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Abstract 
 
This paper investigates the performance implications of firms’ vertical integration decisions.  Our setting is 
the U.S. airline industry.  Major airlines subcontract service on low-density short and medium-haul routes 
to regional airlines.  These regional partners are either owned by the major airline or are independently 
owned and contract with one or more major airlines.  Earlier work (Forbes and Lederman, 2007) has argued 
that the primary benefit of ownership of a regional is that it mitigates incentive problems that arise when 
unforeseen schedule disruptions require the major to make changes that involve its regional partner’s 
operations.  We explicitly test this hypothesis by estimating the relationship between a major’s performance 
on flights that it operates out of a given airport and its extent of vertical integration with the regional 
partners that operate flights on its behalf out of that airport.  Our estimation approach accounts for the 
endogeneity of airlines’ ownership decisions.  In addition to estimating an overall performance effect, we 
also investigate how this effect changes as the likelihood of schedule disruptions increases.  We exploit the 
fact that while ownership decisions are fixed in the short-run, an important source of unanticipated 
schedule disruptions – weather - changes on a day-to-day basis.  Because ownership decisions cannot 
respond to these daily changes, we are able to observe carriers with both owned and independent regionals 
in a variety of weather conditions.  Our results indicate that majors using owned regionals at an airport 
experience shorter delays and fewer cancellations than majors at the same airport using independent 
regionals.  Moreover, this performance advantage increases as weather deteriorates.  The effects we 
estimate are both statistically and economically significant.  Our results provide one of the first pieces of 
direct evidence that contracts cannot replicate the incentive alignment achieved through ownership.   
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I. Introduction 
 
Economists have long been interested in the question of what determines firm 

boundaries.  There is now a large theoretical literature that seeks to explain which 

activities are optimally carried out inside firms and which are more efficiently carried out 

through market transactions.1  Much of this literature emphasizes the role of incomplete 

contracts.  If complete contracts cannot be written, then there is a role for ownership to 

mitigate various incentive problems that can arise when transactions are governed by 

incomplete contracts.  More recently, a growing empirical literature that seeks to test this 

“theory of firm” has developed.  Researchers typically identify transaction characteristics 

that proxy for the magnitude of the incentive problems that arise when contracts are 

incomplete and test whether transactions with these characteristics are more likely to be 

carried out in-house.2  An affirmative finding is interpreted as evidence that vertical 

integration does indeed mitigate incentive problems that arise under incomplete contracts. 

 Note, however, that this empirical approach provides only an indirect test of the 

costs and benefits of vertical integration hypothesized in the theory.  Moreover, it cannot 

shed light on the magnitude of these costs and benefits.  An alternate approach is to look 

for evidence that the performance of integrated and non-integrated firms differs on 

specifically those margins hypothesized in the theory.  In addition to providing direct 

evidence on the costs and benefits of vertical integration, this approach also allows one to 

quantify them.  For example, if the theory predicts that a benefit of vertical integration is 

to improve the coordination between upstream and downstream production units, while a 

cost of vertical integration is that employees receive lower-powered incentives, an 

indirect test of this theory would be to identify transactions for which the benefits of 

                                                 
1 At the broadest level, three theoretical perspectives can be considered to co-exist in this literature: agency 
theory (which emphasizes the tradeoff between insurance and optimal incentive provision; e.g. Alchian and 
Demsetz, 1972, and Holmström, 1982), transaction costs theory (which emphasizes the role of firms, or 
hierarchies, in mitigating hold-up problems; see Williamson, 1975, 1985) and property rights theory (which 
emphasizes the role of asset ownership in providing residual rights of control which, in turn, influence ex 
ante investment decisions; see Grossman and Hart, 1986, and Hart and Moore, 1990).   
2 This approach has frequently been used to test the effect of asset specificity or complexity on the 
likelihood that a transaction is organized internally; see, for example, Monteverde and Teece (1982), 
Anderson and Schmittlein (1984), Masten (1984), Masten and Crocker (1985), Joskow (1985, 1987), and 
Hubbard (2001).  Although less frequently, a similar approach has been used to test predictions of the 
agency model as well the property-rights model (see Lafontaine and Slade, 2007, for a review of the 
literature). 
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coordination are presumed to be particularly large or the costs of low-powered incentives 

particularly low and then test whether these transactions are more likely to be vertically 

integrated.  A direct test of the theory would instead try to measure whether transactions 

that are carried out in-house are better coordinated or suffer from suboptimal effort of 

employees.   

Despite their advantages, studies providing direct evidence on the performance 

consequences of vertical integration decisions are rare.  Such evidence has been difficult 

to establish empirically, both because obtaining data on the relevant performance 

measures is difficult and because one must account for the fact that vertical integration 

decisions are endogenous (Masten, 1993).  This paper overcomes these difficulties and 

provides one of the first pieces of direct evidence that firms’ vertical integration decisions 

do, indeed, affect specific measures of their performance.  We estimate the effect of 

vertical integration on operational performance in the U.S. airline industry.  The large 

U.S. network carriers, often called “majors”, employ regional airlines to operate flights 

on low-density short and medium-haul routes.  These flights are operated under 

codeshare agreements such that the regional operates flights on behalf of the major 

carrier, who markets and tickets these flights under its own flight designator code.  

Codeshare relationships between major carriers and regionals are governed by one of two 

types of organizational forms.  A regional may be independently owned and contract with 

one or more major carriers.  Or, a regional may be wholly-owned by the major with 

which it partners.  There is substantial variation, both across and within airlines, in the 

use of owned and independent regional airlines.   

Our analysis builds on Forbes and Lederman (2007a, hereafter FL) which 

analyzes the benefits and costs of vertical integration between major and regional 

airlines.  As they explain, incentive problems between majors and independently owned 

regional partners arise when schedule disruptions occur and real-time adjustments to the 

schedule set by the major and the regional in their contract are required.  While the major 

airline’s optimal response to a disruption will internalize the impact of the disruption on 

its entire network, an independent regional instead has an incentive to optimize its 

response only over the routes that it serves for the major.  This may cause an independent 

regional to take actions that are not in the best interest of the major.  Ownership of a 
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regional mitigates this incentive problem by giving the major residual rights of control 

over how the regional’s assets are used.  FL explain that majors will use owned regionals 

when these benefits of vertical integration outweigh the higher labor costs that may 

result. 

We test the framework developed in FL by relating a major’s performance on 

flights that it operates itself to its extent of vertical integration with regional partners who 

operate other flights out of the same airport.  Note that this setup – which relates the 

performance on one set of transactions to a firm’s vertical integration decision on a 

different set of transactions – follows naturally from the network structure of this 

industry.  In particular, the fact that ownership allows a major to internalize the impact of 

schedule disruptions on its entire network implies that vertical integration between a 

major and its regional will have an impact not only on the performance on flights 

operated by the regional, but also on the performance on flights operated by the major 

itself.  It is this second effect that we focus on. 

Our empirical setting provides us with three important benefits.  First, we have 

access to two detailed performance measures – flight delays and cancellations – which 

are closely related to the overall performance of an airline’s network.  Second, our data 

allow us not only to estimate the average relationship between ownership and 

performance but they also let us trace out how this relationship changes with the 

transaction environment.  We observe the same transaction (in our case, flight) every day 

over the course of a whole year.  While an airline’s vertical integration decision is fixed 

in the short-term, the likelihood of schedule disruptions changes from day to day as the 

weather conditions at an airport change.  As a result, we observe carriers with both 

owned and independent regionals on days with “good” weather conditions – when 

schedule disruptions are less likely – and on days with “bad” weather conditions – when 

schedule disruptions are particularly likely.  We believe that we are the first to estimate 

how the performance effects of vertical integration vary with the transaction environment 

by observing both integrated and non-integrated transactions in a range of transaction 

environments.  This approach provides a novel test of the theory and a new source of 

identification.   
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Finally, we are able to instrument for the endogenous vertical integration 

decision.  Our instruments are derived from the findings in FL which shows that majors 

are more likely to use owned regionals on routes that are more integrated into the major 

airline’s network, and on routes that experience more adverse weather on average.  We 

instrument for a major’s extent of vertical integration with its regional partners at a given 

airport with the characteristics of other endpoint airports served by the regional partners.   

