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Abstract

In this paper, we study the impact of the introduction of posted prices in the slot

allocation process currently in use at congested airports in most European countries. In

particular, we show that if the airport is initially saturated, while low level of slot prices

entail no response from the airlines, requests for slots ”suddenly and violently” drop when

the price reaches a certain threshold. In general, there is therefore no market clearing

price for airport slots. We also present a dynamic model which highlights how the current

grandfather rule - stating that slots used today are kept in the future - generates baby-

sitting, that is airlines requiring and using slots today just because they expect them to

be profitable in the future.
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1 Introduction

The slot allocation process currently in use in a number of congested airports worldwide1 is

often pointed out as a major source of inefficiency in the air transport industry. This process

heavily relies on the use of grandfather rights, according to which airlines may keep their

slots from one aeronautical season to another provided they have used them at least 80% of

the time. Slots that are free of grandfather rights (the slot pool) may be claimed by airlines

and their allocation is decided by a coordinator using a purely administrative procedure. A

final stage in which slots may be exchanged one for one on a strictly non-monetary basis

is provided to ensure that airlines are able to complete their schedule. Inefficiency in the

current system are outlined, among others, in NERA (2004). Part of it stems from the fact

that historic rights inherited from the grandfather rule act as a barrier to entry on the airport.

Also, airlines do not pay the opportunity cost of ”owning” their slots and have therefore little

(if any) incentive to release excess capacity2. Finally, available slots (from the slot pool) are

not necessarily allocated to the airlines that would make the most efficient use of them.

For these reasons, alternative modes for dealing with airport capacity have been sug-

gested, studied and, more rarely, implemented. Congestion charging, for example, suggests

that efficiency could be restaured by setting the cost of using airport capacity equal to the

marginal social cost of using the service (see e.g. Carlin and Park (1970)). However, theoret-

ical difficulties arise in the air transport industry, since airlines that have significant market

power internalize part of the externality they impose on the system (see for instance Brueck-

ner (2002a), Brueckner (2002b)). More concretely, airport congestion pricing has, up to now,

failed to be efficiently implemented Schank (2005). Another approach proposes to use market

based mechanisms to allocate slots. This idea heads back to the early eighties (Rassenti et al.

(1982)) but is now gaining credit, with recent studies commisioned by the DGTREN (NERA

(2004)) or the Department for Transport in UK (DotEcon (2006)). Among the mechanisms

studied in NERA (2004) lies the introduction of ”posted prices” and the use of slot auctions,

along with the creation of a secondary market for slots. Interestingly enough, while some

recent economic results (Eso et al. (2006), Ranger (2006)) may help us to understand how

1”EU Slot regulation applies at 60% of all capacity constraint airports worldwide” (2004, source IATA).
2NERA (2004) puts forward that in Düsseldorf and Paris-Orly, 2 airports that are congested throughout

the day, under-utilization of capacity was larger than 10% in 2002. Hence, this inefficiency may be substantive

even at very congested airports.
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downstream competition is likely to impact outcomes in a capacity auction, only little as

been done that can be used to acknowledge its effect if posted prices are introduced un-

der the current allocation procedure. In the case of auctions, Eso et al. (2006) shows that

Vickrey-Clarke-Groves mechanisms (that lead to an efficient allocation when one only takes

the seller and the buyers’ surplus into account) may lead to a very inefficient allocation of

capacity where a firm buys a large share of the sold capacity before using it inefficiently on the

market. In Ranger (2006), a sophisticated mechanism inspired from Ausubel and Milgrom

(2002) is proposed that corrects for the externality created by the downstream competition

and allows to implement general preferences of the seller. Hence, it seems that auctions could

at least theoretically be used to solve efficiently the problem of slot allocation at congested

airports. NERA (2004) however warns that practical difficulties of designing and partici-

pating in a slot auction should not be underestimated, especially because of the complex

interdependencies between airport slots. Also, NERA (2004) stresses that the implementa-

tion cost of auctions will be higher than those of the other market mechanisms suggested in

the study. In contrast, posted prices is an easily implementable method that presents the

great advantage of encouraging certainty in airline route planning and continuity of scheduled

services Reynolds-Feighan and Button (1999)3.

In this paper, we study a Cournot-type model of airport slot allocation that mimics the

current slot allocation process but allows posted prices on slots to be introduced: In a first

stage, firms express capacity (slots) requests and capacity is allocated by the coordinator. In a

second stage, firms compete ”a la Cournot” under their production capacities. We show that,

the introduction of posted prices usually does not succeed in clearing the market: First, for

low posted prices, airlines’ capacity requests appear not to be impacted by the posted price.

Then, above a certain threshold, the global slot requests suddenly and discontinuously drop

to a level that is strictly below the overall capacity. If, rather than posted prices, the regulator

decides to introduce limited fines on unused slots, we show that excess capacity is actually

reduced for limited fines and that prices fall. However, if fines are large enough, it happens

3During the concertation with the Commission that followed the publication of the NERA study NERA

(2004), these reasons were also given by the French regulator to justify its preference for posted prices over

all other proposed mechanisms for the primary allocation of slots, the preferred option for primary allocation

being an improvement of the existing administrative procedure. See for example the ”Outcome of study on

slot allocation procedures”, ECAC report DGCA/124-DP/6, issued in December 2005.
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that they succeed in eliminating excess-capacity at the cost of a reduced produced quantity,

or equivalently at the cost of a higher price (as compared with the fine free situation). We also

show that posted prices may lead to a situation in which an increase in overall airport capacity

results in a drop in produced quantity, which may seem somewhat paradoxal. Finally, we also

present a dynamic model of slot allocation, in which we recover the well-known phenomenon

of ”baby-sitting of slots” and show that making the 80-20 rule more severe to avoid excess-

capacity can sometimes be counterproductive, when it results in lower quantities being put

on the market.

The first part of the paper, Section 2, presents the static model of slot allocation and

introduces the technical assumptions used throughout the paper. Section 3 then presents the

equilibrium structure of the game and discusses how it may be used to study the impact of

posted prices when there is competition on the downstream market. In Section 4, we extend

the static model to a two-period game to capture the strategic use of the grandfather rule

as a barrier to expand and show how this may actually benefit consumers in the short run.

Section 5 concludes.

2 A static model of slot allocation

In this section, we describe a general static model of airport slot allocation. In this model, we

assume that capacity (airport slots) is fixed and we denote by K the total available capacity.

The problem is modeled with a two-stage game. In the first stage, airlines are allocated

production capacities via an allocation process: Airlines provide the coordinator with their

capacity request. The coordinator then processes the requests and comes out with a capacity

allocation. In the second stage of the game, airlines compete in quantities under their capacity

constraints on the downstream market. In this game, we assume perfect information: All

parameters are common knowledge, as well as the allocation rule (conditional on the airlines

requests).

2.1 The allocation rule

The coordinator sets a procedure to allocate capacity on the basis of demands expressed

by the firms. This procedure is described through an allocation rule (Kall
1 , Kall

2 ): if firm 1
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requires a capacity ϕ1 and firm 2 a capacity ϕ2, then firm 1 is granted a capacity Kall
1 (ϕ1, ϕ2),

while firm 2 gets Kall
2 (ϕ1, ϕ2).

