213 0.082

Departures -0.051 0.091 0.8348 0.059 no -0.042 -0.039 0.8368 1.016 yes
0.013 0.011 295 0.036 0.006 0.007 295 0.027

New York/LGA
Arrivals -0.026 0.000 0.8952 -0.477 no -0.004 -0.006 0.9163 1.494 yes

0.009 0.005 154 0.089 0.003 0.005 154 0.086

Departures 0.215 0.056 0.9516 -0.281 no -0.047 0.031 0.9546 1.256 yes
0.029 0.034 171 0.044 0.009 0.018 171 0.027

Memphis
Arrivals -0.246 -0.087 0.9219 0.389 yes -0.212 -0.079 0.9443 0.891 yes

0.019 0.058 161 0.048 0.013 0.020 161 0.036

Departures 0.198 -0.154 0.8611 -0.042 no -0.060 0.034 0.7733 1.070 yes
0.031 0.043 93 0.048 0.019 0.015 93 0.038

Miami
Arrivals -0.208 -0.093 0.8666 0.085 yes -0.073 -0.081 0.8918 0.963 yes

0.044 0.038 95 0.066 0.015 0.021 95 0.058

Departures -0.197 -0.176 0.9333 -0.107 no -0.037 0.033 0.8856 1.120 yes
0.027 0.028 165 0.042 0.011 0.016 165 0.038

Minneapolis
Arrivals -0.128 -0.128 0.8568 0.057 yes -0.101 -0.163 0.919 0.990 yes

0.009 0.012 466 0.029 0.005 0.007 466 0.026

Departures 0.011 -0.319 0.904 -0.113 no -0.092 -0.113 0.9428 1.114 yes
0.032 0.030 328 0.010 0.006 0.009 328 0.010

Chicago
Arrivals -0.114 0.004 0.9076 0.162 yes -0.082 -0.057 0.9041 0.857 yes

0.023 0.026 303 0.029 0.013 0.013 303 0.028

Departures -0.202 -0.294 525 0.006 no -0.026 -0.180 0.9478 1.003 yes
0.027 0.019 525 0.020 0.007 0.015 525 0.016

Philadelphia
Arrivals -0.085 -0.109 0.7634 -0.013 no -0.080 -0.095 0.8906 1.017 yes

0.020 0.020 134 0.059 0.009 0.008 134 0.046

Departures -0.110 -0.376 0.8606 -0.039 no -0.056 -0.090 0.7787 1.100 yes
0.086 0.040 168 0.036 0.016 0.020 168 0.024

Pheonix
Arrivals -0.075 -0.087 0.9124 0.299 yes -0.035 -0.045 0.8836 0.889 yes

0.010 0.011 171 0.103 0.008 0.008 171 0.109

Departures -0.254 -0.271 0.9582 0.061 yes -0.052 -0.078 0.9336 0.957 yes
0.044 0.015 191 0.034 0.009 0.009 191 0.031

Pittsburgh
Arrivals -0.072 -0.068 0.8075 -0.076 no -0.034 -0.017 0.8781 1.116 yes

0.018 0.026 87 0.062 0.011 0.007 87 0.047

Departures -0.191 -0.214 0.8586 -0.044 no -0.025 0.019 0.8247 1.068 yes
0.022 0.033 97 0.041 0.013 0.007 97 0.035

Seattle
Arrivals -0.009 -0.003 0.9289 -0.030 no 0.001 -0.004 0.8945 1.161 yes

0.002 0.002 286 0.104 0.001 0.002 286 0.108

Departures 0.027 0.034 0.9067 -0.079 no -0.013 -0.025 0.8609 1.140 yes
0.031 0.012 135 0.052 0.006 0.009 135 0.039

San Fransisco
Arrivals -0.178 -0.040 0.849 -0.051 no -0.035 -0.045 0.9059 1.058 yes

0.031 0.019 207 0.035 0.008 0.008 207 0.032

Departures -0.060 -0.194 0.9069 0.046 no -0.052 -0.048 0.9316 0.971 yes
0.032 0.028 106 0.034 0.008 0.009 106 0.029

Salt Lake City
Arrivals -0.054 -0.040 0.7895 -0.295 no -0.032 -0.033 0.8318 1.267 yes

