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ABSTRACT

The task of airline network management is to develop new flight
schedule variants and evaluate them in terms of expected passenger
demand and revenue. Given the industry’s trend towards global co-
operation, this is especially important when evaluating the potential
synergies with alliance partners. From the econometric point of view,
this task represents a discrete choice modeling problem in which the
analyst has to account for a large number of dependent alternatives.
In this paper we discuss the applicability of both standard models and
recently proposed alternatives to the airline network management task.
We identify their drawbacks and introduce a new specification. The
superiority of the new model is demonstrated both in a simulation
study and in a real-world application using airline bookings data.
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1 INTRODUCTION !

The creation of worldwide alliances such as the British Airways/American
Airlines joint venture "One World” and the cooperation between United
Airlines, Lufthansa and other major carriers, known as ”Star Alliance”, em-
phasized the importance of the network perspective in the airline industry.
Rather than perceiving a timetable to be a collection of isolated routes, air-
lines have realized that their schedules and those of their alliance partners
represent a complex network of city-pair connections in origin and destina-
tion markets. The number of markets that can be served in this network
is a multiple of the limited number of routes that can be offered by any
single airline. The potential synergies that airline alliances can generate
are therefore mainly caused by the significant additional number of mar-
kets that become accessible by harmonizing the alliance partners’ schedules.
Even before the advent of international joint ventures many carriers already
increased their portfolio of served markets by processes called hubbing and
banking, i.e. by scheduling incoming and outgoing flights at the airline’s
home airport (hub) in a way that enables them to penetrate a variety of
profitable transfer markets.

The task of an airline network management department is to create and
evaluate flight schedule scenarios in terms of expected passenger demand and
revenue. Each schedule redesign or the creation of a joint alliance schedule
generates alternative options for passengers wishing to travel from an origin
to their desired destination (O&D itineraries). Passengers chose direct or
transfer connections from the set of offered itineraries. Transfer itineraries
may invoke one or more stops, and the legs that build a feasible connection
may be offered by the same (online) or different (interline) carriers. Assum-
ing that the utility of an offered itinerary is dependent on the characteristics
of the alternative, and that a customer chooses an itinerary that provides

her maximum utility, a tailor-made environment is obviously available for
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the application of a discrete choice model. For strategic decisions concerning
network design and/or alliance evaluation, the estimated choice probabilities
are conceived as market share estimates. Multiplying these by (externally
estimated) total O&D market demand and ticket price the network manag-
ment department is able to provide an estimate of the revenue and passenger
volume that is implied by any given schedule scenario.

In this paper we assess the applicability of the discrete choice models
that have been discussed in the literature to the alliance and schedule evalu-
ation problem. We introduce a new multinomial probit (MNP) specification
that is motivated by the requirements of airline network management, but
straightforwardly applicable to other discrete choice situations where the
analyst faces the problem of accounting for a large number of dependent
alternatives.

The application of discrete choice models in the airline industry is facil-
itated by the commercial availability of worldwide airline schedules. Using
timetable information it is straightforward (albeit cumbersome) to construct
the set of relevant itineraries from which a passenger can choose. The at-
tributes of the alternatives can also be constructed from the schedules (e.g.
elapsed time, type of aircraft) or obtained from external sources (e.g. prices).
Since a large fraction of the passenger demand is recorded in computer reser-
vation systems, whose operators sell these data to airlines, the estimation
of discrete choice models can be based on high quality data. Commercial
software companies, e.g. SABRE decision technologies have specialized in
the implementation of schedule evaluation tools that are based on discrete
choice models.

Besides the unique data availability, the requirements that a successful
model has to meet are high. The number of alternatives, in terms of offered
connections on an O&D market, can be quite large. Whilst the multinomial
logit model (MNL) has no problems dealing with large sets of alternatives
its application is not appropriate since the independence of irrelevant al-
ternatives (IIA) assumption is violated at a critical level. In fact, the blue

bus/red bus paradox, the familiar textbook example to illustrate the ITA



problem, becomes a reality in many airline markets: On a route with heavy
competition between airlines it is often the case that the aircrafts of two
carriers will leave from an airport at almost the same time for the same
destination. Assuming independence of the utilities in such a situation is
definitely a bad idea. Hence, a discrete choice model is required that will
allow for dependence between alternatives and that can cope with a sit-
uation in which the number of alternatives can become quite large. We
will discuss the applicability of recently proposed discrete choice models for
non-ITA situations and show that most approaches have to be discarded
as a result of their restrictive assumptions. After formulating an adapted
version of the Generalized Autoregressive (GAR) probit model advanced
by Bolduc and Ben-Akiva (1991), Bolduc (1992) and Ben-Akiva and Bolduc
(1996) in greater detail, we introduce a new MNP specification that perfectly
meets the requirements of airline network management. As in Yai, Iwakura
and Morichi’s (1997) model our approach builds on a pure attribute based
specification of the utility covariance matrix. Yai, Iwakura and Morichi’s
specification, however, is designed for the specific route planning problem
that they investigate, limiting its extension to other fields. The advantage
of our approach is that it is applicable to any discrete choice problem in
which one has to account for a large number of dependent alternatives.
The paper is organized as follows. In the Section 2 we will outline the
econometric formulation of the network management problem (Section 2.1),
discuss the applicability of several discrete choice models that were proposed
in the literature (Section 2.2) and adapt the GAR-MNP for airline network
management purposes (Section 2.3). In Section 2.4 we present our new
MNP specification. The results of a simulation study, designed to assess
the performance of the alternative approaches, are discussed in Section 3.
Fmmpirical applications and comparisons of the performance of the models

are presented in Section 4. We conclude in Section 5.



2 ECONOMETRIC MODELS

2.1 Discrete choice modeling in airline network management

In the sequel we introduce some basic notation, and outline the requirements
a discrete choice model must satisfy if it is to be successfully employed for
schedule and alliance evaluation. For an O&D market d, d = 1,..., D,
where D is the number of Q&Ds, J; alternative itineraries can be con-
structed. J = 25:1 Jg denotes the total number of itineraries. We are
interested in estimating the probability that a passenger n, n = 1,..., N
chooses alternative ¢ , 1 = 1,..., J where N = Zé):l Ny is the total number
of individuals in the sample, and Ny is the number of passengers deciding
among the alternatives in market d.