For exposition clarity, we define the airlines capacity rights as the capacities that are

allocated when both airlines claim the overall capacity. These capacity rights are thus defined

as (Kall
1

(
K, K

)
, Kall

2

(
K, K

)
).

We assume that the allocation rule Kall (., .) satisfies the following properties:

1. It matches demands if they are compatible with the maximum available capacity:

ϕ1 + ϕ2 ≤ K ⇒ Kall
i (ϕ1, ϕ2) = ϕi, i = 1, 2 . (1)

2. The total available airport capacity K is allocated when both firms claim the whole

capacity:

Kall
1

(
K, K

)
+ Kall

2

(
K, K

)
= K . (2)

3. If both airlines request more than their capacity rights, then each airline gets its capacity

rights: 



ϕ1 ≥ Kall
1

(
K, K

)

ϕ2 ≥ Kall
2

(
K, K

) ⇒ Kall
i (ϕ1, ϕ2) = Kall

i

(
K, K

)
, i = 1..2 . (3)

4. If firm i claims more than its capacity rights while firm j claims less than its capacity

rights, then firm j’s request is satisfied, while firm i gets the remaining capacity. Thus





ϕi ≥ Kall
i

(
K, K

)

ϕj < Kall
j

(
K, K

)

ϕ1 + ϕ2 > K

⇒





Kall
i (ϕ1, ϕ2) = K − ϕj

Kall
j (ϕ1, ϕ2) = ϕj

(4)

Note that properties (1) to (4) imply that the capacity rights are sufficient to define

uniquely the allocation rule over the set of possible capacity requests (ϕ1, ϕ2). Basically,

they mean that each airline is given rights over a certain amount of capacity and can get

more than this capacity only if its competitor requires less than its own rights.

2.2 Notations and technical assumptions

The market served by the airlines is characterized by the inverse demand P (q). We assume

that capacity and production are costly, with respective costs ci(qi) and ki(Ki) for firm i.
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Thus, if Ki stands for the capacity allocated to firm i and qi for the quantity it produces,

firm i incurs a cost equal to Ci(qi, Ki) = ci (qi) + ki (Ki). We follow Kreps and Scheinkman

(1983) on the assumptions on the costs and inverse demand, that is we assume that there

exists some X > 0 such that

• P (q) is strictly positive over (0, X), C2 over (0, X), concave and strictly decreasing.

• ci and ki are C2 over [0,∞), convex and satisfy ci(0) = ki(0) = 0 and c′i(0), k′
i(0) > 0

(for i ∈ {1, 2}).

We also define best-responses for the unconstrained Cournot game :

r(qj , c) = argmax
qi

qiP (qi + qj) − c(qi) . (5)

For a given airline (say 1), we will refer to r(q2, c1) as the short-run Cournot best response

to quantity q2 and to r(q2, c1+k1) as the long-run Cournot best response. Accordingly, related

Nash equilibria will be referred to as, respectively, the short-run and long-run Cournot equi-

libria and will be denoted respectively
(
KSR

1 , KSR
2

)
and

(
KLR

1 , KLR
2

)
. Under the assumptions

on P , c and k, these equilibria always exist and are unique.

2.3 The firms problems

Once the coordinator has committed to an allocation rule, the airlines play a two-stage game.

• Stage 1: The two airlines simultaneously express capacity demands ϕ1 and ϕ2.

According to these demands, firm i receives capacity Kall
i (ϕ1, ϕ2).

• Stage 2: The two airlines compete à la Cournot with quantities constrained by their

production capacities (qi ≤ Kall
i (ϕ1, ϕ2) ).

Airline i’s profit is therefore given by

π(qi, qj , Ki) = qiP (qi + qj) − (ci(qi) + ki(Ki)) . (6)

Note that the current airport charging system is likely to correspond to the case of no

capacity cost (ki ≡ 0), as airport slots are allocated freely by coordinators. However, one

could argue that the coordinator, often facing a large excess demand with respect to the
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number of available slots on highly congested airports4 and being granted access to airlines

information, might allocate the capacity to the ones most likely to operate the schedule, e.g.

because they have the fleet it calls for. Hence, part of the capacity cost ki might also relate to

the airlines fleet. Finally, one of the goals of this paper is precisely to study the consequences

of the introduction of positive posted prices on capacity, that is of costly capacity.

2.4 The Second Stage Cournot Subgame

In order to determine the airlines’ claims over capacity, we first need to express the profits

they realize in the Cournot competition stage as a function of their production capacities.

This is a standard problem and is treated, among others, by Gabszewicz and Poddar (1997).

The expression of the equilibrium quantities depends on how the capacities compare with the

short-run Cournot best response. Proposition 2 sums up the results, while Figure 1 gives an

illustration.

Proposition 1 The constrained Cournot Nash equilibrium outputs levels (q∗1, q
∗
2) are deter-

mined by the following conditions:

• If (K1, K2) belongs to Region A (i.e. K1 ≤ r(K2, c1) and K2 ≤ r(K1, c2)), both firms

produce up to capacity, that is (q∗1, q
∗
2) = (K1, K2).

• If (K1, K2) belongs to Region B (i.e. K1 > r(K2, c1) and K2 ≤ KSR
2 ), firm 2 produces

up to capacity K2 and firm 1 produces the short-run Cournot best response to K2. Hence

(q∗1, q
∗
2) = (r(K2, c1), K2)).

• If (K1, K2) belongs to Region C (i.e. K1 ≤ KSR
1 and K2 > r(K1, c2)), firm 1 produces

up to capacity K1 and firm 2 produces the short-run Cournot best response to K2. Hence

(q∗1, q
∗
2) = (K1, r(K1, c2)).

• If (K1, K2) belongs to Region D (i.e. K1 > KSR
1 and K2 > KSR

2 ), both firms produce

the short-run Cournot quantities. Hence (q∗1, q
∗
2) = (KSR

1 , KSR
2 )

Proof: See e.g. Gabszewicz and Poddar (1997). To see the intuition behind this result,

note that under under our assumptions, each firms’ profit as a function of the quantity it

4As an example, 251.000 slot requests issued by as many as 43 airlines followed the bankruptcy of Air Lib

at ORY, in which 35.658 slots became available (see NERA (2004)).
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Region D

Region A Region B

Region C

Figure 1: Quantities put on the market for given allocated production capacities.

puts on the market is quasi-concave when it has no capacity-constraint. Hence, when firm i

is constrained by a production capacity Ki, its constrained best response to a quantity qj put

on the market by its competitor is simply the maximum of its unconstrained best response

r(qj , ci) and its production capacity Ki. These best responses then yield the equilibrium

quantities announced in the proposition.

3 The Nash equilibria of the capacity allocation game

If airlines could get as much capacity as they wanted in the first stage, they would choose

capacities equal to the long-run Cournot equilibrium quantities,5 (K1, K2) = (KLR
1 , KLR

2 ),

and would therefore produce up to their capacities in the second stage. The allocation process,

however, allows airlines to prevent, to some extent, their competitor to acquire capacity that

could be used ”against them”. In the extreme case where capacity is free, airlines do not have

any incentive to restrain their requests and would typically end up granted with their capacity

5See, for example, Gabzewicz and Poddar (1997).
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rights. When capacity is costly, the situation is somewhat less simple and the advantages

of limiting one’s competitor capacity have to be balanced with the costs incurred for doing

so. Precisely, whether or not an airline will decide to ask for more capacity than what would

appear optimal in an unconstrained setting will depend on whether K is large enough, and

on how the long-run Cournot profits Π1(K
LR
1 , KLR

2 ) and Π2(K
LR
1 , KLR

2 ) compare with the

profits airlines would make if granted with their capacity rights. Indeed, if the capacity rights

are asymmetric enough to ensure a profit above the long-run Cournot profit for one of the

airlines, this airline might find in its own interest to ”block” the Cournot outcome. To this

end, the airline claims more capacity than what its long-run Cournot quantity would require,

thus reducing its competitor’s production capacity. The formal result is stated in the next

section.