0.025 0.036 89 0.089 0.015 0.016 89 0.085

Departures -0.049 -0.141 0.877 -0.113 no -0.025 -0.069 0.8851 1.124 yes
0.031 0.023 88 0.045 0.009 0.020 88 0.043

St. Louis
Arrivals -0.058 -0.124 0.6996 -0.483 no -0.025 -0.074 0.6666 1.476 yes

0.018 0.020 350 0.057 0.010 0.014 350 0.057

Departures -0.458 -0.420 0.9559 -0.006 no -0.083 -0.176 0.9398 1.024 yes
0.062 0.018 188 0.030 0.010 0.013 188 0.028

Italics indicate significance at 90% and bold indicates significance at 95% confidence levels. P-values shown below coefficients.



Table 3--Summary of J-test Results for Individual Arrival and Departure Banks with Non-linear Schedule Delay Effects
Arrivals Departures

# of Banks % Atomistic % Internalizing % Inconclusive # of Banks % Atomistic % Internalizing % Inconclusive
ATL 11 63.6 0.0 36.4 10 50.0 0.0 50.0
BOS 6 66.7 33.3 0.0 2 0.0 50.0 50.0
BWI 2 50.0 0.0 50.0 3 33.3 66.7 0.0
CLT 9 66.7 0.0 33.3 7 85.7 14.3 0.0
CVG 9 66.7 11.1 22.2 6 16.7 33.3 50.0
DCA 9 44.4 0.0 55.6 3 66.7 0.0 33.3
DEN 9 66.7 11.1 22.2 8 87.5 11.1 1.4
DFW 9 88.9 0.0 11.1 8 37.5 0.0 62.5
DTW 11 54.5 0.0 45.5 9 66.7 0.0 33.3
EWR 9 88.9 0.0 11.1 7 85.7 0.0 14.3
IAD 5 60.0 20.0 20.0 2 0.0 50.0 50.0
IAH 8 62.5 12.5 25.0 8 50.0 12.5 37.5
JFK 6 50.0 0.0 50.0 4 75.0 0.0 25.0
LAS 6 20.0 0.0 80.0 5 0.0 20.0 80.0
LAX 4 0.0 0.0 100.0 7 42.9 0.0 57.1
LGA 1 0.0 100.0 0.0 5 60.0 20.0 20.0
MEM 5 20.0 20.0 60.0 5 40.0 0.0 60.0
MIA 3 33.3 0.0 66.7 6 33.3 0.0 66.7
MSP 11 81.8 0.0 18.2 8 50.0 0.0 50.0
ORD 11 81.8 9.1 9.1 12 41.7 8.3 50.0
PHL 5 40.0 20.0 40.0 9 33.3 0.0 66.7
PHX 7 28.6 14.3 57.1 9 66.7 11.1 22.2
PIT 1 100.0 0.0 0.0 3 100.0 0.0 0.0
SEA 10 10.0 10.0 80.0 3 0.0 0.0 100.0
SFO 6 83.3 0.0 16.7 2 50.0 50.0 0.0
SLC 0 -- -- -- 2 50.0 50.0 0.0
STL 9 77.8 11.1 11.1 9 77.8 11.1 11.1

182 58.2 7.1 34.6 162 51.6 8.8 39.6

Bold denotes strong candidate for atomistic congestion pricing.



Appendix A--Traffic Data and Delay Estimates
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DEN Arrival Rates and Queues
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SFO Arrival Rates and Queues
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Appendix A--Traffic Data and Delay Estimates
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Appendix B--Dominant v Fringe Arrival Rates