We assume that passengers who want to travel from origin O to destina-
tion D are not interested in itineraries offered for other markets.? To take
this into account we define the function g(n) that assigns an individual n to
her O&D market d. Analogously, f(7) is a function that assigns alternative 4
to the O&D market to which it belongs to. Hence, the probability that indi-
vidual n chooses alternative i can only be different from zero if g(n) = f(7).
We assume that all individuals assigned to a specific O&D market observe
the same set of alternatives. This is justified by the passenger’s real-life
travel decision: Computer Reservation Systems (CRS) display all the possi-
ble connections that are offered for an O&D market. Any traveler has access
to these CRS screens via her travel agency. To be precise, we deal with the

following probabilistic choice setting

Lif win > ujn Vi €{j =1,...,J | f(4) = f(4)} and [(i) = g(n)

0 otherwise

Yin =
(1)
Din = P(yin = 1);

where y;, is the observed choice of the individual n and w;, is the utility

that alternative ¢ provides for individual n.

>This is a simplifying assumption. It does not take into account, for instance, that
an individual living between two airports can choose one as the origin of her trip if the
desired destination is offered at both airports.



For simplicity, assume a linear specification
Uip, = 1'213 + Ein- (2)

x; is a (K x 1) vector of attributes describing alternative ¢ that may contain
alternative-specific constants and alternative-specific covariates. 3 isa (K x
1) parameter vector. The alternative models discussed below imply different
specifications of the random utility £;,. We assume that the vector 3 is
identical for a subset of the O&D markets (e.g. domestic, short-haul and
long-haul market). The assumptions above imply independence between

utilities of itineraries on different O&D markets

cov(€in, €jn) = 0V f(i) # f(4)- 3)

In the context of airline network management the covariance matrix as-
sumed for the random utility component ¢;, differs fundamentally from the
one that is employed for the typical commuter problem (Albright, Lerman
and Manski 1977, Horowitz, Sparman and Daganzo 1982, Ben-Akiva 1985,
Keane 1992, Bolduc 1999). In the latter framework, physically different
alternatives are identified by logical names describing the mode of trans-
port, e.g. bus, car or shared ride. This procedure is referred to as nominal
identification. The fact that the bus that consumer n living in region A
chooses is not the same vehicle that consumer m living in region B selects
does not matter. Although the two buses can have different attribute levels
(e.g. prices), the covariances of the utilities of each bus and car alternative
and each bus and shared ride alternative respectively are assumed to be
identical.

The application of the nominal identification principle is not useful for
airline network management purposes: In a typical O&D market one will
find a large number of itineraries possessing different attribute levels, e.g. a
British Airways nonstop flight departing at 8:00 a.m. with an elapsed time
of 6:30 hours, or a Lufthansa/United Airlines interline connection depart-

ing at 8:30 a.m. with an elapsed time of 8:00 hours. Although nominal

3If certain alternatives are not available for a specific individual then the reduced
covariance matrix can be generated by just deleting the corresponding rows and columns
in the full covariance matrix.



identification would be straightforward, e.g. by distinguishing direct flights,
online connections, interline connections etc., this is not helpful. For sched-
ule evaluation purposes an airline is interested in the choice probability of
each itinerary, especially in self-offered direct flights and online connections.
This implies that it is necessary to account for a specific covariance matrix
for each O&D market. Given the independence assumption (3) we have to
deal with a block-diagonal, but otherwise unrestricted covariance matrix.
A schedule modification alters the set of relevant itineraries, which changes
some or all of the covariance matrix blocks. A model that will be success-
fully applicable in airline network management must be able to cope with

the obvious incidental parameter and identification problems.

2.2  Applicability of standard discrete choice models

The most simple specification that can be considered is the Multinomial
Logit model (MNL). The MNL is based on the assumptions that &, is i.i.d.
and follows a Gumbel distribution. Applied to the framework outlined in
the previous subsection we obtain the probability that individual n chooses
alternative ¢:

exp(z;8)
> exp(z}p)

jEN;

Pin = , where Nj = {j = L,...,J | f() = f()}  (4)
The MNL’s computational simplicity comes at the cost of the restrictive as-
sumption of independence of irrelevant alternatives (IIA). The ITA assump-
tion implies that the ratio of the choice probabilities of any two alternatives
does not depend on the others:
. /
B )~ oPs —536) Q
In airline network management the ITA assumption is violated at a crit-
ical level. As is often the case on contested routes the planes of two com-
petitors depart at almost the same time and for the same destination. One
should expect that the joint market share on the city-pair connections is
lower compared to a situation where the two planes start with some hours

departure time difference.

“This argument assumes the absence of capacity restrictions



The nested logit model (NL), the cross correlated logit model (CCL)
and other models of the General Extreme Value family (GEV) have been
proposed for situations, in which the ITA assumption cannot be maintained
(Williams 1977, McFadden 1978, Ortuzar 1982). For a simple two-level
NL model the random utility €;, is divided into a part that is common
to alternatives that belong to the same group and a remaining unobserved
utility e;p,:

Ein = Eg(i),n + €in- (6)

The approach can easily be extended to a multi-level model by further group-
ing the alternatives within a group and further dividing the error compo-
nents. A generalization of the NL is the CCL model proposed by Williams
and Ortuzar (1982). This approach allows for interaction terms in the co-
variance matrix and does not require the hierarchical structuring that has to
be imposed for NL. However, the model is highly complex and inconsistent
with utility maximization, as conceeded by the authors.

The core problem of all tree structured models, however, is that a hier-
archical structure of the decision process has to be assumed. In the case of
the nests being based on continuous variables one has to cut the range of
attribute values into pieces. This can lead to implausible discontinuities of
choice probabilities, e.g. when changing the departure time of a flight and
thereby shifting it from one nest to another. Furthermore, the ITA problem
remains present on the level of the nests. As an example, consider a simple
one-level NL model where the departure weekdays are chosen as the nesting
criterion. The covariance between an alternative that belongs to a specific
nest (e.g. a Tuesday departure) and any other alternative that belongs to
a different nest (e.g. a Monday departure or Friday departure) is equal.
For the weekday nesting this is obviously a very doubtful assumption: It is
much more reasonable to assume that a Tuesday departure is conceived as
being more similar (in terms of unobserved utility) to a Monday departure
than it is to a Friday departure. Bhat (1997) investigates more flexible NL
specifications that aim to provide a solution to this problem by introducing

covariance heterogeneity between nests based on the individual’s characteris-



tics. Yet, because of the lack of information about individuals, this approach
is not suitable for airline network management. The same holds true for the
MNL-approach recently proposed by Ivaldi and Viauroux (1999).

The Multinomial Probit model (MNP) is the natural tool to be applied
to non-ITA problems. Recent work on simulation based methods has helped
greatly to solve the numerical problems associated with the evaluation of the
multidimensional integrals required to compute the choice probabilities.Both
McFadden (1989), Borsch-Supan and Hajivassiliou (1993), Hajivassiliou and
McFadden and Ruud (1996) have introduced simulation based methods that
permit MNP modeling of choice problems with a larger number of alterna-
tives.