Our main specification estimates the relationship between a major’s departure 

delay on a flight and the fraction of its regional flights at the departure airport of that 

flight which are operated by an owned regional partner.  In addition to estimating the 

direct effect of the extent of vertical integration at the airport on the airline’s 

performance, we also interact our vertical integration variable with measures of adverse 

weather.  In particular, we have daily data on precipitation and temperatures at all airports 

in our sample.  We divide our sample into a “summer sample” and a “winter sample” so 

that we can separately estimate the effects of rain and snow in the months in which these 

two types of adverse weather most commonly occur.   

Our results strongly indicate that vertical integration does, indeed, improve 

airlines’ network performance and, even more so, in the presence of adverse weather.  

For example, the results from our summer sample suggest that, on days with “good” 

weather, majors using only owned regionals at an airport experience flight delays that are 

approximately five minutes shorter than those experienced by majors using only 

independent regionals.  On days with “bad” weather, majors using only owned regionals 

have a performance advantage that translates into delays that are shorter by 13 minutes on 

average.  The results using cancellations as the dependent variable and the results from 

the winter sample are qualitatively similar.  These findings provide direct evidence that, 

at least in our setting, contracts are not able to replicate the incentive alignment that is 

achieved by a major’s ownership of its regional.   

Our paper is most closely related to two recent studies that also test predictions 

from the “theory of the firm” literature by estimating the effect of organizational form on 

performance.  Novak and Stern (forthcoming) investigate how automobile manufacturers’ 

vertical integration decisions affect two specific performance margins in automobile 

product development.  Consistent with predictions from the theoretical literature, they 
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find that integration is associated with lower initial performance but higher performance 

improvement over the life of the automobile model.  Ciliberto (2006) investigates 

whether hospitals that have vertically integrated with their physicians invest more than 

hospitals than negotiate managed care contracts independently of their doctors.  If 

contracts between hospitals and doctors are complete, then vertical integration should 

have no impact on investment incentives.  He finds that hospitals that are vertically 

integrated do add more healthcare services over time suggesting that contracts cannot 

fully replicate the incentives of integration. 

Our paper is also related to a small literature that looks at the overall performance 

consequences of choosing an organizational form that is inconsistent with the transaction 

environment.  This literature on so-called “transactional misalignment” originates with 

Masten et al. (1991) and includes a number of recent contributions primarily from the 

strategy field.  Finally, this paper is also related to a small literature that investigates the 

effects of vertical integration on a host of other outcome variables such as prices, costs 

and quantities (see Lafontaine and Slade, 2007, for a summary).   

We believe that this paper contributes to the literature in two important ways.  

First, it is the first to trace out how the relationship between vertical integration and 

performance changes with the transaction environment by exploiting high frequency data 

on performance and on variables that affect the returns to vertical integration.  A similar 

approach may be fruitful in other settings in which adjustment costs or institutional 

factors prevent organizational form decisions from changing as quickly as transaction 

characteristics change.3  The benefit of this approach is that it provides rich identification 

of the variables of interest from the data, as opposed to relying on functional form 

assumptions.   

Second, our results show that a firm’s vertical integration decision on one set of 

transactions can have implications for its performance on a different set of transactions.  

In our case, these effects result from the fact that there are externalities across 

transactions that are organized in a network.  We believe that similar effects may be 

                                                 
3 Ahmadjian and Oxley (2007) use a related approach to estimate the relationship between “hostage” 
arrangements and supplier performance.  They exploit the fact that equity ties between Japanese buyers and 
suppliers are generally fixed over time and then investigate how the presence of an equity tie affects 
supplier performance as demand conditions change. 
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present in other industries when firms try to outsource a fraction of their network and, 

more generally, when there are externalities across transactions. 

The remainder of the paper is organized as follows.  Section II presents the 

industry background and theoretical considerations.  Section III describes our empirical 

approach.  Section IV addresses data and measurement issues.  We present our results in 

Section V and offer concluding thoughts in Section VI.  

 
II. Theoretical Considerations 

II.A. Background: The Role of Regional Airlines4 

Regional airlines operate as “subcontractors” for major U.S. network carriers on 

low-density short and medium-haul routes.  These routes are most efficiently served with 

the small regional jets and turbo-prop planes that regional airlines operate.  Majors 

subcontract this service to regional airlines because regionals have a cost advantage on 

these types of routes.  This cost advantage results primarily from the lower compensation 

that regional airline employees receive.5  Majors do not operate any flights of their own 

with regional aircraft.   

Regional airlines operate under codeshare agreements with one or more major 

carriers.  Under these agreements, the regional operates flights on behalf of the major 

carrier, who markets and tickets these flights under its own flight designator code.  In 

addition to using the major’s code, the regional’s flights also share the major’s brand (for 

example, Delta’s regional Comair operates under the name Delta Connection).  To 

facilitate passenger connections between a major and its regional, their schedules, as well 

as check-in and baggage handling, are coordinated.    

Codeshare relationships between major carriers and regionals are governed by one 

of two types of organizational forms.  A regional may be independently owned and 

contract with one or more major carriers.  Or, a regional may be wholly-owned by the 

major with which it partners.6  In the case of an owned regional, “vertical integration” 

                                                 
4 For a detailed description of the role of regionals in the U.S. airline industry, we refer the reader to Forbes 
and Lederman (2007b). 
5 See Forbes and Lederman (2007a) for a detailed discussion of the source of lower labor costs among 
regional airline employees. 
6 Theoretically, it would be possible for owned regionals to perform contract flying for other majors, but we 
do not observe that in the data.  We believe that this is due to the risk of a hold-up problem that would arise 
if an owned regional performed services for a competitor of the major who owns it.   
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means that the major carrier owns the assets of the regional but the regional and the major 

maintain separate operations and labor contracts.7   

Table 1 lists the major-regional partnerships that were in place in 2000 (the year 

of our sample) for the large network carriers.  These carriers are American Airlines, 

Continental Airlines, Delta Air Lines, Northwest Airlines, Trans World Airlines, United 

Airlines and US Airways.  Regional carriers that appear in bold were fully owned by their 

major partner.  The table shows that there is substantial heterogeneity both across and 

within majors in the extent to which regional partners are owned. Some majors own all of 

their regional partners, others own none and yet others use a mix of owned and 

independent regional carriers.   

 

II.B. The Benefits and Costs of Vertical Integration 

 The relationship between vertical integration and performance that we examine 

follows from the framework developed in FL, which investigates the determinants of 

vertical integration between a major and a regional.  As FL explain, incentive problems 

between major airlines and their independently owned regional partners arise when real-

time adjustments to the regional’s planned schedule are necessary.  The need for such 

adjustments can arise for a large number of reasons, such as mechanical problems, 

adverse weather, or security disruptions.  While the major airline’s optimal response to a 

disruption will attempt to internalize the impact of the disruption on its entire network, an 

independent regional instead has an incentive to optimize its response only over the 

routes that it serves for the major.  For example, when adverse weather forces an airline 

to reduce the number of its takeoffs and landings, a major may prefer to cancel several of 

its (low-capacity) regional flights to allow more of its (high-capacity) mainline flights to 

operate.  However, the regional – which is compensated only based on the routes it serves 

– will not.   

                                                 
7 Separate operations are necessary so that the major can legally maintain distinct labor contracts (one for 
its own employees and one for each regional’s employees) and thereby preserve the cost advantages that 
regionals have.  If two separate airlines are effectively being operated as a single entity, the unions 
representing employees at those airlines may file an application with the National Mediation Board (NMB) 
seeking to have them declared a “single transportation system”.  If their application is granted, the unions 
of the carriers will operate as a single entity.  
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Note that this incentive problem occurs because there are externalities across the 

major’s and the regional’s flights that arise for two reasons: (1) the integration of their 

flights into a common network (which results in flows of passengers and cargo between 

their planes); and (2) the fact that their flights compete for scarce inputs such as takeoff 

and landing slots or airport gates.  As a result of these externalities, an independent 

regional will not resolve unforeseen contingencies in a manner that internalizes the 

impact of its actions on the remainder of the major’s network.  Ownership of a regional 

mitigates this incentive problem by giving the major residual rights of control over how 

the regional’s assets are used.8  This allows the major to respond to unforeseen schedule 

disruptions in way that re-optimizes its overall network.  Note that this implies that 

vertical integration between a major and its regional partner will have an impact not only 

on the performance of the flights operated by its regional, but also on the performance of 

the flights that the major operates itself.   