3.1 The equilibrium result

We will need to distinguish two Regions to describe firm demands (see figure 2).

• Region 1 is the set of capacities (K1, K2) which are either strictly below the long-run

Cournot best-response curves or such that one of the firm’s profit is strictly superior to

Cournot long-run profit.




K1 < r(K2, c1 + k1) and K2 < r(K1, c2 + k2) ,

or

Π1(K1, K2) > Π1(K
LR
1 , KLR

2 ) or Π2(K1, K2) > Π2(K
LR
1 , KLR

2 ) .

(7)

• Region 2 is the set of capacities (K1, K2) which are above at least one of the long-run

Cournot best-response curves and such that both firm’s profits are inferior to Cournot

long-run profit




K1 ≥ r(K2, c1 + k1) or K2 ≥ r(K1, c2 + k2) ,

Π1(K1, K2) ≤ Π1(K
LR
1 , KLR

2 ) ,

Π2(K1, K2) ≤ Π2(K
LR
1 , KLR

2 ) .

(8)

These regions are sketched in figure 2, Region 1 being the grayed area and Region 2 the

other one (including the frontier).

We also need to introduce a technical assumption.

Technical assumption A1 Assumption A1 is satisfied if and only if the long-run capacity
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Region 1

Region 2

K1KSR
1

KSR
2

K2

Figure 2: Regions 1 and 2

constrained Cournot profits of the firms, Π1(K1, K−K1) and Π2(K−K2, K2), are increasing

in their own capacity on Region 1 ∩ {K1 + K2 = K}.

This assumption formally states that airlines, if they know for sure that any capacity they

do not get will be given to their competitor, never want to release any capacity (in Region 1).

Assumption A1 thus in particular implies that in Region 1 it is marginally better for an

airline with excess capacity rights (that is, an airline with capacity rights such that it would

eventually not find interesting to produce up to capacity if it received its capacity rights)

to pay for unused capacity rather than to loose market power by allowing its competitor to

produce more on the final market. Though this assumption may seem strong, it is noticeable

that is always satisfied in the simple symmetric case where demand is linear and the capacity

and production marginal costs are constant (see Proposition 2). In general, it is sufficient for

this assumption to be satisfied that the marginal cost of capacity remains small compared to
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the markup at the long-run Cournot equilibrium.6

Proposition 2 When firms costs are linear and symmetric and demand is linear, the capac-

ity constrained Cournot Game satisfy Assumption A1.

Proof: See in Appendix.

We can now characterize the set of Nash equilibria of the capacity allocation game that

are not Pareto-dominated. The formal result is presented in proposition 3.

Proposition 3 Under the technical assumption A1, we have

• If Kall
(
K, K

)
belongs to Region 2, capacity demands equal to the long-run Cournot

quantities (KLR
1 , KLR

2 ) constitute a Nash equilibrium of the capacity allocation game.

If some other Nash equilibria exist, they are Pareto-dominated by (KLR
1 , KLR

2 ).

• If Kall
(
K, K

)
belongs to Region 1, maximal capacity demands

(
K, K

)
constitute a

Nash equilibrium of the capacity allocation game. If some other Nash equilibria exist,

they all imply the same capacity allocation Kall
(
K, K

)
.

Proof: First, we can note that, if there exists a Nash equilibrium of the capacity allocation

game (ϕ1, ϕ2) such that the available production capacities are not completely allocated (

Kall
1 (ϕ1, ϕ2)+Kall

2 (ϕ1, ϕ2) < K), then the granted capacities must be equal to the requested

ones. Each firm could therefore obtain less or slightly more production capacity without

modifying its competitors production capacity. It comes then as a consequence of the standard

model (for K = +∞) that (ϕ1, ϕ2) would have to be equal to the long-run Cournot quantities.

Indeed, otherwise at least one firm would find an interest in deviating slightly.

The proof then rely on several lemmas that are presented in appendix and can be decom-

posed in three steps:

• Step 1: From Lemma 1, if there exists a Nash equilibrium (ϕ∗
1, ϕ

∗
2) of the capacity

game such that allocated capacities ( Kall
1 (ϕ∗

1, ϕ
∗
2) , Kall

2 (ϕ∗
1, ϕ

∗
2)) belong to Region 1,

and such that all the available capacity is allocated (Kall
1 (ϕ∗

1, ϕ
∗
2)+Kall

2 (ϕ∗
1, ϕ

∗
2) = K),

6Indeed, for symmetric firms, A1 is satisfied whenever k′
`

K
´

≤ P
`

2KLR
´

− c′
`

KLR
´

− k′
`

KLR
´

, or,

equivalently, if k′
`

K
´

≤
P

LR

2ǫLR , where ǫLR (resp. P LR) stands for the demand-price elasticity (resp. price) at

the long-run Cournot equilibrium.
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then maximal capacity demands
(
K, K

)
also are a Nash equilibrium and yield the same

capacity allocation: Kall
1 (ϕ∗

1, ϕ
∗
2) = Kall

1

(
K, K

)
.

• Step 2: Suppose that allocated capacities for maximal demands, Kall
(
K, K

)
, belong

to Region 2. From Step 1, there can not be any Nash equilibrium yielding allocated ca-

pacities in Region 1 (otherwise Kall
(
K, K

)
would belong to Region 1). Moreover, from

Lemma 3, the demands (KLR
1 , KLR

2 ) constitute a Nash equilibrium. The only remain-

ing potential Nash equilibria require an allocation in Region 2, and are consequently

Pareto-dominated by (KLR
1 , KLR

2 ). This completes the first part of the proof.

• Step 3: Suppose that allocated capacities for maximal demands, Kall
(
K, K

)
, belong

to Region 1. Then, from Lemma 4,
(
K, K

)
is a Nash equilibrium, and there is no Nash

equilibrium yielding an allocation (KLR
1 , KLR

2 ). From Step 1, if there is a Nash equi-

librium (ϕ∗
1, ϕ

∗
2), such that the capacity allocation (Kall

1 (ϕ∗
1, ϕ

∗
2) , Kall

2 (ϕ∗
1, ϕ

∗
2)) belongs

to Region 1, then it yields the same allocation as
(
K, K

)
. To complete the second part

of the proof, we use Lemma 5: There is no Nash equilibrium (ϕ∗
1, ϕ

∗
2) such that all the

available capacity is allocated (Kall
1 (ϕ∗

1, ϕ
∗
2) + Kall

2 (ϕ∗
1, ϕ

∗
2) = K) and such that the

allocation ( Kall
1 (ϕ∗

1, ϕ
∗
2) , Kall

2 (ϕ∗
1, ϕ

∗
2)) belongs to Region 2.

This achieves the proof of the proposition.