The second problem associated with the MNP is caused by the abun-
dance of covariance elements that have to be accounted for if the number
of alternatives is large. The identifying restrictions needed for MNP ap-
plication have been extensively discussed in the literature (see Albright,
Lerman and Manski (1977) Horowitz, Sparman and Daganzo (1982), Dan-
sie (1985), Bolduc (1992), Bunch (1991), Horowitz (1991), Keane (1992)).
Bunch (1991) argues that the identifying restrictions imply assumptions
which are equivalent to choosing among hierarchical structures in GEV-type
models mentioned above. Horowitz (1991) and Bunch (1991) conclude that
it is questionable whether the performance of MNP is superior to GEV-type
models.

Horowitz (1991) has pointed to another problem associated with MNP:
Covariances between new alternatives are unknown, therefore the MNP
is inadequate for forecasting purposes. Since market share forecasts for
itineraries that are newly generated by schedule redesigns are crucial in air-
line network management this seems to be a devastating critique. We will
show in the following that all is not lost for MNP, arguing that a sparse
parameterization of the utility covariance matrix is the key to the solution.
Hausman and Wise (1978) were the first to discuss the role of modeling co-
variances in the MNP model, and subsequent work is built heavily on their

basic ideas.



It is therefore helpful to review their framework and its critique. In the

Hausman and Wise model the utility is specified as
Uin = x;nlg + x;n,én + €in; (7)

where 3 contains the average taste parameters and Bn represents individual
taste variations which are assumed to be iid. N(0,I). The errors e;, are
assumed to be i.i.d. N(0,1).

Yai, Iwakura and Morichi (1997) criticize that this approach leads to
covariances that are proportional to the product of the attributes of the
two alternatives. This is a crucial critique in the context of airline network
management: One does not expect two itineraries to be more similar just
because, for instance, they both start in the evening instead of in the morn-
ing. Yet, this is exactly what Hausman and Wise’s approach would imply if
we used the departure time as a covariate in (7). Based on their critique Yai,
Iwakura and Morichi (1997) introduce the concept of structured covariances
in MNP modeling. Their approach towards the modeling of dependencies
between alternatives is closely linked to the peculiarities of the route choice
problem that they analyze: The covariance of two routes is determined by
their common transfer stations and the common parts of the route. Yet,
this approach is a rare example of a pure attribute based specification of the
covariance structure. In Section 3 we will present a more general approach

that contains Yai, Iwakura and Morichi (1997) model as a special case.

2.3 GAR-MNP adapted for airline network management

In this section we will present an adaption of the Generalized Autoregressive
(GAR) MNP that was introduced by Bolduc and Ben-Akiva (1991) and
Bolduc (1992). Ben-Akiva and Bolduc (1996) extend the concept to a general
factor analytic approach, which contains GAR and other specifications as
special cases. After outlining its basic idea, we adapt the GAR approach
to enable its application in network management and discuss some of its
shortcomings.

In Ben-Akiva and Bolduc’s (1996) general factor analytic approach, the

stochastic utility component is decomposed into an independent random
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variable v;, and a covariance generating component ¥;,:
€in = Vin + Vin (8)

The error term v;, is assumed to be i.i.d., either following a normal or a

Gumbel distribution. 9;, is defined via a factor structure

ﬁn = FnCna (9)

where ¥, = 91y, ...,9L,n With L, being the number of alternatives in the
choice set of individualn . {, ~ N(0,Ips) is a (M x 1) random vector that is
ii.d. multivariate normal, where M < L,,. F, is a (L, X M) matrix for which
Ben-Akiva and Bolduc (1996) propose four specifications. Among these
only one, the heteroscedastic specification, is suitable for airline network
management. Assume

Oy = pWiby + Tl (10)

where T is a diagonal matrix of alternative-specific standard deviations and
(=1 < p < 1). The parameter p accounts for the overall strength of depen-
dence between alternatives. Wy, is a (L, X L) weighting matrix. Rewrite
(10) as
O = (I = pWo) ™' Tn. (11)
Bolduc (1992) proposes the choice of the ¢, j’th element of W, as
_Yin o if £

Lp ’
*

Z wik,n

k=1

0, otherwise

; (12)

Wijp =

%

where wj; . is inversely related to the similarity or proximity of the alter-

natives ¢ and j. As proposed by Bolduc (1992), wj;,, can be defined as a
Boolean matrix. This is useful for standard problems using nominal identi-
fication, but cannot be applied in an airline network management context.

As an alternative, Bolduc (1992) suggested a distance function such as
wii = (Ag) (13)

where A > 0 and A;; is a distance measure between ¢ and j. In the following
we will adopt these basic ideas in order to provide a GAR variant that is

applicable in airline network management.
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Consider the following specification for the covariance generating com-
ponent 9,,:
O = oWy + Ty (14)

Since individual-specific data are not used for airline management the suffix
n is dropped for the weighting matrix. Furthermore, as nominal identifi-
cation has been discarded, we cannot assign specific standard deviations to

the alternatives. Hence, we have T = oyI. Consequently (14) reduces to
Uy = pWy + 00Cn, (15)

or, equivalently,

Uy = UO(I - pW)_ICn-

Conceiving A;; in (13) as a general measure for the proximity of the alter-
natives in terms of one or more attributes, we propose to use the following

weighting function:

P
w; j = exp(— > aplzip — zjl), (16)
p=1

where z; and z; are (P x 1) vectors of attributes that account for the similar-
ity of two alternatives.® y, are parameters to be estimated. The weighting
function (16) is preferred to (13) because it is also defined for z;, = 2;,.%
This specification yields an MNP in which the covariance matrix depends
on the parameters p,o¢ and a = (a1, ..., 0p).

Three drawbacks of the GAR approach are induced by the normalization
in equation (12) which is nevertheless necessary to ensure that the regular-
ity conditions required for consistency and asymptotic normality of the ML
estimator are satisfied (Bolduc and Ben-Akiva, 1991). First, the covariance
of any two alternatives ¢ and 5 depends on the presence of a third alternative
which is incompatible with the marginalization property of the multivari-
ate normal distribution. Second, the normalization induces counterintuitive

effects. If one assumes a block-diagonal weighting matrix within an airline

®Note that the block-diagonal covariance matrix implies that w; ; for f(2) # £(5)-
5Whilst a number of alternative weighting functions were tested 16) turned out to be
the most robust.
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0&D market, the covariance structure implied by the GAR model would be
invariant to a multiplication of any block of the weighting matrix. Third, it
is possible that a closer proximity between two alternatives implies a higher
joint choice probability. However, this is contradictory to the effect that
similarity is expected to exert on choice probabilities: If for an alternative
i the normalized weights w;; (one row of W) possess large size differences,
then the variance of alternative ¢’s utility is higher compared to a situation
in which the weights are equally distributed. This yields a higher choice

probability, ceteris paribus.