Offsetting these benefits of vertical integration are costs that are associated with a 

major’s ownership of its regional.  These costs of ownership stem primarily from the 

higher labor costs that can arise when a regional is owned.  A major will choose to use an 

owned regional on routes on which the benefits of ownership are large enough to offset 

these costs.  FL test this framework by estimating whether owned regionals are more 

likely to be used on routes on which the probability of adaptation decisions is higher and 

on routes on which the costs of having adaptations decisions resolved sub-optimally are 

higher.  They measure the former using average weather patterns and the latter with 

measures of a route’s integration into the major’s network.  They find empirical support 

for both hypotheses.   

  

III. Empirical Approach 

III.A. General Identification Issues 

                                                 
8 As FL describe, contracts between majors and regionals try to address this incentive problem by 
allocating to the major the right to make changes to the regional’s planned schedule.  However, this does 
not fully solve the incentive problem because the schedule changes ordered by the major are still carried 
out by the regional.  Thus, the regional is left with residual rights of control over issues which cannot be 
explicitly contracted on (for example, the speed with which the regional’s flights are cancelled) and may 
use these rights to make decisions that are not optimal for the major. 
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Estimating the effects of organizational form on firm performance presents an 

empirical challenge because organizational form decisions are endogenously determined 

by optimizing firms.  Specifically, as Coase (1937) and Williamson (1975) argue, firms 

will choose the organizational form that minimizes transaction costs.  Figure 1 (taken 

from Williamson, 1991) illustrates their basic argument: although transaction costs 

increase for firms as well as for markets as transaction difficulty, k, increases, they 

increase at a faster rate for markets than for firms (Williamson, 1991).  As a result, there 

is a critical value of transaction difficulty, k*, above which firms are the optimal 

organizational form and below which markets are the optimal organizational form.   

Figure 1 also illustrates the two empirical issues that confront researchers trying 

to estimate the performance effects of organizational form decisions.  First, as Masten 

(1993) and Gibbons (2004) have emphasized, a simple comparison of the performance of 

firms and markets will be misleading because markets are chosen for transactions with 

low levels of difficulty while firms are chosen for transactions with high levels of 

difficulty.  Thus, the firms that are observed may appear to be less efficient than the 

markets that are observed when, in fact, the firms that are observed may be more efficient 

than the markets they replace.  Econometrically, this amounts to a sample selection 

problem which induces correlation between the organizational form variable and the error 

term in the performance equation.  It can be resolved by carrying out a Heckman 

selection correction or by using an instrumental variables approach.    

Second, as Masten also points out, the effect of organizational form on 

performance will typically vary with transaction characteristics.  This is the case in 

Figure 1 where both the intercepts and the slopes of two curves are different and 

therefore the performance effect is different, and even switches signs, at different levels 

of k.   Accurately estimating performance effects therefore requires one to estimate not 

only the average effect but also the change in this effect as transaction difficulty varies.  

However, when each organizational form is only observed in those settings in which it is 

optimal (i.e.: when markets are only observed for k<k* and firms for k>k*), estimates of 

the effect of organizational form on performance rely on functional form assumptions for 

identification.    
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Figure 1 

 
 

III.B. The Empirical Setting 

We now turn to the details of our empirical approach.  As explained in Section II, 

the theoretical prediction that we seek to test is whether majors using owned regionals are 

able to better optimize their overall network, in particular when unforeseen schedule 

adjustments are necessary.  Schedules are typically set assuming good flying conditions.  

However, disruptions can occur for a large number of reasons – for example, due to 

adverse weather, air traffic control problems, security breaches or mechanical problems.  

When such disruptions occur, an airline may be forced to delay or cancel some of its own 

or its regional’s flights.  It will do so with the objective of minimizing the impact of the 

schedule disruptions on its profits.  While we clearly cannot observe the profit 

implications of the airline’s schedule adjustments, we can observe the actual adjustments 

that are made.  Specifically, we have flight level data on delays and cancellations.  Thus, 

our empirical approach assumes that longer delays and more frequent cancellations have 

a negative effect on profits.  We know from the results in Forbes (2007) that flight delays 

indeed have a negative effect on route-level fares and profits.9   

                                                 
9 In addition, the results in Rupp and Holmes (forthcoming) show that flight cancellations are negatively 
correlated with route-level revenues.   

Transaction 
costs 

Transaction 
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Market 

Firm 

k* 
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We estimate the impact of a major’s use of an owned regional at a particular 

airport on its performance on other routes out of that same airport that the major serves 

itself.  We have variation both across majors and within some majors in their extent of 

owned regional use.  In contrast, the approach taken in existing studies is to estimate the 

effects of vertical integration of a given transaction on a firm’s performance on that same 

transaction.  We adopt our setup because it is consistent with the theoretical framework 

summarized in Section II.  As explained there, ownership of its regional allows the major 

to respond to schedule disruptions in a way that maximizes the performance of its overall 

network.  As a result, a major’s vertical integration decision will have an impact not only 

on the performance of the flights operated by its regional, but also on the performance of 

the major’s own flights.  It is this second effect that we focus on.   

Note that we only observe the performance of the major’s own flights, not the 

performance of its regionals’ flights.10  One might be concerned that majors with owned 

regionals tradeoff fewer delays and cancellations on their own flights for more delays and 

cancellations on their regionals’ flights – something that may be harder to do for majors 

with independent regionals.  If this were true, then our assumption that lower delays (and  

fewer cancellations) represent a more optimized network may not be true since we would 

not be accounting for the delays or cancellations on the major’s flights operated by 

regional partners.  However, given the much larger size of the major’s operations relative 

to the regional’s, this effect is unlikely to offset the performance effects we find for the 

major’s flights.11   

A unique feature of our setting is the panel structure of our data.  We observe the 

same transaction (in our case, flight) every day over the course of a whole year.  While an 

airline’s vertical integration decision is fixed in the short-term due to the adjustment costs 

of changing its organizational form, the returns to vertical integration at an airport change 

from day to day as the weather conditions - and with them the likelihood of unanticipated 

schedule disruptions - change.  As a result, in our setting, we observe carriers with both 

owned and independent regionals on days with “good” and with “bad” weather 

                                                 
10 Regional airlines have only recently started to report flight delays, as some of them have become large 
enough to meet DOT reporting requirements. 
11 In the year of our sample period, one in seven U.S. domestic passengers traveled on a regional airline.   
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conditions.  In other words, we observe both types of organizational form over the full 

range of transaction difficulty.   

Our setup also provides us with a set of instrumental variables for a major’s 

vertical integration decision.  These instruments are derived from the findings in FL.  As 

described above, that study shows that majors are more likely to use owned regionals on 

routes that are more integrated into the major airline’s network, and on routes that 

experience more adverse weather on average.  Because we are testing whether a major’s 

departure delays and cancellations on a route are affected by the major’s vertical 

integration with a regional partner that serves other routes from the same departure 

airport, we use the characteristics of the other airports served by the regional partner from 

this departure airport as instruments for the major’s decision to vertically integrate with 

the regional.  For example, assume that one of the routes in our sample is Boston-Atlanta 

and the major carrier who serves the route is Delta.  We are interested in testing if Delta’s 

decision to own or contract with the regional carrier that it uses to serve other routes out 

of Boston – such as Boston-Burlington or Boston-Syracuse – affects Delta’s performance 

on the Boston-Atlanta route.  We use the average weather conditions and network 

integration of the Burlington and Syracuse airports as instruments for Delta’s extent of 

vertical integration at the Boston airport.   

We require that our instruments be correlated with an airline’s vertical integration 

decision on the routes served by its regionals, but be uncorrelated with the error of the 

performance equation on the routes served by the major itself.  Since delays can 

propagate through an airline’s network, it is important for our use of these instruments 

that characteristics of other airports served by the regional do not contribute unobserved 

shocks to delays on the major’s own route.  Continuing with the example used above, we 

must assume that average weather conditions at Burlington and Syracuse do not affect 

Delta’s delays on the Boston-Atlanta route.  While this might initially seem like an 

ambitious assumption, note that aircraft and crew are not shared across majors and 

regionals.  Thus, the primary mechanism through which delays propagate throughout a 

network – aircraft and crew not being where they need to be – simply does not operate 

here.    
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Another reason why delays may propagate is that planes may wait for connecting 

passengers who arrive late.  Since passengers do connect from regionals to majors, this 

could create correlation between our instruments and the error in the performance 

equation.  However, note that, in general, airlines will only delay the last flight of the day 

to wait for late connecting passengers because it is costly for airlines, and very damaging 

to their customer satisfaction, if passengers have to stay at a connecting airport overnight.  