ATL Dominant v Fringe Arrival Rates

0

1

2

3

4

5

6

7

8

9

10

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961
Service Interval

A
irc

ra
ft

DAL + CODES

Fringe

BWI Dominant v Fringe Arrival Rates

0

0.5

1

1.5

2

2.5

3

3.5

4

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081
Service Interval

A
irc

ra
ft

SWA

Fringe

CLT Dominant v Fringe Arrival Rates

0

1

2

3

4

5

6

7

8

9

10

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021
Service Interval

A
irc

ra
ft

USA + CODES

Fringe

Boston Dominant v Fringe Arrival Rates

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

4:12 5:24 6:36 7:48 9:00 10:12 11:24 12:36 13:48 15:00 16:12 17:24

Airline 1
Airline 2
Airline 3
Fringe

CVG Dominant v Fringe Arrival Rates

0

1

2

3

4

5

6

7

8

9

10

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381Service Interval

A
irc

ra
ft

DAL plus CODES

Fringe

DCA Dominant v Fringe Arrival Rates

0

0.5

1

1.5

2

2.5

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081Service Interval

A
irc

ra
ft

AAL + CODES

Fringe



DEN Dominant v Fringe Arrival Rates

0

1

2

3

4

5

6

7

8

9

10

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961
Service Interval

A
irc

ra
ft

UAL + CODES
Fringe

DFW Dominant v Fringe Arrival Rates

0

1

2

3

4

5

6

7

8

9

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141
Service Interval

A
irc

ra
ft

DAL + CODES
Fringe

DTW Dominant v Fringe Arrival Rates

0

2

4

6

8

10

12

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261
Service Interval

A
irc

ra
ft

NWA + CODES
Fringe

ERK Dominant v Fringe Arrival Rates

0

1

2

3

4

5

6

7

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081
Service Interval

A
irc

ra
ft

COA + CODES
Fringe

IAD Dominant v Fringe Arrival Rates

0

2

4

6

8

10

12

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381
Service Interval

A
irc

ra
ft

UAL + CODES
Fringe

IAH Dominant v Fringe Arrival Rates

0

2

4

6

8

10

12

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381
Service Interval

A
irc

ra
ft

COA + CODES
Fringe



LAS Dominant v Fringe Arrival Rates

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381
Service Interval

A
irc

ra
ft

AWE + CODES
Fringe

LAX Dominant v Fringe Arrival Rates

0

0.5

1

1.5

2

2.5

3

3.5

4

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381
Service Interval

A
irc

ra
ft

AAL + CODES
Fringe

MEM Dominant v Fringe Arrival Rates

0

2

4

6

8

10

12

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381
Service Interval

A
irc

ra
ft

NWA + CODES
Fringe

MIA Dominant v Fringe Arrival Rates

0

0.5

1

1.5

2

2.5

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381
Service Interval

A
irc

ra
ft

GFT + CODES
Fringe

LGA Dominant v Fringe Arrivals

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 61 121 181 241 301 361 421 481 541 601 661 721 781

Service Interval

A
irc

ra
ft

Dominant
Fringe

JFK Dominant v Fringe Arrivals

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 61 121 181 241 301 361 421 481 541 601 661

Service Interval

A
irc

ra
ft

Dominant
Fringe



MSP Dominant v Fringe Arrival Rates

0

1

2

3

4

5

6

7

8

9

10

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381
Service Interval

A
irc

ra
ft

NWA + CODES
Fringe

ORD Dominant v Fringe Arrival Rates

0

1

2

3

4

5

6

7

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381
Service Interval

A
irc

ra
ft

AAL + CODES
Fringe

PHX Dominant v Fringe Arrival Rates

0

1

2

3

4

5

6

7

8

9

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381Service Interval

A
irc

ra
ft

AWE + CODES
Fringe

PHL Dominant v Fringe Arrival Rates

0

1

2

3

4

5

6

7

8

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381
Service Interval

A
irc

ra
ft

USA + CODES
Fringe

PIT Dominant v Fringe Arrival Rates

0

1

2

3

4

5

6

7

8

9

10

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381
Service Interval

A
irc

ra
ft

USA + CODES

Fringe

SEA Dominant v Fringe Arrival Rates

0

1

2

3

4

5

6

7

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381
Service Interval

A
irc

ra
ft

DAL + CODES
Fringe



SFO Dominant v Fringe Arrival Rates

0

1

2

3

4

5

6

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381
Service Interval

A
irc

ra
ft

UAL + CODES
Fringe

y

STL Dominant v Fringe Arrival Rates

0

1

2

3

4

5

6

7

8

9

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381
Service Interval

A
irc

ra
ft

AAL + CODES
Fringe

SCL Dominant v Fringe Arrival Rates

0

1

2

3

4

5

6

7

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021
Service Interval

A
irc

ra
ft

USA + CODES
Fringe



Appendix B--Dominant v Fringe Departure Rates
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