3.2 Implications

First, we want to analyze how capacity rights impact on the price paid by consumers. When

the overall capacity is small (K ≤ KLR
1 + KLR

2 ), airlines end up granted with their capacity

rights. In this case, the price paid by consumers is P (K) as long as the capacity rights lie

below the short-run Cournot curves but may rise above this level if the slot allocation is too

asymmetric. In this case, the ”most favored” airline will not produce up to capacity. Now

consider overall capacities such that K > KLR
1 + KLR

2 . In this case, the behavior of the

airlines and the final quantity and price on the market depend on how balanced the capacity

rights are7. Typically, starting from balanced capacity rights, the possible situations that

may arise are depicted on Figure 3 and described below.

7Note here the use of the term balanced as a loose substitute for symmetric, which would actually be

inappropriate here. Indeed, we do not impose that firms are symmetric, so that the Cournot quantities, for

example, are not symmetric while they are balanced.
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K̄

K2

KSR
2

KSR
1 K̄ K1

In this figure, arrows link capacity rights to the produced quantity on the final market.

Figure 3: An illustration of the equilibrium outcomes

1. if capacity rights are well balanced, airlines ask for the long-run Cournot capacities,

receive these capacities, and produce up to capacity. The price on the market is given

by P (KLR
1 + KLR

2 ).

2. with a limited imbalance, capacity rights belong to Region 1 and Region A. Airlines

therefore request and receive their capacity rights, and thereafter produce up to capac-

ity. In this case, the price on the market, P (K), is lower than if no capacity constraint

was imposed. If the overall capacity is too large, this case may not exist.

3. when the imbalance becomes more significant, capacity rights still belong to Region 1

but are not anymore located in Region A. Accordingly, even if both airlines still request

and get their capacity rights, one of them (the ”favored” airline) prefers to produce

less than its allocated capacity. The resulting price on the market is then increasing in
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the imbalance, but may still be lower than the long-term Cournot price. Again, if the

overall capacity is large enough, this case does not exist.

This analysis suggests that the design of the capacity rights may have an impact on

efficiency for intermediate values of the available capacity. Noticeably, consumers are better

off when the capacity rights are slightly less balanced than (capacities equal to) the long-run

Cournot outcome. In this case, the positive effect linked to the firms not taking into account

the capacity costs, which are sunk during the Cournot competition stage, is more important

than the negative effect linked to the higher market power of the favored firm.

Note that the asymmetry in capacity rights is exogenous here. For the particular forms

of capacity auction (such as a Vickrey-Clarke-Groves or a uniform-price share auction) con-

sidered in Eso et al. (2006), it may happen that asymmetry in the capacity allocation arise

endogenously. This happens when the overall capacity is above a capacity threshold that

is strictly lower than the unconstrained Cournot quantity. Accordingly, in Eso et al. (2006)

the social surplus never benefits from the fact that the large firm prevents its competitors to

access capacity.

3.3 Clearing the market with posted prices?

In the last section we discussed how, in the presence of capacity costs, asymmetric capacity

rights may make consumers better off than they would be in an unconstrained setting. In this

section we discuss the introduction of posted prices under the current slot allocation process.

Note that posted prices, being defined as a ”rate per slot per season”, may be modeled as

as tax on capacity. The idea behind posted prices is that they would provide incentives for

airlines to use slots efficiently, as they would typically make use of slots by inefficient airlines

not profitable and reduce the incentives to make strategic use of excess capacity.

In NERA (2004), it is suggested that a main difficulty for the implementation of posted

prices stems from the fact that ”airport operators might have little information about the way

that airlines would be likely to respond to higher prices, at least during the early stages of

adjusting from current charges toward market clearing levels”. Our model predicts that, in the

presence of competition on the airport and an initial imbalance of capacity, airlines responses

are flat for low values of posted prices as long as capacity rights belong to Region 1. Then,

if the posted price reaches a certain level τ∗
k , such that capacity rights belong to the frontier
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between Region 1 and Region 2, airlines requests for capacity encounter a discontinuity,

negative for the ”favored” airline, positive for the other one, and total allocated capacity

decreases. Above this threshold, airlines requests for capacity decrease when posted prices

increase and airlines produce up to capacity. At the regime switch, the global quantity put

on the market ”usually” decreases but may also increase. This mostly depends on the level

of ”excess-capacity” of the favored airline when there is no tax on capacity : if the excess-

capacity is large, the final quantity put on the market will increase at τ∗
k , while it will decrease

for limited excess-capacity.

Figure 4 provides an example where the final produced quantity is larger when no posted

prices are imposed (in this case the final quantity is Kall
1 + qall

2 ) than with posted prices just

large enough to make airlines request capacities equal to the long-term Cournot quantities

(in this case the final quantity is KLR
1 + KLR

2 ).

K1

K2

Kall
2

qall
2

KLR
2

KLR
1Kall

1

KLR
tot

Figure 4: Introduction of posted prices may induce a fall in produced quantities

The intuition behind this result is simple given the equilibrium structure of the game. In

this discussion we denote by τk the posted price. Assume that excess capacity initially (for

τk = 0) exists on the market. Then the capacity rights belong to Region 1. If τk increases,

15



Region 1 shrinks but the short-run Cournot best responses remain unchanged. Accordingly,

the capacities requested by the airlines and the produced quantities remain unchanged as long

as the capacity rights remain in Region 1. The regime change occurs when τk is such that

the capacity rights belong to the boundary between Region 1 and Region 2 (this posted price

corresponds to the τ∗
k we have introduced above). For posted prices larger than τ∗

k , airlines

request the long-run Cournot equilibrium quantities and produce up to capacity. Since the

equilibrium quantity accounts for capacity costs when capacity rights belong to Region 2, the

global quantity on the market decreases when τk rises further.

At τ∗
k , the allocated capacity is discontinuous and decreases, while the discontinuity in

the overall produced quantity may be positive or negative. The idea is that if the excess

capacity is large, then the cost incurred by the ”favored” airline for preempting slots rises

steeply when posted prices increase and the regime switch occurs with a limited capacity tax.

The resulting long-run Cournot quantity may not be much lower than the initial long-run

Cournot quantity, which may in turn be significantly larger than the initial total quantity.

Conversely, if excess capacity is limited, then a large capacity tax is required to convince the

”favored” airline not to preempt capacity. In this case (see Figure 4), it may happen that

the resulting long-run Cournot quantity, strongly impacted by the capacity tax, is lower than

the quantity produced before the introduction of posted prices.

Now it is worth noting that if by ”market clearing price” one means the price that would

make the airlines capacity requests match the available capacity, such a price usually does not

exist. Indeed, starting from capacity rights such that excess capacity is present for limited

posted prices, the sum of the airlines capacity requests will exceed K until the posted price

reaches τ∗
k . Then quantity requests will drop, with their sum eventually falling lower than

K (the case depicted in Figure 4 fall within this category). We therefore conclude that no

market clearing price exists.

As mentioned above, in the present situation airport slots are allocated freely to airlines.