To account for this possible source of correlation, we estimate specifications that 

explicitly control for whether a flight is the last one of the day on a route and we find that 

our results are robust to this check.   

Finally, there may be some  remaining correlation between characteristics of other 

airports served by the regional and the error in the performance equation that is due to 

shared airport facilities at the departure airport.  If such correlation exists, it would lead 

our results to be biased towards finding that integrated airlines perform worse, not better, 

since FL show that airlines vertically integrate on routes that are more likely to 

experience schedule disruptions.  Our findings that vertically integrated airlines perform 

better than non-integrated airlines reassure us that possible correlation between our 

instruments and the error in the performance equation is not a great concern for our 

results.   

 

III.C Estimation Equation 

We estimate the following performance equation:  

 t
irir

t
irir

t
ir

t
ir

t
ir VIZVIZXP εδδγβ ++++= 21 *    (1) 

where t
irP  is a measure of the performance of airline i on flight r on day t, t

irX  and t
irZ  

are vectors of variables that affect airline i’s performance on flight r on day t, irVI  is a 

scalar that captures airline i’s vertical integration decision at the origin airport of flight r, 

and t
irε  is an error term.  The difference between t

irX  and t
irZ  is that the effect of the 

former is independent of whether firm i is vertically integrated, whereas the latter may 

have a differential effect on performance depending on whether airline i is vertically 

integrated or not.  In our setting, t
irZ  contains measures of daily weather (with higher 

values of t
irZ  capturing worse weather) while t

irX  contains other controls which affect 
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delays or cancellations.  As described above, we control for the endogeneity of the 

vertical integration decision by instrumenting for irVI  and ir
t
ir VIZ * .   

 Our hypothesis tests focus on 1δ  - which measures the difference in performance 

between majors using owned and independent regionals in “good” weather - and on 2δ  - 

which measures how this performance difference changes as weather conditions 

deteriorate.  If ownership of a regional allows a major to better optimize its network, then 

we expect both 1δ  and 2δ to be less than zero. 

 

IV. Data and Measurement 

IV.A. Data Sources 

Our empirical analysis is based on several sources of data.  The primary source is 

flight-level on-time statistics from the U.S. Bureau of Transportation Statistics.  This 

database contains every flight operated by all major U.S. carriers.12  Each observation in 

the data corresponds to a particular flight on a particular day and contains information on 

the operating carrier, the departure and arrival airports, the scheduled and actual 

departure and arrival times, the time spent on the runway at the departure and the arrival 

airport, and whether the flight was cancelled or diverted.   

We augment these data with information from several other sources.  First, data 

from the Official Airline Guide (OAG) provide us with the complete flight schedules of 

all domestic airlines, regionals as well as majors.13  The OAG data allow us to measure 

an airline’s total scale of operations as well as the scale of operations of each of its 

regional partners, at each airport at which it operates.  We combine these data with 

information from the Regional Airline Association (RAA) that shows which regional 

airlines are owned by a particular major.  Together, the OAG and RAA data allow us to 

calculate an airline’s extent of vertical integration with its regionals at each airport at 

which it operates.  Finally, data on the daily weather at each airport are taken from the 

National Oceanographic and Atmospheric Administration (NOAA).   

 

                                                 
12 Carriers are required to report these data if they account for at least one percent of domestic passenger 
revenues in the prior year.   
13 Our data provide a representative week for each quarter. 
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IV.B. Construction of the Sample 

 Our sample year is 2000.  The sample includes all flights operated by the seven 

large network carriers (American, Continental, Delta, Northwest, TWA, United and US 

Airways).14  We divide our sample into a “summer sample” and a “winter sample” so that 

we can separately estimate the effects of rain and snow in the months in which these two 

types of adverse weather most commonly occur.  Our summer sample includes all routes 

but is restricted to the months of May to October.  We also exclude any days that fall 

between May and October on which the average temperature is below freezing.  Our 

winter sample includes only routes that depart from airports in the Northeast or Midwest 

census regions and is restricted to flights that operate between December and February.   

We impose several additional restrictions on both the summer and winter samples.  

First, we drop observations for which our weather data are missing.  Second, we exclude 

from each sample airports which have flights departing from them for less than 50% of 

the days in that sample.15  Third, we exclude airports that are only served by one of the 

seven airlines in our sample because, once we include departure airport-date fixed effects, 

these airports do not help identify our vertical integration variables.  Fourth, we exclude 

routes to or from New York’s LaGuardia airport because LaGuardia changed its slot 

control rules during 2000, resulting in a large increase in delays (see Forbes, 2007, for 

details).  Fifth, because we are relating a major’s departure delay on a route to its vertical 

integration with a regional at the departure airport, we exclude routes that depart from an 

airport at which the major does not use a regional at all.  Finally, we exclude flights on 

Saturdays and Sundays so that the variation in an airline’s extent of vertical integration is 

not simply capturing within-week fluctuations in regional use.  After imposing these 

restrictions, our final summer dataset includes 903,021 individual flights.  Our final 

winter dataset includes 197,081 individual flights.   

 

IV.C. Measurement Issues and Variables  

                                                 
14 We exclude routes that have either endpoint in Alaska, Hawaii, Puerto Rico, Guam or the U.S. Virgin 
Islands. 
15 These are airports for which either the weather data are missing frequently, or which were entered or 
exited during the sample period.   
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 We now describe our variable construction.  Variable names and definitions 

appear in Table 2a.  Summary statistics are in Table 2b.   

 

i. Dependent Variables 

 We construct two dependent variables that we use throughout the empirical 

analysis.  The first, Departure Delay, measures the time between the scheduled departure 

and the actual departure of the aircraft from the gate.16  If the actual departure takes place 

before the scheduled departure (i.e.: a flight departs early), we set Departure Delay to 

zero.17  As reported in Table 2b, the average delay in our summer sample is 13.7 minutes 

while the average delay in our winter sample is 14.0 minutes.   

 Our second dependent variable is a dummy variable, Cancelled, that equals one if 

the flight is cancelled.  As Table 2b shows, on average, 4% of flights are cancelled in our 

summer sample and 7% of flights are cancelled in our winter sample. 

 We choose not to include arrival delays (i.e. the time between scheduled arrival 

and actual arrival) in our analysis because arrival delays are influenced by wind 

conditions during the flight, and are thus a fairly noisy measure of an airline’s 

performance.  In contrast, both departure delays and cancellations are to a larger extent 

under the control of the airline.   

 

ii. Ownership and Scale of Operations Variables 

To measure the extent of a major’s vertical integration with its regionals at an 

airport, we construct Fraction Owned which measures the fraction of all regional flights 

that a major has departing from an airport that are operated by an owned regional 

partner.18  As Table 2b indicates, the mean of Fraction Owned Regional is 0.56 in the 

summer sample and 0.41 in the winter sample. 

Airlines with larger total operations at an airport may be differentially affected by 

adverse weather at that airport.  Therefore, we control for the size of a major’s total, as 

                                                 
16 Thus, our delay measure does not include delays that occur on the runway.  We do this intentionally 
since delays on the runway are less likely to be under the airline’s control. 
17 We run a robustness check in which we leave early departures as negative delays and the results are 
robust to this change. 
18 Note that some majors use owned as well as independent regionals at the same airport.  Fraction Owned 
can therefore take on other values than 0 and 1. 
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well as regional, operations at an airport.  Using the OAG data, we construct Total 

Flights which equals the total number of flights per day that a major has departing from 

an airport (including regional flights).  We also construct Regional Flights which equals 

the total number of daily regional flights that a major has departing from an airport.  Our 

regression includes interactions of Total Flights, Regional Flights and Fraction Owned 

Regional with our measures of adverse weather.   