2.4 An alternative MNP specification

In this chapter we will introduce an alternative approach towards modeling
similarities between alternatives. The basic idea is to decompose the random
utility €;, into error components that are related to attributes describing the
alternatives. For simplicity we refer to the standard linear utility specifica-
tion

Uiy, = iL‘;,B + €in- (17)

As for GAR and NL, ¢;, is composed into an i.i.d. N(0,1) error v, and an

attribute-dependent component ¥;,:
€in = Vin + Vin (18)

Let z; = (21, 22, - - -, 2ip) be a vector of attributes describing alternative 4,
where z; C z;. ¥;, is linearly decomposed into P error components. Fach

of those is associated with a specific attribute in z;
Pin = Yin1 + in2 + ... + Jinp, (19)

where 9,1 is the error associated with the attribute z;1, ¥;,2 is associated
with 29, and so on.” We assume that the random utility ¥;,, is associated
with the level of the k’th attribute, i.e. ¥4, = Fjpp if 25 = 2zj. This

specification is related to the Hausman and Wise model (7) in the sense

"In general there could also be error components that are related to two or more
attributes, but for simplicity we take a linear approach here.
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that we account for unobserved individual-specific deviations of the utility
that are associated with some attributes. However, we do not assume the
restrictive linear relation of the random coeflicients and attribute levels as
is the case in (7). In the following, we will propose three basic variants of
(19) by distinguishing three types of attributes, non-ordered and ordered
categorial and continuous.

Let z? be a dichotomous attribute and 92, the random utility that is
associated with this attribute. Let ¢! (¢%0) denote the random utility
component that is associated with an alternative where the dichotomous

variable z? equals one (zero). Consider the following specification:
ﬁ?n = 6z§’,0 : 62’0 + 6z§’,1 : 62’1' (20)

€50 and ¢%! denote i.i.d. random variables, %0 ~ N(0,07) and &2 ~

N(0,02) where cov(£%0,£%1) = 0. &, is the Kronecker symbol:

1 for s=t
55715 - (21)
0 otherwise

This implies:
b ob 5,0 5,0 b1 b1
Cov(ﬁin’ ,19]71,) = Cov(ézi.’,o ) é.n aéz}’,o ) é.n ) + Cov(ézi?,l ) é.n adz}’,l ) é.n )
5,0 ¢b,0 b,1 ¢b,1
6z§’,0’6z;?,0’cov( w &)+ 6z§’,1’6z§’,lacov( w o &n)
2 2
— 6Z§,,0’ 6Z‘l;70,0-0 + 6Z,?,1’6Z‘l;,1’0-1 (22)

In words, the covariance matrix is non-zero only if the two alternatives ¢
and j take on the same level of the dichotomous attribute 2?. o2 and o?
are parameters to be estimated. To illustrate this specification, consider
a binary indicator that equals one if the carrier that offers an itinerary is
” American Airlines” and zero if not. The dummy indicator ” American Air-
lines” is assumed to enter the systematic utility as an explanatory variable.
However, since people have different experiences when travelling with the
airline, it is important to account for individual specific deviations from the
average utility: A passenger having experienced an enjoyable (unpleasant)
flight with American Airlines will assign a higher (lower) utility to all alter-
natives operated by this carrier. The binary specification can be extended

straightforwardly to deal with polytomous non-ordered variables.
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The above specification can also be extended to deal with ordered poly-
tomous variables. Let z? denote such an attribute taking on the values
m = 1,2,.M. We define a (M x 1) random vector £ = (&5, ---, &%) ~
N(0,0%Iy)". €2, can be interpreted as the intrinsic unobserved utility de-
viation that is related to the attribute level m. Consider the following spec-

ification of a spatial moving average process:

M
ﬁz?n = Z ironn ) A(ma zio; >‘) (23)
m=1

A(t, s; A) is an amplitude function weighting the intrinsic errors £3,,,. For ob-
vious reasons we choose an amplitude function that decreases as the distance

between z{ and m grows. Symmetric functions such as

(m — 29)?
A(m,2z{;0) =T -exp <_T2Z (24)
or
A(m,z{;0) =T"- (1+)\|m—z§’|)_2 (25)

are obvious candidates, but periodic functions may also be suitable. I' is a

normalization constant such that var(92,) = o2. The covariance between

U7, and 9%, is given by

M
cov(05,,95,) = o 3 A(m, 25 ) A(m, 25; ). (26)
m=1
Details of the derivation are deferred to the appendix.  Choosing

A(m, 20; ) = bm,ze reduces the covariance formula (26) to (22).

To illustrate the ordered case, consider the following example: When
modeling passenger choice in airline network management one sometimes
includes weekday dummies as explanatory variables in order to account for
a passenger’s weekday preferences. The above specification allows us to
account for individual-specific deviations from the mean day of week depar-
ture preferences. For some O&D markets in which only a few itineraries per
week are offered (e.g. on exotic intercontinental routes), a passenger that is
familiar with this constrained supply situation may ask for a flight ”in the
middle of the week” rather than for a connection on his preferred depar-

ture day (e.g. Wednesday). If no connection is available on Wednesday our

15



passenger might prefer a Tuesday or Thursday flight to a flight on Satur-
day as these days are still in or close enough to his or her favored departure
date/time window. This is precisely what is implemented by the spatial MA
specification (23) which implies that the random utility component associ-
ated with the itineraries’ departure day is also dependent on the intrinsic
random utilities of the neighboring days.

Transfering these ideas to the continuous case is straightforward. Let 2]
denote a continuous attribute of the alternative ¢ that can take values of an
interval I C IR. We define the stochastic process {£5(y),y € I} that gener-
ates a random variable for each ¢t € T'. For the sake of simplicity we assume
a white noise process with variance ¢2. An obvious continuous attribute
that has to be considered when modeling discrete choice in airline network
management is the departure time associated with an itinerary. Departure
time preferences, or, equivalently, intra-day or intra-week seasonalities, play
an important role in explaining the utilities that are assigned to an itinerary.
Again, ££(y) can be conceived as a random variable that accounts for de-
viations from the mean utility associated with a certain departure time.
Following the same logic as for the ordered case, we can specify a continu-

ous version of the two-sided MA process introduced in equation (23):

95 = [ €5 Alw, 255 Vdy. (27)

In appendix A we derive that the covariance of J, and 9%, can be written
as:

o (05, 5) = 0% [ Aly, 265 M) Ay, 255 M. (28)

In the following we will use the "normal” weighting function for the two-

sided MA process:

/ )2
Ay, z;A) = \/g exp (—%) (29)

02 is the amplitude and X denotes the width of the weighting function. By
choosing this weighting function we ensure that var(d%,) = o2. Straightfor-

ward algebra yields:

C _ 4€)2
cov (95, 95,) = o? - exp (—M> ) (30)
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o2 and ) are additional model parameters that have to be estimated. The
dichotomous, ordered and continuous specifications can easily be combined
under the independence assumption for the intrinsic errors. It is therefore
only natural to refer to this model as the Attribute Based Covariance-MNP
(ABC-MNP). It does not require a-priori decisions about the hierarchy of
the decision process, and can be parameterized parsimoniously enough to be
empirically tractable. Furthermore, the inclusion of new alternatives poses
no problems as long as their attributes are known in advance.otnoteNote
that all parameters in the ABC-MNP are identified. Since we restrict v;;, to
be i.i.d., and N(0, I) a multiplication of the covariance matrix with a scalar
that only effects the covariance parameters is impossible. An alternative
restriction would have been cov(uiy,u1,) = 1. Both restrictions have ¥ =T
as limiting cases. The choice of the first restriction is a natural extension of
our derivation. Hence, the ABC-MNP defies Bunch’s (1991) and Horowitz’
(1991) fundamental critique of the MNP.