Moreover the grandfather rule ensures that asymmetry in capacity endowments will persist

over aeronautical seasons as incumbents will face no cost in preventing competitors to enter

their market. In this context, it is commonly admitted that the introduction of posted

prices will result in ”excess” capacity being released, which in turn will foster competition

on the market. Our model shows that this effect is likely to be very limited for low posted
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prices. Introduction of ”conservative” posted prices, as advocated e.g. in DotEcon (2006),

may therefore only have a limited impact on the capacity allocation and the competitivity

of the market. In contrast, introduction of high posted prices may induce a drastic change

of structure on the market, as dominant carriers could eventually be incited to give up their

preemptive power on airport capacity. In theory, we showed that the impact of this regime

switch on welfare can be either positive or negative. In practice, one could expect that

further informations on the considered markets would help draw a conclusion. This is not

clear, however. Indeed, although we emphasized the impact of the consumer welfare (through

the produced quantity) in the discussion on the welfare, cost considerations are important as

well if airlines do not share a common cost structure. In the present context where low cost

airlines develop much faster than major airlines, this speaks in favor of a welfare improvement

at the regime switch. However, incumbents are often former state owned monopolies that did

not aim at maximizing profits and served much larger networks than a private monopolist

would have. Since the grandfather rule makes it possible to prevent entry of competitors at

the cost of using ”unprofitable” capacity, this could support the assumption that incumbents

produce enough to induce a decrease in welfare at the regime switch8...

3.4 The impact of the introduction of a tax on unused slots

It is worth noting that the introduction of posted prices, implying a monetary transfer from

airlines to airports, is not painless to airlines. An alternative to posted prices has therefore

been proposed that focuses on the inefficient use of ”owned” slots: a tax on unused slots.

The introduction of such a tax t changes the cost function of airline i from Ci(qi, Ki) =

ci (qi)+ki (Ki) to C∗
i (qi, Ki) = [ci (qi)− tqi]+ [ki (Ki)+ tKi]. This makes Region 1 shrink (as

illustrated in Figure 5) but in the same time it makes the short-run best responses increase.

Accordingly, if initially an airline is dominant on the airport and does not produce up to

capacity, the introduction of a limited tax on the unused slots will actually make it produce

more than it would have without the tax. However, in some cases the tax may induce a

regime switch and results in airline requesting their long-run Cournot quantities. In this

8At this point of the article, the possibly positive impact of the grandfather rule on the welfare may not

be obvious. It should become much clearer in the section devoted to the dynamic model of slot coordination.
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case, it may happen that the produced quantity falls beyond its initial level.9

τu

τ ′
u

K1

K2

KLR
2

KLR
1

In this figure, Regions are sketched for different values of the tax on unused slots, τu and

τ ′
u, with τu < τ ′

u. The long-run best responses remain unchanged while the short-run best

responses are lifted. Moreover, the dashed line standing for the isoprofit Π2(K1, K2) =

Π2(K
LR
1 , KLR

2 ) related to τ ′
u is below the plain line standing for the one related to τu, so that

Region 1 shrinks when t increases.

Figure 5: Impact of a tax on unused slots on Region 1

3.5 Capacity expansion under slot allocation

Now assume that an airport is able to increase its runway capacity while posted prices

remain constant. Our equilibrium result implies that capacity expansion may result in a

lower quantity being produced on the market. Indeed, if initially an airline is dominant on

the market, the new airport capacity may push ”capacity rights” away from Region 1. In

this case, the dominating airline will not find profitable anymore to prevent its competitor to

9Note that, as the long-run Cournot equilibrium is by construction not impacted by a tax on unused

capacity, this supposes that, initially, capacity costs are strictly positive.
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acquire capacity and allocated capacity will decrease to the long-run Cournot quantity. Just

as in the previous section, the quantity out on the market may then decrease or increase,

since the preemptive behavior of the dominant airline may or may not be advantageous to

consumers.

Note that a similar result (an increase in overall capacity inducing a drop in production)

is also observed in Eso et al. (2006) in the case where capacity is sold through ”efficient”10

auctions and where marginal production costs are strictly convex. The authors find that,

if the total available capacity is large enough, firms eventually buy asymmetric amounts

of capacity, the big firm then exercising its market power to reduce the quantity put on

the market and increase the price. This creates a discontinuity of the price in the total

available capacity, the price abruptly rising when this capacity exceeds a certain threshold.

The authors then advocate that the regulator should sometimes limit the amount of capacity

to be sold, and show that other types of auctions can perform better in terms of social surplus.

Interestingly, though the similar result is observed in both settings, underlying phenomena

strongly differ. Indeed, in Eso et al. (2006) where the firms are initially identical and the

capacity provision is endogenous, the produced quantities are symmetric below the capacity

threshold. Instead, in our model where capacity provision is mostly exogenous, airlines need

to be initially asymmetric (through capacity rights) and the outcomes become symmetric

above the capacity threshold.

4 A dynamic model of slot allocation

In this section, our aim is to study the impact of the grandfather rule when slots are allocated

though an administrative process. To this end, we present a dynamic model of slot allocation.

This model is defined as follows: airlines play a first game of slot allocation (as described in

the first part of this paper). The quantities and capacities chosen in this first round allow

to define the new allocation rule, and a second slot allocation game is played. The timing of

this dynamic game is sketched in Figure 6.

This setting allows to consider the issue of grandfather rights, according to which airport

slots owned by an airline in the last related aeronautical season are automatically renewed

if they have been sufficiently used, while slots whose utilization rate lies below 80% are put

10Here, ”efficient” is to be taken as ”maximizing the firms profits out of the payments for the goods.”
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Figure 6: Timing of the dynamic game.

back to the slot pool. For the sake of simplicity11, the usual grand-father rule described above

is slightly modified here: If K
(1)
i and q

(1)
i stand for the capacity and quantity of airline i in

the first period, then the inherited capacity KI,2
i is given by

KI,2
i = K

(1)
i − ρ

(
K

(1)
i − q

(1)
i

)
,

= ρ q
(1)
i + (1 − ρ) K

(1)
i .

(9)

where ρ is a parameter (located between 0 and 1) chosen by the regulator (that would be

the analogous of the 80% in the usual grand-father rule setting). As stated, ρ describes to

what extend the over-provision of capacity is punished. If ρ is equal to 0, then the capacity

owned in the first period is fully renewed to the airline, and there is no incentive to produce

up to capacity. On the contrary, if ρ is equal to 1, unused slots are fully lost. Note that the

capacity described in equation (9) stands for historical rights as introduced in the first part

of the paper.

4.1 Technical assumptions

In the dynamic setting, unused capacity may be released after the first round to feed the

slot pool. Because it seems too restrictive to impose that second round’s capacity rights do

not depend on the first round, we will assume here that the remaining capacity (say, the slot

pool) is allocated evenly between the airlines. The capacity rights in the second round are

therefore given by

Kall,2
i = KI,2

i +
1

2

(
K −

(
KI,2

1 + KI,2
2

))
. (10)

Combining (10) with the grand-father rule (9), we can write the capacity rights in the second

round as a function of the capacities (resp. quantities) obtained (resp. produced) in the first

11This rule is smoother than the usual one, as its derivatives are continuous (and even constant). Also,

airlines may manipulate the 80-20 rule to limit the release of under-used slots (see NERA (2004)). We

therefore feel confident that providing a slightly modified grandfather rule that exhibits the same qualitative

features as the theoretical one will not much change the picture.
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round. For airline i (j stands for i’s competitor) it writes

Kall,2
i =

1

2

(
K + ρ (qi − qj) + (1 − ρ) (Ki − Kj)

)
. (11)

To allow for explicit computations, we also make technical assumptions on the form of the

costs and demands. Production and capacity costs are supposed to be linear and equal

among periods, with marginal costs respectively equal to c and ck. We assume further that

the inverse demands P (1) and P (2) are linear and that demand is increasing from round 1 to

round 2. Precisely, we write P (1)(Q) = a(1) − b Q and P (2)(Q) = a(2) − b Q with a(2) > a(1).