 

iii. Weather Variables 

 The NOAA data contain daily observations from airport weather stations on the 

minimum, average and maximum temperature, and the total accumulated precipitation 

(measured in inches).   Based on these data, we construct the following two variables: 

Rain which measures precipitation on days on which the average temperature is above 32 

degrees Fahrenheit and Snow which measures precipitation on days on which the average 

temperature is 32 degrees Fahrenheit or less.19  Note that while Snow is not defined for 

the summer sample (since we exclude any days during this period on which the 

temperature is below freezing), Rain is defined for the winter sample since above 

freezing temperatures do occur in that sample.  As Table 2b shows, the average daily 

rainfall in the summer sample is 0.10 inches and the average daily rainfall in the winter 

sample is 0.04 inches.  Average daily snowfall in the winter is 0.46 inches. 

 We define adverse weather in two different ways.  First, we use Rain and Snow 

directly.  Second, we specifically attempt to capture extreme weather.  To do this, we 

calculate the 95th percentile of the daily rain distribution during the summer months for 

each airport in our summer sample.  We then construct the dummy variable Rain>95th 

Percentile which equals one if the observed rainfall at the departure airport of a route 

exceeds the 95th percentile of that airport’s rain distribution.  Note that flights for which 

this dummy is equal to zero do not have perfect flying conditions.  Rather, we are trying 

to capture the difference between the worst days and all other days with this variable.  

The mean of Rain for observations with Rain>95th Percentile equal to one is 0.46 inches 

in the summer sample.  We define the variables Rain>95th Percentile and Snow>95th 

                                                 
19 We assume an average water equivalent for snow of 8%, i.e. we convert 0.01 inch of accumulated 
precipitation on days with below freezing temperatures into 0.125 inches of accumulated snow. 
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Percentile analogously for the rain and snow distributions in the winter sample.  The 

mean of Rain for observations with Rain>95th Percentile equal to one is 0.57 inches in 

the winter sample, and the mean of Snow for observations with Snow>95th Percentile 

equal to one is 6.15 inches.   

 Using the within-airport rain distribution to identify days with “extreme weather” 

has two benefits.  First, it accounts for the fact that the same weather occurrence may 

have a different impact at different airports, depending on that airport’s regular weather 

patterns.  This is particularly important for the snow measure since a small amount of 

snow will generally be a much bigger disruption in a city that does not usually experience 

much snow than in a city with regular snowfall.  Second, this approach to defining days 

with extreme weather ensures that bad weather events are observed at all airports in our 

sample.  This, in turn, allows us to exploit the full distribution of owned regional use 

across all airports in our sample.  In contrast, if we defined extreme weather based on an 

absolute amount of rain or snow, then we would only observe extreme weather events at 

a small set of airports and we would only be able to exploit variation in owned regional 

use across that set of airports.  Especially because owned regional use will be correlated 

with average weather patterns, this alternate approach may not provide sufficient 

variation in owned regional use to carry out our empirical exercise.   

 

iv. Other Controls - Airport Characteristics 

We construct several variables that measure airport characteristics that can affect 

departure delays and/or the likelihood of cancellations.  We construct these variables for 

both the departure and arrival airports of a flight. However, in some specifications, the 

departure airport variables will not be separately identified from the fixed effects that we 

include.  Note that conditions at the arrival airport can affect departure delays, especially 

if the arrival airport has issued a so-called ground stop, which orders all flights that are 

scheduled for landing to remain at their departure airport until the ground stop is lifted.  

We do not include any airline-specific characteristics of the arrival airport because 

ground stops are general and not specific to any particular carrier.   
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The first variable that we construct is Slot which is a dummy for whether the 

departure (arrival) airport is slot-controlled.20  We expect delays to be greater at slot-

controlled airports.  We further control for Airport Flights, the total number of domestic 

flights scheduled to depart from (arrive at) an airport on a given day.21  This provides an 

additional measure of airport size.  For both the departure and the arrival airport, we 

interact the Airport Flights variable with the variables measuring weather on that day.  

Since the main effect of bad weather is to require greater time between takeoffs and 

landings, the effect of adverse weather should be greater at more congested airports.    

 

v. Instruments 

Recall that the logic of our instruments is that characteristics of the endpoint 

airports of routes served by a regional partner from a given airport will be correlated with 

the type of regional that the major chooses to use for those routes.  Based on FL, the four 

endpoint characteristics that we measure are: whether the route arrives at the major’s hub, 

the average annual precipitation at the endpoint airport, the average annual snowfall at 

the endpoint airport, and the number of months with an average temperature that is below 

freezing.22  We take the average of each of these characteristics across all of the routes 

that major serves from a given airport with a regional partner and use the four resulting 

variables as our instruments.   

 

V. Results 

V.A. First-stage Results 

Table 3 presents the results of our first stage regression of Fraction Owned on the 

instruments described in Section IV and on our exogenous variables.  We present our first 

stages using Rain>95th Percentile and Snow>95th Percentile as our weather measures.  

The results are quite similar when we use Rain and Snow instead.   

                                                 
20 In our sample, the slot-controlled airports are Chicago O’Hare, John F. Kennedy in New York, and 
Reagan National in Washington, DC.  We have excluded LaGuardia Airport in New York (see above).   
21 Airport Flights is constructed from the OAG data which only provide a representative flight schedule for 
one week of each quarter.  Therefore, Airport Flights takes the same value for each Monday of a quarter, 
each Tuesday of a quarter, etc… 
22 We construct these instruments using the same data used there. 
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We show the results for the summer sample in column (3-1) and the results for the 

winter sample in column (3-2).  Robust standard errors are in parentheses.  Recall that 

our instruments are the average characteristics of the arrival airports served by a major’s 

regional partners from the departure airport of the major’s route.  All of the instruments 

have highly significant effects in both samples and the signs of the effects are as in FL.  

Owned regionals are more likely to be used when more of the regionals’ routes arrive at a 

hub and when the endpoints served by the regionals experience more rain and snow 

throughout the year.  Endpoints with more months with below freezing temperatures are 

less likely to be served by owned regionals.23  Joint significance of the instruments is 

confirmed by the F-statistics presented at the bottom of Table 3.  Most of the other 

explanatory variables also have highly significant coefficients.24  The R-squared of the 

regression is 0.57 in both samples.   

 

V.B. Performance Effects – Summer Sample 

We now present the results from the estimation of our performance equation.  The 

results from the summer sample appear in Tables 4 and 5 while the results for the winter 

sample appear in Table 6.  In Table 4, we estimate the average effect of Fraction Owned 

on delays and cancellations and in Tables 5 and 6 we add interaction terms between 

Fraction Owned and various weather measures.  Because we have a large number of 

independent variables, each of our tables is divided into several panels.  In the first panel, 

we present Total Flights – the major’s total number of flights, including its regional 

flights – and its interaction with our weather measures.  The second panel includes 

Regional Flights – the major’s total number of regional flights – and its interaction with 

our weather measures.  The third panel includes our measure of vertical integration, 

Fraction Owned, and its interaction with the weather measures. Because this panel 

includes our primary variables of interest, we highlight it in each of the tables.  The final 

                                                 
23 Forbes and Lederman (2007a) explain that this result is consistent with the observation that those airports 
have shorter delays on average.   
24 The first-stage regressions also include departure airport-date fixed effects and interactions of the 
instruments with the rain and snow measures.   The coefficients on those variables are not reported but are 
available upon request.  The results of the first stage regression for the interactions of Fraction Owned 
Regional with the weather variables are also available upon request.  
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panels in each table include the departure and arrival airport control variables that are not 

captured by the fixed effects included in the model. 

We begin Table 4 by estimating our performance equation using ordinary least 

squares (OLS) and without including any fixed effects.  While this is not our preferred 

specification (given the large number of unobservable factors that can affect flight 

delays), it provides a useful starting point.  In particular, it allows the coefficients on all 

of the control variables, many of which will later be absorbed by fixed effects, to be 

directly estimated.  The standard errors we present are clustered on departure airport-day.   