3 SIMULATION STUDY

In this Section we present the results of a Monte Carlo Study that is de-
signed to compare the performance of the discrete choice models discussed
and introduced in the previous Sections. The simulated data generating
process mimics the discrete choice behavior that one has to account for in
airline network management. For reasons of computational tractability we
only consider two O&D markets, i.e. D = 2. On each market 10 itineraries
are offered to the passengers. The offered itineraries are chosen to represent
one day of the week of two typical O&D markets by allowing for a higher
density of connections in the morning and in the evening. In each market
both nonstop and transfer connections are offered. Table 1 shows the re-
sulting itineraries. O&D market 1 contains some flights that leave almost
simultaneously (alternative 1 and 2 or alternatives 3, 4 and 5). In market

two the itineraries are more evenly spread throughout the day.

insert table 1 about here
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In order to model passenger choice we assume a simple decision process.
Only one attribute is assumed to enter the systematic part of the utility.
This variable is one for all simulated nonstop itineraries and zero for all con-
nections. The utility coefficient S is set to one and is assumed to be equal for
the two markets. The simulated data generating processes (DGP) produce
random utilities that are distributed multivariate normal with covariance
matrix 3. ¥ takes on the idiosyncratic block diagonal structure outlined in

Section 2.1,

Y= . (31)

The DGP imply five different covariance matrices. With the exception of
DGP 1 the covariance of two alternatives depends on their proximity in terms
of their departure times #; and ;. The covariance generating functions are
specified as follows:

DGP 1 (independent): o;; = d;5

_$:)2
DGP 2 (normal): oij = ¢pexp (—“’—JJL) + 055
1 ltl) g it — ] <

DGP 3 (triangular): o;; = ¢( i ) g M=t <y

0 otherwise

+0;; il -t <
DGP 4 (rectangular): o;; = ¢+ bij lti —t;] <7
0 otherwise

DGP 5 (exponential): g;; = ¢pexp (—'t’—;td) + 055

where 4;; is the Kronecker symbol defined above. For all DGP equa-
tion we have g;; = 0 if f(i) # f(j). The parameters v and ¢ are chosen
such that positive definiteness of ¥ is ensured. For DGP 2-5 ¢ is set to 4.
The parameter < is set to 50 for the normal case, 120 for the rectangular
case, 150 for the triangular case and 30 for the negative exponential
function. Figure 1 depicts the the implied covariance of two alternatives
with respect to departure time differences. With the exception of DGP 1,
the covariance between two alternatives decreases with increasing departure

time differences.

insert figure 1 about here
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Multivariate normal random variables that are needed to compute the
stochastic utilities are generated using a Gibbs sampling procedure.® In
100 replications of the process we simulate the random utilities of 1000 pas-
sengers for each O&D market. Assuming the standard probabilistic choice
behavior (see (1)), we then calculate the resulting market shares of the
itineraries. Having obtained the simulated passenger distribution, we es-
timate a standard Multinomial Logit, an independent MNP, the adapted
GAR-MNP, and the ABC-MNP. For the GAR-MNP we use the Logit Ker-
nel estimator (LKE) that assumes a Gumbel distribution of v, in equation
(5). 1000 draws are used for the LKE. The independent and the ABC-MNP
employ the Geweke, Hajivassiliou-Keane (GHK) simulator with 20 replica-
tions and 100 realizations. For each model, the estimated choice probabilities
(=estimated market shares) are compared against the empirical (simulated)

market shares. To measure the forecasting accuracy, we compute the root

mean squared error, RMSE:\/ 20.1100 100 5220, (ir — pir)?, and the mean

absolute, error MAE:ﬁ 00 520 |ir — pir|, where pj. is the choice
probability estimate for itinerary ¢ in replication r and p; the simulated
(empirical) market share of itinerary ¢ in replication r. To illustrate the
distribution of the forecasting errors that are produced by the competing

models, figure 2 depicts the corresponding kernel densities.

insert figure 2 about here

insert table 2 about here

Table 2 clearly shows that for DGP 2 to DGP 5 the ABC-MNP model
outperforms the other approaches in terms of forecasting accuracy. The ker-
nel estimates in figure 3 underline this result graphically. This is an expected
result for DGP 2 and DGP 3, since these DGPs correspond closely to the
ABC-MNP. However, the performance of the ABC-MNP is also outstanding
for the DGP 4 and 5, though these DGPs do not correspond closely to the

8The Gibbs sampling procedure is based on a Markov chain that utilizes univariate
truncated normal densities to construct conditional variates and has the truncated multi-
variate normal as its limiting distribution (Hajivassiliou, 1992)
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ABC-MNP. Both the GAR- and ABC-MNP can adapt satisfactorally to an

independent situation®.

4 EMPIRICAL APPLICATION

4.1 Data

The source for airline demand data are four major computer reservation
systems (CRS).!? The raw CRS data contain each booking as a separate
record, but the origin and destination itineraries still have to be extracted
from the data set. We use standard rules that identify an origin and desti-
nation trip from the raw data. These rules encompass the maximum allowed
stay at an airport that is required to distinguish the destination of a trip
from a mere transfer stay. Identical O&D itineraries are identified across
the CRS and then consolidated in order to form the total passenger demand
for an itinerary. It is important to note that CRS data do not account for
flown but only for booked passengers.'! If one could use ticket information,
these problems would be circumvented, but the airlines have access to their
own tickets only. The main advantage of using CRS data is that since the
CRSs include bookings for all carriers they give a representative picture of
the demand structure for most markets.

The network management department of Austrian Airlines provided
booking data from the major CRS operating systems Amadeus, Galileo,

Sabre and Worldspan, covering the period of October 1 to October 31, 1996.