Finally, we assume that the traffic growth is such that in the second round, irrespective of the

first round outcomes, airlines will request the whole capacity and thereafter produce up to

capacity. This strong assumption reflects the fact that airlines are confident in the growth of

air traffic demand and that demand in the second round is larger than the airport capacity.

4.2 Actualized profit of firm 1 in the first stage

Under the assumptions introduced in the previous section, the profit of airline i in the second

round is given by

Π
(2)
i (qi, Ki, qj , Kj) =

η

2

(
K + ρ (qi − qj) + (1 − ρ) (Ki − Kj)

)
, (12)

where η is defined as

η = a(2) − c − cK − b K . (13)

The actualized profit of airline i is therefore given by

Πi (qi, Ki, qj , Kj) =
(
a(1) −

(
c −

ρ

2
η
)
− b (qi + qj)

)
qi −

(
cK −

1 − ρ

2
η

)
Ki

+
η

2

(
K − (1 − ρ) Kj − ρ qj

)
.

(14)

This expression of the actualized profit may be decomposed in the sum of a ”first round

like” profit (first line of (14)) and additional terms that do not involve airline i’s decision

variables qi and Ki (second line of (14)). The two-stage game is therefore very similar to the

static game studied in the first part of the paper, with the exception that the expectation of

future profits impacts on the airlines marginal costs. In particular, the short-run and long-

run production cost decreases respectively from c to c− η
2ρ and from c + ck to c + ck −

η
2 , so

that the expectation of future profits makes airlines want to produce more than they would

21



be prone to in the static game. The fact that airlines may request and use slots that are

not immediately profitable, just because they expect them to become so in the near future is

well-known in the airline industry, and often referred to as the ”baby-sitting of slots”. Note

further that the ”actualized” short-run production cost is increasing in ρ. This implies, as

expected, that airlines are prone to produce more when the grandfather rule becomes more

severe. In contrast, the long-run cost is independent of ρ. Thus, we see that a reinforcement

of the grandfather rule is formally identical to the tax on unused slots described in the last

section.

Though the expression for the actualized profit of the airlines involves more terms than the

standard profit, the equilibrium result proved in the static case still holds in the dynamic case.

This observation, together with the analogy between a decrease of ρ and the introduction

of a tax on unused slots, fully characterizes the impact of an increase in the severity of the

grandfather rule: if limited, it will increase production on the market, but if set too high, it

will be counterproductive. These results are summarized in Proposition 4.

Proposition 4 Under the technical assumptions introduced in Section 4.1, the dynamic slot

allocation game is equivalent to the static slot allocation game. Moreover, the distortion

induced by the grandfather rule on the first round of the game is formally identical to the one

induced by a tax on unused slots.

5 Summary and Conclusion

In this article we studied a model of airport slot allocation that mimics the slot allocation

process currently in use at congested airports in most European Countries but allows capacity

to be costly. Introduction of posted prices for slots is indeed one of the market-based mecha-

nisms suggested by the EU Commission to improve efficiency of runway capacity allocations

at congested airports.

In our model, airport capacity is first allocated by the coordinator through an adminis-

trative procedure before a constrained Cournot market game takes place. The equilibrium

structure of the game is rather simple, with airlines either claiming their capacity rights

or their long-run Cournot equilibrium quantities. Concretely, this implies that, if initially

a carrier is dominant in the considered airport, competing airlines will not respond to the
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introduction of limited posted prices but may in turn cut production for high posted prices.

Indeed, under the current slot allocation process a dominant carrier would not take capacity

costs into account unless these are large. This has several implications. First, it implies that

the introduction of a limited tax on unused capacity, which would convert production cost

into capacity cost, would typically lead to an increase in the produced quantity. Also, it

implies that asymmetry in airport slot allocations may benefit consumers even in the absence

of network externalities or economies of scale. In this case, an increase in airport capacity

may result in a price increase if it makes expansion deterrence from the dominant carrier

unprofitable. Finally, the discontinuity of the airlines strategies supports the common view

that a market clearing level of price for slots may be difficult to establish. It is indeed symp-

tomatic that, in the static model presented in the paper, such a level does not even exists.

In practice, the equilibrium of the game suggests that, if posted prices were to be introduced

gradually, the regulator would initially face essentially unresponsive airlines, so that only

little information could be gained on the (properly defined) market clearing level of price.

Then, if slot prices were set high enough to induce the regime switch, the requested capacity

would fail below the available capacity and call for subsequent adjustments in the posted

prices. Only these could make at last the requested capacity match the airport capacity.

Notice however that this reasoning is based on a straightforward dynamic extension of the

model in which myopic airlines repeatedly engage in a static game. The adjustment process

and the associated behaviors of the airlines are actually beyond the scope of the present paper

and remain to be investigated.

In the final part of the paper, a natural two-period extension of the static model is

presented. This models allows to study the impact of the grandfather rule on the behavior of

the airlines. In particular, we observe the well-known phenomenon of ”baby-sitting of slots”,

according to which airlines that expect demand for air transport to rise in the near future may

exploit slots that are not immediately profitable. When demand is assumed to rise steeply

between the two periods, as in the particular case presented in this article, the impact of the

grandfather rule on the consumer welfare is positive. This contrasts with the general belief

according to which baby-sitting is the sign of an inefficient use of runway capacity. We also

show that a reinforcement of the 80-20 rule is formally equivalent to a tax on unused slots.

Accordingly, it is shown to be counterproductive if set too constraining.
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Now they are several directions that could be of interest for future research. It could

indeed be interesting to allow new competitors to enter the market and see how results

presented in this paper are impacted. Also, the study of the aforementioned dynamical

adjustment of the slot level of price could give additional insight on what could be gained if

posted prices were implemented.
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Appendix

Proof of Proposition 2

We recall that this proposition states that technical assumption A1 is satisfied in the sym-

metric case when the demand is linear and the capacity and production marginal costs are

constant.

Proof: In this proof, the inverse demand is given by P (Q) = a− bQ and the cost of firm

i are given by C(qi, Ki) = cqi + cKKi. Firm i’s profit is therefore given by

π(qi, qj , Ki) = qi(a − c − b(qi + qj)) − cKKi . (15)

We first consider the case where (K1, K2) belong to Region A. In this region, firms choose to

produce quantities equal to their capacities so that as long as K1 + K2 = K, the final price

is constant and given by a − bK. Firm i’s profit is therefore given by Ki

(
a − c − ck − bK

)
.

Now remind that (K1, K2) belong to Region 1. Thus, either one of the firms profits is

strictly greater than its long-run Cournot profit, or K ≤ a−c−cK

3b
. In both cases, we get that

a − c − ck − bK is positive, which imply that firm i’s profit is increasing in Ki.

We now consider the case where (K1, K2) belong to Region 1 but not to Region A12 and

saturate the allocation constraint K1 + K2 = K. Without loss of generality, we can assume

that (K1, K2) belong to Region 1 and to Region B. In this region, the firm’s profits are given

by

Π1(K1, K2) =
(a − c − bK2)

2

4b
− cKK1,

and

Π2(K1, K2) = K2
(a − c − bK2)

2
− cKK2.