The results for the first two panels of variables are generally consistent across all 

of our specifications.  The coefficient estimates on Total Flights and Regional Flights 

indicate that flight delays are decreasing in an airline’s total number of flights at the 

airport, but increasing in the airline’s number of regional flights.  The first effect suggests 

that airlines with more total flights at an airport are better able to manage delays.25  

However, controlling for an airline’s total number of flights, having more regional flights 

(of either type) at an airport leads to longer departure delays (on flights operated by the 

major itself).  This second effect likely results from the fact that the small planes operated 

by regional airlines have slower takeoff and cruising speeds than large jet aircraft.  As a 

result, large jets cannot take off as quickly after small aircraft as they would after other 

large jets.  Since airlines tend to have many of their flights take off at the same time to 

facilitate passenger connections, this will lead to longer delays for a carrier that has a 

large number of regional flights departing from an airport.26   

The interactions of Total Flights with the dummy for rain being above the 

airport’s 95th percentile are generally insignificant in the delay regressions indicating that 

an airline’s overall size at an airport does not change how it is affected by rain.  In 

contrast, the coefficients on the interactions of Regional Flights with Rain>95th 

Percentile are positive and significant suggesting that airlines with more regional flights 

experience longer delays on days with rain above the airport’s 95th percentile of the rain 

distribution.  This is consistent with the direct effect of Regional Flights.   

                                                 
25 Note that we separately control for the total number of flights at the airport by all airlines. 
26 This explanation is consistent with Rupp (2005) which finds that smaller aircraft experience significantly 
longer flight delays. 
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We now turn to our main variable of interest, Fraction Owned.  Consistent with 

our hypothesis, the direct effect of this variable is negative and statistically significant, 

indicating that majors that use owned regionals for a larger fraction of their regional 

flights at an airport experience shorter delays on their own flights departing from that 

airport.  The point estimate in this OLS regression implies that majors using only owned 

regionals experience delays that are 5.4 minutes shorter on average than those 

experienced by majors using only independent regionals.  

The departure and arrival airport control variables have the expected signs.  

Flights departing from or arriving at slot-controlled airports and airports with more total 

flights experience longer departure delays.  Flights departing from or arriving at airports 

on days with rainfall above the airport’s 95th percentile experience significantly longer 

departure delays – approximately 13 minutes if the rain is at the departure airport and 10 

minutes if the rain is at the arrival airport.  The positive coefficients on the interactions of 

Rain>95th Percentile with the airports’ number of flights indicate that the impact of rain 

on delays increases with airport congestion.  This is precisely what one would expect 

given that the main effect of rain is to require more time between takeoffs and landings.   

In the second column of the Table 4, we re-estimate (4-1) with two-staged least 

squares (2SLS), instrumenting for Fraction Owned.  The coefficient estimates on the 

exogenous variables are almost identical to the OLS results in (4-1).  The coefficient on 

Fraction Owned increases slightly in magnitude suggesting an upward bias in the OLS 

estimate.  The 2SLS estimate implies that majors using only owned regionals experience 

delays that are 6.1 minutes shorter than those experienced by majors using only 

independent regionals.   

In the third column of the table, we add departure airport fixed effects to the 

model.  These control for average differences in departure delays across airports in our 

sample.  The Slot and Airport Flights variables for the departure airport are not 

separately identified from these fixed effects.  The inclusion of the fixed effects slightly 

reduces the estimate on Fraction Owned.  The coefficients on all of the other variables 

are virtually unchanged.   

In the fourth column of the table, we include departure airport-day fixed effects.  

By doing so, we are able to control for the average delay at every airport in our sample on 
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each day.  This is important for several reasons.  First, there are a number of factors that 

will affect delays at an airport on a given day that are unobservable to us, for example, air 

traffic control disruptions or security breaches.  To the extent that these affect all airlines 

at an airport equally, they will be captured by the fixed effects.  Second, our weather data 

do not include some elements, such as fog and cloud cover, that affect flight delays and 

cancellations; these too will be captured by the fixed effects.  Finally, the relationship 

between weather characteristics and delays and cancellations may vary with a host of 

airport characteristics.  Departure airport-day fixed effects allow us to control for this 

relationship in the most flexible way possible.  Note that with the inclusion of these fixed 

effects, none of the departure airport control variables are separately identified. 

Our regression results are quite similar when we include these fixed effects.  We 

present robust standard errors for this and all following specifications.  The estimate on 

Fraction Owned implies that majors using only owned regionals at an airport experience 

flight delays that are approximately 5.6 minutes shorter than the delays experienced by 

majors at the same airport and on the same day using only independent regionals.  This 

effect is quite substantial when compared to the average departure delay in this sample 

which is 13.7 minutes.   

The final column of Table 4 re-estimates (4-4) using Cancelled as the dependent 

variable.27  The estimate on Fraction Owned is again negative and significant indicating 

that majors using owned regionals not only have shorter delays but are also less likely to 

have flight cancellations.  The point estimate suggests that using only owned regionals 

lowers the likelihood of a major’s flight being delayed by about 1.3 percentage points, 

compared to majors using only independent regionals.  This is a large effect given that 

the in the summer sample only about 3.7 percent of flights are cancelled.    

The results in the first two panels of (4-5) are somewhat different from the results 

on these variables in the delay regressions.  In particular, whereas majors with more total 

flights at an airport experience shorter delays on average, they do not experience fewer 

cancellations.  Similarly, while majors with more regional flights experience longer 

delays, there is no effect of Regional Flights on cancellations.  The results in (4-5) 

                                                 
27 Note that the number of observations varies between the specifications with Departure Delay and 
Cancelled because Departure Delay is missing for flights that are cancelled. 
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further indicate that on days with rainfall above the airport’s 95th percentile, carriers with 

more total flights at the airport experience more cancellations but carriers with more 

regional flights experience fewer cancellations.  Since having more total flights is 

positively correlated with an airline’s average flight frequency on a route but, conditional 

on the carrier’s total number of flights, having more regional flights is negatively 

correlated with flight frequency (since regionals are typically used on low-demand 

routes), these results are consistent with Rupp (2005) which finds that cancellations are 

more common on routes with high flight frequencies.  Rupp also finds that, controlling 

for flight frequency, smaller planes have longer delays than larger planes but are no more 

likely to be cancelled.   

In Table 5, we add interactions between Fraction Owned and various measures of 

rain.  Recall that our hypothesis is that majors with owned regionals should not only have 

an overall performance advantage over majors with independent regionals, but this 

performance advantage should also increase as weather deteriorates because adverse 

weather increases the need for unforeseen schedule adjustments.  The specifications in 

this table allow us to test both parts of this hypothesis.  We include departure airport-date 

fixed effects in all specifications presented in this table.  We find that the estimates on all 

of the exogenous variables are quite similar to Table 4.  We therefore focus our 

discussion on the results we find for the vertical integration measures. 

In the first column of Table 5 we present OLS estimates, and in the remaining 

columns we present 2SLS estimates instrumenting for both Fraction Owned and its 

interaction with the rain measures.  As in Table 4, the estimate on Fraction Owned in (5-

1) is negative and statistically significant.  The estimate on Rain>95th Percentile 

interacted with Fraction Owned is also negative and statistically significant.  Consistent 

with our hypothesis, this suggests that using owned regionals provides majors with a 

performance advantage on all days and that this advantage increases as the weather 

deteriorates.  Note that the uninteracted Fraction Owned variable should not be 

interpreted as measuring the performance advantage of owned regionals on days with 

ideal flying conditions (or days with zero schedule disruptions).  Rather, since Rain>95th 

Percentile only captures the very rainiest days at each airport, the uninteracted Fraction 

Owned term includes all other days.  Many of these days will include schedule 
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disruptions that occur for weather-related or other reasons.  Thus, it is not surprising that 

we find a performance advantage on these days as well. 

In the second column, we instrument for the ownership variable and its 

interaction.  As in Table 4, the 2SLS estimate on the direct effect of Fraction Owned is 

barely different from the OLS estimate.  However, the 2SLS estimate on the interaction 

term more than doubles in magnitude.  This suggests that endogeneity of the vertical 

integration decision is indeed a concern when estimating its effect on performance.  In 

particular, the upward bias of the coefficient in the OLS regression is consistent with the 

implication from Figure 1 – namely, that simply comparing the performance of integrated 

and non-integrated firms will wrongly suggest that integrated firms perform worse, 

because firms choose to integrate more difficult transactions.  The instrumental variables 

approach accounts for this endogeneity of the ownership decision.   