®For the sake of brevity, we do not compare the efficiency and bias of the estimation
of the utility parameter 5. However, one result is noteworthy and is important for the
interpretation of the estimation results presented in the empirical Section. For the DGP 2,
the average estimated utility parameter produced by the independent MNP is 0.40 (stan-
dard deviation 0.03). The average ABC-MNP estimated 3 is 0.97 (standard deviation:
0.21). At first sight one could conceive this as a confirmation of the hypothesis that ne-
glecting dependencies between alternatives will lead to biased utility parameter estimates.
Note however, that this deviation is also due to the identifying restrictions that are nec-
essary for the independent MNP formulation: When estimating the independent MNP
we restrict the random utility variances for each alternative to unity. DGP 2, however,
generates a random utility variance (homoskedastic) which is five. The independent MNP
accommodates to the identifying variance restrictions by reducing the utility parameters.

100Major CRS operators are Amadeus, Apollo, Galileo, Sabre, Worldspan.

"'The difference is caused by so called no-shows - people that book multiple flights in
order to ensure their booking, but do not show up - and so called go-shows, passengers
that buy their tickets directly and whose bookings are not recorded in the CRS.
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To ensure homogeneity of the markets we focussed on a subset of short-haul
domestic O&D markets. The first selection criterion required that Lufthansa
(TATA two letter code LH) and Deutsche BA (IATA two letter code DI) of-
fered nonstop or connecting flights at least twice a day. In order to reduce
computational needs, we restricted our attention to Monday departures that
were consolidated, so that they represent a standard weekday. The selection
criteria resulted in 10 O&D markets with 229 itineraries attracting non-zero
passenger demand. All orign and departure cities are located in Germany. '2
The largest (smallest) number of alternatives in an O&D market was 36 (5).
142 alternatives were nonstop or online connections offered by Lufthansa, 68
alternatives were nonstop or online connections operated by Deutsche BA.
The remaining alternatives are direct, online or interline connections offered
by other carriers. The total number of booked passengers is 32,246. The
total market share of Lufthansa is 64%. The market share of Deutsche BA

amounts to 34%.

4.2  Model specification

The set of explanatory variables that enter the systematic part of the utility
function is to a large extend standard in airline network management. As
outlined above our focus is on attributes that describe the itineraries offered.
If an itinerary takes the passenger from his origin to his destination without
requiring the passenger to change planes then the utility of this itinerary
will be higher than a connection which requires the passenger has to change
planes. In addition, not having to change planes leads to a shorter elapsed
time and yields a higher utility ceteris paribus. Another important factor is
the role that airline image plays in passenger choice.

Accounting for departure time preferences is a crucial issue when model-
ing airline passenger demand. In the process of schedule redesign, a flight is

often moved within the day and it is important to estimate the preferences

"2Furthermore, changes in flight numbers during the four week period were accounted
for, and marketing flights were mapped to their corresponding operating flights. For
marketing reasons, operating flights can be sold under two or more flight numbers (code-
sharing). The additional non-operating entries in the schedule are referred to as marketing
flights.
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that are associated with a specific departure time correctly. A departure
in the middle of the day is typically inconvenient for business travellers.
Early morning and late afternoon fits their schedules better. We advocate
a Fourier series approach to model the intra-day pattern (diurnality) of de-
parture time preferences which requires only a few additive terms to fit

meaningful diurnality functions. The following specification is employed:
Q
. [ 2mq
FQ(tufYa ¢) = Z Yq S111 (th + ¢q) s (32)
g=1

where ¢; stands for departure time, and v = (y1,...,7g) and ¢ =
(¢1,...,¢0) are parameters that have to be estimated. T is the maximum
departure time possible which is set to 1440 (minutes of a day)

For all of the estimated models the same specification for the systematic
utility is employed. Write the basic specification (1) as u;, = v; + €45, Where

v; = z;(3, then we have

v; = P1- Ny + B2 E;+ B3 - LH; + 4 - DI; + F5(ts; 71,72, 73, b1, P2, #3)- (33)

E; denotes the elapsed time if the itinerary ¢ is a nonstop connection, and
is zero otherwise. The binary indicator NN; is one for a nonstop connection
and zero if not.

For the covariance generating components in the GAR- and ABC-MNP
the following specification is chosen. For the GAR-MNP,

wj ; = exp (— (oq . % + oo - |LH; — LHj|)) (34)

is used as the weighting function (see section 2.3). For the ABC-MNP the

covariance generating component is
Bin = / & () Ay, tis M)dy + Onm - €0 + Onm - €31 (35)
T
where var(€5(t;)) = o? and var(€%%) = var(¢®') = 03. This implies the
covariance matrix entries

(ti + t;)*

+5LH,DIO'2- (36)
2X7 ) 2

cov(Uin, Ujn) = 05 + a% exp (
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4.8 Estimation results

The maximum likelihood estimation results for the MNL, Independent MNP,
GAR-MNP and ABC-MNP are contained in table 3. For the GAR- and
ABC-MNP the configuration of the LKE and GHK simulators are the same

as in Section 3.
insert table 3 about here

For all specifications the estimates of the parameters that appear in the
systematic utility equation (33) have the expected sign with small standard
deviations.'® The shape of the estimated departure time preference function
is as is expected of a typical Monday: There is a high utility associated with
an early morning departure and a utility peak in the evening (see figure 3).
It is idiosyncratic of a Monday that the morning peak is higher. For Friday

departures one would obtain the inverse pattern.
insert figure 3 about here

The model parameters that have to take on positive values in order to
generate non-zero covariances between alternatives are p and oy in the GAR-
and 0% and 05 in the ABC-MNP. Table 3 shows all of these parameters to
be different from zero at 1% significance. Two goodness-of-fit measures are
used to assess the ability of the models to explain and predict itinerary
passenger demand. Table 3 reports the passenger weighted RMSE and the
MAE associated with an in-sample forecast of the itinerary passenger de-
mand. Both the RMSE and MAE show a clear improvement in the goodness
of fit produced by the two models that account for dependencies between
alternatives. Applying the modified Likelihood Ratio statistic proposed by
Horowitz (1983), it becomes evident that both the independent MNP and
GAR-MNP are rejected in favor of the ABC-MNP. Table 4 reports the de-

tailed results.