This implies that

∂Π1

∂K2
(K1, K2) −

∂Π1

∂K1
(K1, K2) = −

(a − c − bK2)

2
+ cK

= −
a − c − 2cK − bK2

2
,

and

∂Π2

∂K2
(K1, K2) −

∂Π2

∂K1
(K1, K2) =

(a − c)

2b
− bK2 − cK

=
a − c − 2cK − 2bK2

2
.

12According to the parameters values, such (K1, K2) may or may not exist.
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We therefore need to show that K2 < a−c−2cK

2b
.

Note that in Region B, firm 2’s capacity is lower that its long-run Cournot capacity KLR
2 =

a−c−cK

3b
. For parameter values such that a−c−cK

3b
< a−c−2cK

2b
, this inequality is sufficient to

prove the proposition.

Assume now that a−c−cK

3b
≥ a−c−2cK

2b
. Notice that for (K1, K2) in Region 1 and Region B,

firm 1’s profit is strictly greater that its long-run Cournot profit. Since Π1 is decreasing in

K2, we get that K2 as to be lower that the capacity K̃2(K1) that solves

Π1(K1, K̃(K1)) = Π1(K
LR
1 , KLR

2 ) . (16)

An application of the Implicit Function Theorem shows that the function K̃2 defined implicitly

in equation (16) is non-increasing. The maximum of the function K̃2(K1) for values of K1

corresponding to couples (K1, K2) belonging to Region 1 and to region B is reached when

its graph intercepts firm 1’s short-run cournot reaction curve. We only need to prove that

for K∗
2 = a−c−2cK

2b
and K∗

1 = r(K∗
2 , c) =

a−c−bK∗
2

2b
, the couple (K∗

1 , K∗
2 ) does not belong to

Region 1, that is Π1(K
∗
1 , K∗

2 ) < Π1(K
LR
1 , KLR

2 ) = (a−c−cK)2

9b
. This is true if and only if

(a − c − bK∗
2 )2

4b
− cKK∗

1 <
(a − c − cK)2

9b

⇔
(a − c − bK∗

2 )2

4b
− cK

a − c − bK∗
2

2b
<

(a − c − cK)2

9b

⇔ (
a − c − bK∗

2

2
)(

a − c − bK∗
2

2
− cK) <

(a − c − cK)2

9

⇔ (
a − c + 2cK

4
)(

a − c − 2cK

4
) <

(a − c − cK)2

9

⇔ 9
[
(a − c)2 − 4(cK)2

]
< 16 (a − c)2 − 32cK (a − c) + 16(cK)2

⇔ 0 < 7 (a − c)2 − 32cK (a − c) + 52(cK)2.

This is true for whatever values of the parameters. This achieves the proof of the proposition.

Proof of Proposition 3

In this section we state and prove formally the lemmas used in the proof of Proposition 3.

Lemma 1 Assume that both firms profits satisfy A1. Then if there exists a Nash equilibrium

(ϕ∗
1, ϕ

∗
2) of the capacity game such that allocated capacities (Kall

1 (ϕ∗
1, ϕ

∗
2) , Kall

2 (ϕ∗
1, ϕ

∗
2)) belong
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to Region 1, and such that all the available capacity is allocated ( Kall
1 (ϕ∗

1, ϕ
∗
2)+Kall

2 (ϕ∗
1, ϕ

∗
2) =

K), then maximum capacity demands
(
K, K

)
also are a Nash equilibrium and yield the same

capacity allocation: Kall
1 (ϕ∗

1, ϕ
∗
2) = Kall

1

(
K, K

)
.

Proof: Assume that there exists a Nash equilibrium (ϕ∗
1, ϕ

∗
2) of the capacity game such

that allocated capacities (Kall
1 (ϕ∗

1, ϕ
∗
2) , Kall

2 (ϕ∗
1, ϕ

∗
2)) belong to Region 1, and such that all

the available capacity is allocated (Kall
1 (ϕ∗

1, ϕ
∗
2) + Kall

2 (ϕ∗
1, ϕ

∗
2) = K). Technical assumption

A1 implies that firm 1 must not be able to get more capacity by expressing a higher demand,

so that13 Kall
1 (ϕ∗

1, ϕ
∗
2) = Kall

1

(
K, ϕ∗

2

)
. So the demands

(
K, ϕ∗

2

)
also constitute a Nash

equilibrium and yield the same capacity allocation. Indeed, if ϕ∗
1 is a best response to ϕ∗

2

for firm 1, then K is also a best response to ϕ∗
2 since it yields the same outcome. Moreover

if ϕ∗
2 is a best response to ϕ∗

1 for firm 2, then it is also a best response to K (if ϕ∗
2 is a

best response to ϕ∗
1 for firm 2, it must be true that firm 2 can not get more capacity than

Kall
2 (ϕ∗

1, ϕ
∗
2) = Kall

2

(
K, ϕ∗

2

)
by choosing a higher demand than ϕ∗

2 when firm 1 chooses

demand ϕ∗
1. From the monotonicity of Kall

1 in ϕ1, this is also true when firm 1 chooses

demand K. Moreover for a given quantity K2 granted to firm 2, firm 2’s profit Π2(K1, K2)

is non increasing in K1, whatever the region (K1, K2) belong to. So if firm 2 has no interest

is choosing a lesser capacity demand than ϕ∗
2 when firm 1 chooses capacity demand ϕ∗

1, this

is also true when firm 1 chooses capacity demand K).

Applying the same logic to the Nash equilibrium
(
K, ϕ∗

2

)
shows that

(
K, K

)
is also a Nash

equilibrium and yields the same allocated capacities.

Lemma 2 Assume that both firms profits satisfy A1. Then the set of capacity pairs (K1, K2)

such that K1 + K2 < KLR
1 + KLR

2 is included in Region 1.

Proof: Assume that K̄ < KLR
1 +KLR

2 and consider the capacity pair defined as (K0
1 , K0

2 ) =

(KLR
1 −1/2(KLR

1 +KLR
2 −K̄), KLR

2 −1/2(KLR
1 +KLR

2 −K̄)). By construction, these capacities

are strictly below the long-run Cournot responses, so that (K0
1 , K0

2 ) belongs to Region 1.

Now assume that Π1(K
0
1 , K0

2 ) ≤ Π1(K
LR
1 , KLR

2 ). By construction (K0
1 , K0

2 ) is in the

interior of Region A, so that the function δ 7→ Π1(K
0
1 +δ, K0

2 −δ) is locally strictly increasing.

It is actually strictly increasing as long as the firms produce up to capacity, that is until

K0
1 + δ becomes large enough to cross the long-run Cournot best response. This happens for

13Because Kall

1 is continuous and Region 1 is an open set.
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K0
1 + δ = r(K0

2 − δ, c1 + k1). Now remind that on firm 1’s Cournot long run best response

curve, firm 1’s profit is given by

Π1(r(K2, c1 + k1), K2)) = max
q

P (K2 + q)q − c1(q) − k1(q) . (17)

The Envelop Theorem therefore implies that ∂Π1(r(K2,c1+k1),K2)
∂K2

= P ′(K2+r(K2, c1+k1))r(K2, c1+

k1) < 0. As a consequence, firm 1’s profit is decreasing in K2 on its long run best response

curve. Since, K0
2 − δ < K0

2 < KLR
2 , this proves that that firm 1’s profit is larger than its long

run Cournot profit when K0
1 + δ crosses firm 1’s long-run Cournot best response. Technical

assumption A1 then implies that the set {K1 ≥ K0
1} ∩ {K1 + K2 = K} belongs to Region 1.