The results from the 2SLS regression confirm our hypothesis that carriers who are 

vertically integrated with their regionals perform better than carriers that are vertically 

separated and that the performance advantage of integrated carriers is greater in bad 

weather conditions.  The coefficient on the direct effect of Fraction Owned implies that - 

on days with rainfall below the 95th percentile of the airport’s distribution -   majors using 

only owned regionals at the airport experience flight delays that are approximately 5 

minutes shorter than the delays experienced by majors using only independent regionals.  

The coefficient on the interaction term implies that - on days with rain above the 95th 

percentile - the performance advantage of majors who only use owned regionals increases 

so that their delays are 13 minutes shorter than the delays of majors who only use 

independent regionals.  It is important to note that this specification only provides 

estimates of the performance advantage of owned regionals in “good” and “bad” weather 

since the direct effect of weather is absorbed by the airport-day fixed effects we include.  

Comparing our results to the average delay in the sample indicates that the effects we 

find are again quite substantial.  While the overall mean of Departure Delay is 13.7 

minutes, the mean delay on days with rain below the 95th percentile is 13 minutes while 

the mean delay on days with rain above the 95th percentile is 28 minutes.   

(5-3) presents the same specification but adds a second rain measure.  We add the 

variable Rain>75th Percentile which equals one if the rainfall on a given day is above the 
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75th percentile of the rain distribution at the airport in the summer sample.  We add this 

variable to investigate how the performance advantage of owned regionals varies across 

different parts of the rain distribution.  The estimates in (5-3) indicate that the 

performance advantage of owned regionals does not appear to increase with smaller 

amounts of rain.  While the coefficient on Rain>75th Percentile*Fraction Owned is 

negative, it is not statistically significant.  The coefficient on Rain>95th 

Percentile*Fraction Owned is again negative and significant.  Its magnitude and 

significance are both slightly reduced because some of the effect of Rain>95th Percentile 

is now captured by Rain>75th Percentile*Fraction Owned since these variables are 

additive rather than mutually exclusive. 

In column four, we further investigate the relationship between the performance 

advantage of ownership and rain by using the linear Rain variable.  We use this alternate 

measure of “bad” weather because it provides an absolute – rather than relative - measure 

of “bad” weather.  It also exploits the full distribution of observed rain.  However, based 

on the results in (5-3), we do not expect the relationship between rain and the 

performance advantage of owned regionals to be the same at all points of the rain 

distribution.  The coefficient on Rain*Fraction Owned is negative but it is statistically 

insignificant.   We interpret the findings in specifications (5-2) through (5-3) as evidence 

that the effect of rain on the performance advantage of owned regionals is nonlinear.   

In the remaining three columns of Table 5, we re-estimate (5-2) through (5-4) 

using Cancelled as the dependent variable.  Recall from Table 4 that we found that the 

use of owned regionals both lowered delays and reduced cancellations.  We now 

investigate whether the relationship between ownership and cancellations is affected by 

the presence of bad weather.  The results in columns five through seven indicate that 

while majors using owned regionals experience fewer cancellations in any weather, this 

effect is no larger in “bad” weather.  The coefficients on the interaction terms between 

Fraction Owned and all of our rain measures are statistically insignificant.  Thus, these 

results suggest that the performance advantage of owned regionals with respect to 

cancellations does not increase as weather deteriorates.  However, we are cautious to 

attach too much weight to these findings.  Specifically, the inclusion of the departure 

airport-day fixed effects means that these interaction effects are identified only by 
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variation across airlines at an airport on a given “bad” weather day.  In order for us to 

estimate whether heavy rain impacts the relationship between owned regional use and 

cancellations, the decision to cancel flights must be, at least to some extent, under the 

airline’s control.  However, cancellations in heavy rain tend to occur because of the 

presence of heavy storms.  In these situations, airlines typically do not have much control 

over their number of cancellations.28   

 

V.C. Performance Effects – Winter Sample 

We now turn to our results for the winter sample.  In this sample, we include both 

snow and rain as weather measures; however, we focus on the snow results because rain 

is observed infrequently and in small amounts during this period.  Recall that this sample 

is restricted to the Midwest and Northeast census regions (i.e. to those geographic regions 

where all airports experience snow during the winter) during the months December 

through February, and that we exclude weekend days.  The Snow>95th Percentile 

variable therefore captures the three snowiest days at each airport.  The results for this 

sample are presented in Table 6.   

In the first column, we present a two-staged least squares specification analogous 

to that in (5-2) but with the additional snow variables.  We instrument for Fraction 

Owned, Snow>95th Percentile*Fraction Owned and Rain>95th Percentile*Fraction 

Owned.  Consistent with the results from the summer sample, we find a negative and 

significant direct effect of Fraction Owned.  The coefficient on the interaction effect with 

Snow>95th Percentile is also negative and is significant at the 10 percent level.  The 

interaction with Rain>95th Percentile is insignificant.  In fact, we find no statistically 

significant effects on the interaction of rain with Fraction Owned in any of our 

specifications for the winter sample.  This is not surprising since the airports in this 

sample only experience very few, if any, days with rain during the winter.   

Most of the other coefficients in this regression have the same sign as in the 

summer regressions.  For example, we again find that carriers with more flights overall 

experience shorter delays, whereas carrier with more regional flights of either type 

                                                 
28 Estimation of the cancellation regressions with departure airport fixed effects instead of departure 
airport-day fixed effects produces negative and statistically significant coefficients on the interaction terms. 
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experience longer delays.  With respect to the arrival airport control variables, we again 

find that flights arriving at airports with more total flights experience longer delays and 

that this effect is more pronounced when the airport experiences snow or rain above its 

95th percentile snow or rain.  We find different results from the summer sample on some 

of the interactions with Rain>95th Percentile.  However, again, we do not attach much 

weight to these interactions because rain is very infrequent in this sample, and some 

airports experience no rain at all during the winter months.   

The coefficient on the direct effect of Fraction Owned implies that – on days with 

rain and snow below the 95th percentile of the airport’s distribution – majors using only 

owned regionals experience flight delays that are approximately 1.1 minutes shorter than 

the delays experienced by majors using only independent regionals.    The coefficient on 

the interaction effect with snow implies that – on days with snow above the 95th 

percentile – majors using only owned regionals have a performance advantage that 

translates into delays that are shorter by 8.7 minutes, on average, than for majors using 

only independent regionals.  It is again useful to compare these estimates to the average 

departure delays in the sample.  The mean departure delay in the winter sample on days 

with snow below the 95th percentile is 14 minutes while the mean delay on days with 

snow above the 95th percentile is 41 minutes.  The magnitude of the performance effects 

that we estimate in the winter sample are smaller than the ones we find for the summer 

months; however, given that we are measuring very different types of weather, we do not 

expect the estimates from the two samples to be identical in size.  Rather, we are 

interested in whether alternate measures of bad weather give qualitatively similar results 

and the findings so far indicate that they do.  

In the second column of Table 6, we present results using the linear measures of 

Snow and Rain.29  As before, this provides us with absolute measures of “bad” weather 

and exploits the full distribution of rain and snow in the winter sample.  We believe that 

this is a particularly important check in the winter sample because Snow>95th Percentile 

captures quite a broad range of snow events.  When we use the linear weather variables, 

we find similar effects on most variables.  As in the previous specification, the direct 

                                                 
29 We do not present results with the 75th percentile of the snow or rain distribution here because those 
percentiles are equal to zero for many airports.   
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effect of Fraction Owned and its interaction with Snow are negative, but now the direct 

effect is insignificant while the interacted effect is highly significant.  The magnitudes 

imply that an additional inch of snow leads to 2.5 minutes of additional delay for majors 

which only use independent regionals, compared to majors which only use owned 

regionals.  Interestingly, the results in (6-1) and (6-2) together suggest that – in contrast 

to the summer results – the performance advantage of owned regionals does not increase 

only with extreme amounts of precipitation.  Rather, in the winter sample, the linear snow 

measure appears to capture the performance advantage of majors with owned regionals 

best.   

In Columns (6-3) and (6-4) we present results on cancellations.  In Column (6-3) 

we use the weather measures based on the 95th percentiles of the snow and rain 

distributions, whereas in Column (6-4) we show results for the linear weather measures.  