13The differences in the magnitude of the utility parameters between the I-MNP and
ABC-MNP are expected. See Section 3.
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insert table 4 about here

For both the GAR- and ABC-MNP departure time differences gener-
ate similarity between alternatives. The crucial question is whether the
drawbacks of the adapted GAR model (see Section 2.3) matter when the
model is applied in network management. The following scenario is de-
signed to emphasize the importance of modeling the similarities between
offered itineraries when evaluating schedule revisions. Table 5 displays a

subset of itineraries that were used for estimation.
insert table 5 about here

We use the ML estimates for the GAR- and ABC-MNP and compute
an estimate of the covariance and correlation matrix that is implied by
the two models. Suppose that Airline 1 decides to introduce a new flight
which departs at the same time as itinerary number 9 offered by Airline 2.
Both nonstop connections depart at 11:05 a.m. and have an implied elapsed
time of 65 minutes. In Section 2.3 we showed that the GAR-MNP implies
that the introduction of a new alternative will produce a completely new
covariance matrix. For the ABC-MNP this only requires that a new row
and column be inserted, while the other covariance and variance elements
remain unchanged. Tables 6, 7 and 8 contain the implied covariance matrices
before and after the introduction of the new flight for the ABC-MNP'* and
the GAR-MNP.

insert table 6 about here

insert table 7 about here

insert table 8 about here

“Since the remaining part of the covariance matrix does not change we only show the
matrix after the introduction of the new flight
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It is important to recognize the significant increase in the variance as-
sociated with itinerary 9. Using the parameter estimates from table 3 we
can now estimate the relative change in choice probabilities that are induced
by the introduction of the new flight. Figure 4 depicts the outcome for the
MNL, GAR-MNP and the ABC-MNP.

insert figure 4 about here

The poor performance of the MNL is obvious and a consequence of the
ITA assumption. The relative change of choice probabilities is identical for
all alternatives. By contrast, the ABC-MNP result is much more plausible
with itinerary number 9 suffering the largest relative reduction in choice
probability. Although aternatives with departure times close to alternative
9 also experience a loss in their choice probabilities, the choice probabili-
ties of alternatives with departure times in the morning or the evening are
hardly affected at all. The relative change in the choice probabilities is very
different in the GAR-MNP: The market share of alternative 9 is increased
after the introduction of the new flight. The potential reasons for this im-
plausible effect have been outlined in Section 3. Tables 6 and 7 reveal that
the variance of alternative 9 has increased leading to the higher choice prob-
ability, ceteris paribus. This variance increase clearly more than offsets the
negative effect on choice probability that is exerted by the non-zero covari-
ance of itinerary 9 and the newly introduced alternative. One reason for
this is that we cannot account for alternative-specific error variances in our
GAR-adapton. Admittedly, this greatly reduces the flexibility of the origi-
nal GAR-MNP, but the restriction is inevitable when the model is applied

for network management purposes.

5 CONCLUSIONS AND OUTLOOK

With the advent of large international alliances, the network perspective
has become even more important for the airline industry. Alliance flight

schedules are conceived as a complex network of offered connections that
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passengers use to travel from their origins to their desired destinations. Dis-
crete choice models play a key role in the industry when assessing alliance
synergies or simply evaluating alternative schedules in terms of expected
(network) passenger demand and revenue. An econometrician in the air-
line industry enjoys privileged data availability. First, historical passenger
demand data can be obtained from Computer Reservation Systems. Sec-
ond, the commercial availability of worldwide schedules makes it possible to
obtain an exact view of the supply side of each O&D market.

Three idiosyncrasies of airline network management have beeen empha-
sized: First, the omnipresence of the independence of alternatives problem:
In a competitive market it is likely that the planes of two carriers will start
at almost the same time to the same destination. Secondly, nominal iden-
tification must be discarded, since it is insufficient to estimate the choice
probability of e.g. all nonstop, interline and online connections, analogously
to the standard commuter problem. In airline network management one has
to deliver choice probabilities on the level of the offered itineraries. How-
ever, the number of alternative itineraries one has to account for can become
quite large. Hence, the applicability of the Multinomial Probit model, the
generic solution to non-ITA problems, is questionable, because of compu-
tational demand and unsolved identification issues. Third, individual pas-
senger information is not of interest for discrete choice modeling in airline
network management. Instead, the focus is on schedule related attributes
(elapsed time, departure time, etc.). By reallocating flights and changing
planes during the schedule design process, these attributes form the strategic
instruments that influence passenger demand.

Our econometric contribution is the formulation and estimation of a
MNP model that perfectly meets the requirements of airline network man-
agement. The specification is suitable for discrete choice modeling in non-
ITA situations in which the analyst has to account for a large number of
alternatives, and where the focus is on using attribute related covariates.
The MNP model that we propose is referred to as the Attribute Based

Covariance-MNP since we allow for random utility deviations that are asso-
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ciated with the attributes of alternatives. The ABC-MNP adopts elements
both from random coefficient models along the lines of Hausman and Wise
(1978) and the GAR-MNP. In a simulation study we showed that the ABC-
MNP clearly outperforms other discrete choice specifications.

In an empirical application we have demonstrated the ABC-MNP’s prac-
tical applicability for airline network management, and compared its per-
formance with that of the GAR-MNP and standard discrete choice models.
In a simulation study have shown that the ABC-MNP outperforms both
the Multinomial Logit and the Independent MNP. The new model defies
Horowitz’ (1991 and Bunch’s (1991) critique, who questioned the superior-
ity of the Multinomial Probit over the Nested Logit model. In addition to
the airline network management task, the ABC-MNP is also applicable to
related discrete choice problems in transportation and marketing research.

Besides its advantages, the ABC-MNP also implies one major drawback.
Compared to GEV models and the GAR-MNP the parameter estimation is
more computer intensive. We intend to apply the method of simulated scores
(MSS) as proposed by Hajivassiliou and McFadden (1998) in order to cope
with this problem. We expect MSS to provide a significant reduction of the

computational burden.
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A COVARIANCES IN THE ABC-MNP: ORDERED AND CONTINUOUS

ATTRIBUTES

Let zf = 1,..., M be an ordered polytomous attribute of an alternative ¢
and ¥¢ be the error component related to that attribute (we drop the index

n for the sake of brevity of notation). ¥¢ is defined as

M
9 = Z &, - A(m, 205 N),
m=1

where A(m, z); A) is an amplitude function and &2, a random variable rep-

resenting a white noise process. We have

BE) = 0 "
E(&E) = o%-bi
In order to derive (26) we use:
cov(Y_ €0, &) =D cov(&f,£9) (A.2)
i j irj
cov(c- &, &7) =< - cov(§], £7) (A.3)
Z 6m,m’ - A(m, ml) = A(m,m), (A.4)

where ¢ denotes an arbitrary constant and dy, 4, the Kronecker symbol. We

have
cov(é7,89) = B(0€0) — B(§)E(&3) = 0° - 6i; —0-0=0"-6;;  (A.5)

cov(&,€7) = cov(;n: £, A(m, 295 N), % £e,A(m’, 29))