Alternatively, if Π1(K
0
1 , K0

2 ) > Π1(K
LR
1 , KLR

2 ) technical assumption A1 implies that the

set {K1 ≥ K0
1} ∩ {K1 + K2 = K} belongs to Region 1. By symmetry, we get that the whole

set {K1 + K2 = K < KLR
1 + KLR

2 } belongs to Region 1. This completes the proof of the

lemma.

Lemma 3 Assume that both firms profits satisfy A1. If allocated capacities for maximum

demands, Kall
(
K, K

)
, belong to Region 2, then the demands (KLR

1 , KLR
2 ) constitute a Nash

equilibrium.

Proof: First note that lemma 2 implies that if Kall
(
K, K

)
belongs to Region 2, then

the available capacity K = Kall
1

(
K, K

)
+ Kall

2

(
K, K

)
must exceed KLR

1 + KLR
2 .

Suppose that firm 1 chooses a capacity demand KLR
1 .

If firm 2 demands any capacity ϕ2 between 0 and K − KLR
1 , then the allocated capacities

are Kall
(
KLR

1 , ϕ2

)
=

(
KLR

1 , ϕ2

)
. Among these capacities demands ϕ2, the long-run Cournot

quantity KLR
2 is the best. This comes from the standard result of the capacity-unconstrained

model ( K = +∞) stating that (KLR
1 , KLR

2 ) is a Nash equilibrium.

If firm 2 demands a capacity ϕ2 above K − KLR
1 , then we need to distinguish two cases:

• If Kall
1

(
K, K

)
≥ KLR

1 , the allocated capacities are Kall
(
KLR

1 , ϕ2

)
=

(
KLR

1 , K − KLR
1

)
.

So, if Kall
1

(
K, K

)
≥ KLR

1 , a demand ϕ2 = KLR
2 is a best response to a demand

ϕ1 = KLR
1 .

• If Kall
1

(
K, K

)
< KLR

1 , the the allocated capacities are

Kall
(
KLR

1 , ϕ2

)
=

(
K − min

(
ϕ2, K

all
2

(
K, K

))
, min

(
ϕ2, K

all
2

(
K, K

)))
,
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and saturate the allocation constraint.

By assumption, firm 2’s profit satisfies A1. This implies that if for any value of ϕ2,

the allocation
(
K − min

(
ϕ2, K

all
2

(
K, K

))
, min

(
ϕ2, K

all
2

(
K, K

)) )
belongs to Region

1, then it must also be true for higher values of ϕ2, and in particular for the allocation

Kall
(
K, K

)
obtained with ϕ2 = K. As we assumed that Kall

(
K, K

)
belongs to Region

2, we know that whatever ϕ2 above K − KLR
1 leads to an allocation in Region 2, and

to a firm 2’s profit inferior to the long-run Cournot profit. This proves that a demand

ϕ2 = KLR
2 is a best response to a demand ϕ1 = KLR

1 .

Symmetry completes the proof.

Lemma 4 If allocated capacities for maximum demands, Kall
(
K, K

)
, belong to Region 1,

then
(
K, K

)
is a Nash equilibrium, and there is no Nash equilibrium yielding an allocation

(KLR
1 , KLR

2 ).

Proof: Suppose that allocated capacities for maximum demands, Kall
(
K, K

)
, belong to

Region 1.

• From Lemma 1, we know that for (K1, K2) belonging to Region 1, such that K1 +K2 =

K, firm i’s profit is all the higher as Ki is high. So, if firm 1 expresses a maximum

demand, firm 2 prefers expressing a maximum demand rather than any other demand

such that the allocation stays in Region 1. The only case where one of the firms, say

firm 2, can express a demand yielding an allocation in Region 2 (by reducing firm 2’s

allocation), is when K ≥ KLR
1 + KLR

2 and Kall
(
K, K

)
gives firm 2 a profit which is

superior to the long-run Cournot profit. But it has no interest for firm 2 as it would

finally enjoy a profit inferior to the long-run Cournot profit.

Using symmetry, this shows that
(
K, K

)
is a Nash equilibrium.

• Moreover there is no Nash equilibrium yielding an allocation (KLR
1 , KLR

2 ). This is clear

when K < KLR
1 + KLR

2 . Suppose now K ≥ KLR
1 + KLR

2 . If Kall
(
K, K

)
is in Region

1, it can’t be ”below” both long-run Cournot reaction curves. So, for the allocation

Kall
(
K, K

)
, one of the firms, say firm 1, has a profit strictly higher than the long-run

Cournot profit. In this case, it must also be true14 that Kall
2

(
K, K

)
≤ KLR

2 . Thus, if

14Because whatever K2 above KLR

2 , and whatever K1, firm 1’s profit Π1(K1, K2) is inferior to Π1(K1, K
LR

2 )

which is inferior to Π1(K
LR

1 , KLR

2 ).
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firm 2 expresses a demand ϕ2 = KLR
2 , firm 1’s best reaction will be to choose a demand

ϕ1 = K, giving the allocation Kall
(
K, K

)
.

This completes the proof.

Lemma 5 If allocated capacities for maximum demands, Kall
(
K, K

)
, belong to Region 1,

there is no Nash equilibrium (ϕ∗
1, ϕ

∗
2) such that all the capacity available is allocated (that is

Kall
1 (ϕ∗

1, ϕ
∗
2) + Kall

2 (ϕ∗
1, ϕ

∗
2) = K) and such that the allocation (Kall

1 (ϕ∗
1, ϕ

∗
2) , Kall

2 (ϕ∗
1, ϕ

∗
2))

belongs to Region 2.

Proof: Suppose allocated capacities for maximum demands, Kall
(
K, K

)
, belong to Re-

gion 1, and consider any demands (ϕ∗
1, ϕ

∗
2) such that all the capacity available is allocated

(Kall
1 (ϕ∗

1, ϕ
∗
2) + Kall

2 (ϕ∗
1, ϕ

∗
2) = K) and allocation ( Kall

1 (ϕ∗
1, ϕ

∗
2) , Kall

2 (ϕ∗
1, ϕ

∗
2)) belongs to

Region 2. As noted in Lemma 3, this would require K ≥ KLR
1 + KLR

2 .

Moreover, as noted in Lemma 4, if Kall
(
K, K

)
is in Region 1, for the allocation Kall

(
K, K

)
,

one of the firms, say firm 1, has a profit strictly higher than the long-run Cournot profit, and

it also requires that Kall
2

(
K, K

)
≤ KLR

2 . So, if firm 2 expresses a demand ϕ∗
2, firm 1 would

prefer choosing demand K, which would yield an allocation Kall
(
K, K

)
and give it a profit

strictly superior to the long-run Cournot profit (while choosing ϕ∗
1 give it a profit inferior

to the long-run Cournot profit). So (ϕ∗
1, ϕ

∗
2) is not a Nash equilibrium, which completes the

proof.
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