= %L: > cov(€p A(m, 285 0), 65, A(m/, 29))  using A.2
o

= %L: > A(m, 225 A, 23)cov(Er,, €y)  using A3
o

= %L: zn: A(m, 22; \)A(m/, z;’)a25m,mf using A.5

= o? %L: A(m, 205 N A(m', 23) using A.4

In the following we derive the covariance of the random utility 9¢(y) and

9%(z) with y,z € I. 9°(y) is defined in a similar way to equation (27), but
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we have dropped the subscript i, since only the level of the variable y is

needed, i.e. consider y = zf,z =

/ £z (A.6)
{¢°(y),y € I} can be described using Dirac’s delta function d(y — z):
E(&° =0
€w) o
E(&(y),6%(2) = o%-d(y—2)
We will make use of the properties of the Delta function:
[y [ @z Pesw -2 = [ayF ). (A8)

where F(y) is an arbitrary function of y.
By changing the order of integration for the calculation of the expecta-

tion and the integral defined in (A.6), we have
By) = B([¢()A

z)dz)
= [ BEE)Aw. iz

E(9°(y)9°(s)) = E(/ic(Z) (y,2 dZ/ic A(s; s ds)
_ / / dzds' A(s, ) Aly, 2) B(£°(s)€5(2))
= //dzdsA s,8)A(y, 2)0%8(s' — 2)

= 02/dzA(s,z)A(y,z)

cov(9¢(y), 9(s)) = 02/dzA(s,z)A(y,z). (A.9)
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FIGURE 2.— Monte Carlo Results®: Density plots for difference between

actual vs. forecasted market shares
@ Note: Gaussian kernels with bandwidth as proposed proposed by Silverman (1986)
p- 48.
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TABLE 1
SAMPLE DESIGN MONTE CARLO STUDY

0&D Market 1 0&D Market 2
Alternative Nonstop- Dep. Time Alternative Nonstop- Dep. Time

Indicator (min. after Indicator (min. after
midnight) midnight)
1 1 390 1 1 390
2 1 390 2 1 420
3 0 480 3 1 450
4 1 485 4 0 600
5 0 500 5 0 620
6 1 735 6 0 800
7 0 900 7 0 960
8 1 1120 8 0 1140
9 1 1140 9 1 1170
10 1 1200 10 1 1200
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TABLE 2

MONTE CARLO RESULTS

DGP Model Mean Std.Dev. Skewness Kurtosis RMSE MAE
MNL 0.0000  0.0090 0.0001 0.0001  0.0090 0.0070
1 I-MNP 0.0000  0.0092 0.0001 0.0001  0.0090 0.0070
ABC—MNP 0.0000 0.0092 0.0002 0.0001  0.0090 0.0070
GAR 0.0000  0.0082 -0.0001 0.0000  0.0080 0.0060
MNL 0.0000  0.0206 0.0047 0.0010  0.0210 0.0170
2 I-MNP 0.0000  0.0209 0.0062 0.0011  0.0210 0.0170
ABC—MNP 0.0000 0.0096 0.0001 0.0001  0.0100 0.0070
GAR 0.0000  0.0183 0.0030 0.0006  0.0180 0.0150
MNL 0.0000  0.0203 0.0091 0.0011  0.0200 0.0160
3 I-MNP 0.0000  0.0206 0.0108 0.0012  0.0210 0.0160
ABC—MNP 0.0000 0.0093 -0.0001 0.0000  0.0090 0.0070
GAR 0.0000  0.0176 0.0035 0.0005  0.0180 0.0140
MNL 0.0000  0.0319 0.0644 0.0085  0.0320 0.0240
4 I-MNP 0.0000  0.0322 0.0707 0.0092  0.0320 0.0240
ABC—-MNP 0.0000 0.0128 0.0005 0.0002  0.0130 0.0100
GAR 0.0000  0.0251 0.0132 0.0023  0.0250 0.0200
MNL 0.0000  0.0144 0.0001 0.0003  0.0140 0.0120
5 I-MNP 0.0000  0.0148 0.0006 0.0003  0.0150 0.0120
ABC-MNP 0.0000 0.0111 -0.0004 0.0001  0.0110 0.0090
GAR 0.0000  0.0138 0.0000 0.0002  0.0140 0.0110
R = 100 replications, J = 20 itinereries.
Mean AE (mean absolute error): 7 fj §Jj — pir
R J 05
RMSE (root mean squared error): | & Z Z — pir)?



TABLE 3
ESTIMATION RESULTS

MNL I-MNP GAR-MNP  ABC-MNP
Bi 6.25(0.233) 2.67(0.109)  6.55 (0.273)  4.16 (0.235)
B2 -0.03 (0.003) -0.01 (0.001) -0.03 (0.003) -0.01 (0.003)
Bs  0.96 (0.065) 0.45 (0.061)  1.00(0.072)  1.07 (0.067)
B4 0.87 (0.063) 0.41 (0.063)  0.82(0.070)  0.77 (0.056)
v 0.61 (0.065) 0.32 (0.065) 0.92 (0.078)  4.01 (0.334)
vo  0.76 (0.053) 0.39 (0.026) 1.08 (0.079)  3.67 (0.244)
v3  0.10 (0.027) 0.06 (0.014) 0.11 (0.038)  0.32 (0.043)
¢1  3.48 (0.098) 3.45 (0.093) 3.43 (0.085)  3.13 (0.016)
¢ 2.73 (0.035) 2.71 (0.035) 2.74 (0.036)  2.60 (0.011)
b3 1.87 (0.140)  1.81 (0.119) 2.01 (0.186)  1.32 (0.116)
p 0.63 (0.020)
o0 1.07 (0.100)
o 6.74 (-0.422)
s 2.77 (-0.220)
o} 37.69 (5.833)
A 144.59 (6.02)
o3 1.24 (0.162)
logL  -95500.78 95461.77 -95084.84 -94891.32
MAE 0.285 0.283 0.267 0.253
RMSE 0.836 0.847 0.695 0.68

J
MAE (mean absolute error): [% >

1
X 2
RMSE (root mean squared error): [% > (N"JGI,N") ]

N is the total number of passengers, IV; the number of passengers on itinerary 7
N; = PN, d%-) is the estimated demand for itinerary i, where p; is the estimated
choice probability and Nd%-) is the total passenger volume on O&D market d(3).

Robust standard errors in parantheses
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TABLE 4
MODIFIED LIKELIHOOD RATIO STATISTICS

LR MLR

GAR-MNP vs. MNL 832 414
ABC-MNP vs. -MNP 1141 569
ABC-MNP vs. GAR-MNP 192

Modified LR statistic (MLR) as proposed by Horowitz (1983) and Horowitz et al. (1986)
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TABLE 5
FLIGHTS IN EXEMPLARY MARKET
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TABLE 6
COVARIANCE MATRIX IMPLIED BY ABC-MNP
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TABLE 7
COVARIANCE MATRIX IMPLIED BY GAR-MNP
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TABLE 8
COVARIANCE MATRIX IMPLIED BY GAR-MNP (AFTER ADDING NEW

FLIGHT)
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