We find highly significant negative coefficients on Fraction Owned and its interaction 

with the linear snow measure.  Interestingly, we find that in the winter sample, carriers 

with more total flights at an airport experience fewer cancellations while carriers with 

more total regional flights at an airport experience more cancellations. The results from 

the summer sample on the relationship between an airline’s scale of operations at an 

airport and cancellations were more ambiguous.  This may be because cancellations are 

three times more likely in the winter sample than in the summer sample which may allow 

the relationship between scale and cancellations to be more accurately estimated.   

The coefficient estimates in (6-4) imply that - on days with no snow or rain - 

cancellations for majors using only owned regionals at an airport are 1.3 percentage 

points lower than cancellations for majors using independent regionals.  Each additional 

inch of snow increases the performance advantage of owned regionals by about 1.6 

percentage points.   

Overall, the results provide strong support for our hypotheses that use of an 

owned regional allows a major to better optimize its network, in particular when 

unforeseen schedule adjustments are necessary.   

 

V.D. Robustness 
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In addition to the specifications reported in Tables 4 through 6, we have also 

carried out several other robustness checks.  Specifically, we have estimated our models 

using two alternate ways of controlling for a major’s overall size of operations and a 

major’s size of regional operations at an airport.  This is important because – as FL find – 

a major’s overall scale of operations may be correlated with its decision of what type of 

regional to use.  First, to allow for nonlinear effects, we have included quadratic terms of 

Total Flights and Regional Flights (and interact these with our weather variables).  

When we include these higher order terms, we find that the relationship between delays 

and these variables are, in fact, nonlinear.  In both the summer and winter samples, the 

coefficients on the Fraction Owned terms are qualitatively the same though their 

magnitudes are slightly reduced.   Second, in addition to the continuous Total Flights 

variable, we add a dummy variable that equals one if a flight departs from a major’s hub.   

We also interact the hub variable with our weather variables.  The results from both 

samples are robust to the inclusion of the hub dummy. 

As an additional robustness check, we limit our sample to flights that depart from 

the 50 largest airports in our sample (though not all of these airports appear in the winter 

sample since it is limited to specific regions).  The results are robust to this change in the 

sample.  In addition, we have redefined our dependent variable Departure Delay to count 

early departures as negative delays.  Our results are robust to this alternative definition.  

We have also dropped the 0.5% of our observations with the longest delays to check if 

our results are sensitive to excluding outliers.  Again, we find that our results are robust.  

Finally, we have added arrival airport fixed effects with no change to our results.  

Overall, we find strong support for our hypotheses that majors which are vertically 

integrated with their regionals have shorter flight delays and fewer cancellations in any 

weather and this performance advantage increases, at least for flight delays, as the 

weather deteriorates.   

 

VI. Conclusion 

In this paper, we have investigated the consequences of vertical integration for the 

operational performance of major U.S. airlines.  These airlines outsource flights to 

regional airlines, of which some are owned and others are independent and managed 
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through contractual relationships.  Ownership of a regional mitigates incentive problems 

that arise when unforeseen schedule disruptions occur, causing majors and independent 

regionals to disagree about how those disruptions should be resolved.   

We estimate how specific measures of a major’s performance on flights that it 

operates itself are affected by its degree of vertical integration with regional airlines that 

operate flights on its behalf out of the same airport.  Our empirical investigation takes 

into account that organizational form decisions are endogenous to firm performance by 

instrumenting for the extent of a carrier’s vertical integration at an airport with the 

characteristics of the other airports served from that airport by the carrier’s regional 

partners.  Prior work by Forbes and Lederman (2007a) has shown that these 

characteristics affect the vertical integration decision, and we find here, as well, that our 

instruments are highly predictive of vertical integration.   

Our empirical approach further takes into account that the relationship between 

vertical integration and performance may change with the characteristics of a transaction. 

In our setting, we would expect the performance advantage of owned regionals to 

increase as weather deteriorates because this causes the likelihood of schedule disruptions 

to increase.  Typically, this type of relationship can be hard to estimate because 

integration and non-integration are only observed in specific transaction environments.  

However, because airlines’ ownership decisions are fixed in the short-run while weather 

changes on a daily basis, we are able to observe both owned and independent regionals in 

various weather environments.  

Our results show that ownership of a regional does, indeed, improve airlines’ 

network performance and, even more so, in the presence of adverse weather.  The 

estimates that we obtain are both statistically and economically significant and are robust 

across a variety of specifications.  We interpret our results as indicating that, at least in 

this setting, contracts between majors and independent regionals cannot replicate the 

incentive alignment that ownership achieves.  We want to emphasize, however, that this 

paper has only estimated one side of the tradeoff that airlines face when deciding whether 

to own their regional partners.  While our results indicate that there are benefits to 

ownership in terms of network performance, they do not imply that all majors should 



 33

own their regionals.  As FL explain, there are costs associated with ownership and 

ownership is only optimal when the benefits outweigh the costs. 

We believe that this paper contributes to the existing literature in several ways.  

First, we provide one of the few pieces of direct evidence that there are indeed 

performance consequences of vertical integration.  We are the first to exploit high 

frequency data on performance and on variables that affect the returns to vertical 

integration to trace out how the relationship between vertical integration and performance 

changes with characteristics of the transaction environment.  This allows us to test not 

only the implication that – if ownership solves incentive problems that arise under 

incomplete contracts – there will be performance differences on average, but also that 

these performance differences will increase as the incentive problems grow.   

In addition, we exploit specific institutional features of the industry we study to 

derive instruments for firms’ organizational form decisions.  Finally, we show that, in a 

network industry, a firm’s vertical integration decision on one set of transactions can 

have implications for its performance on a different set of transactions.  Our findings 

suggest that firms in network industries should take these performance effects into 

account when they decide whether to outsource part of their network.   
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Table 1 
Majors and Regional Partners in 2000 

Regional carriers in bold are fully owned by the major 
 

MAJOR REGIONAL PARTNER 
American Airlines American Eagle Airlines 
 Business Express 
Continental Airlines  Continental Express 
 Gulfstream International Airlines 
Delta Air Lines Atlantic Coast Airlines/ACJet 
 Atlantic Southeast Airlines 
 Comair 
 SkyWest Airlines 
 Trans States Airlines 
Northwest Airlines Express Airlines, I 
 Mesaba Aviation 
Trans World Airlines Chautauqua Airlines 
 Trans States Airlines 
United Airlines Air Wisconsin 
 Atlantic Coast Airlines 
 Great Lakes Aviation 
 Gulfstream International Airlines 
 SkyWest Airlines 
US Airways Mesa Air Group/Air Midwest 
 Allegheny Airlines 
 Mesa Air Group/CCAir 
 Chautauqua Airlines 
 Colgan Airways 
 Commutair 
 Mesa Air Group/Mesa Airlines 
 Piedmont Airlines 
 PSA Airlines 

 
Source: Regional Airline Association (www.raa.org) 
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Table 2a 
Variable Names and Definitions 

 
Variable Definition Source 

DEPENDENT VARIABLES   
Departure Delay Difference between scheduled departure and actual departure of 

aircraft from the gate;  =0 if actual departure is before scheduled 
departure 

BTS On-time data 

Cancelled =1 if flight is cancelled BTS On-time data 
   

OWNERSHIP VARIABLE 

Fraction  Owned Regional Fraction of major’s regional flights at the departure airport that are 
operated by an owned regional partner 

OAG & RAA data 

   

SCALE OF OPERATIONS VARIABLES 

Total Flights A carrier’s total number of flights at the departure airport on a day 
(including regional flights), in hundreds 

OAG data 

Regional Flights A carrier’s total number of regional flights at the departure airport on 
a day, in hundreds 

OAG data 

   

WEATHER VARIABLES (defined for both departure and arrival airports)  

Rain Daily precipitation, on days with average temperature >32 degrees 
Fahrenheit (inches) 

NOAA data 

Rain>75th Percentile =1 if rain at an airport on a day is greater than the 75th percentile rain 
observed at that airport during the summer (winter) sample  

NOAA data 

Rain>95th Percentile =1 if rain at an airport on a day is greater than the 95th percentile rain 
observed at that airport during the summer (winter) sample  

NOAA data 

Snow Daily precipitation, on days with average temperature <=32 degrees 
Fahrenheit (inches) 

NOAA data 

Snow>95th Percentile =1 if snow at an airport on a day is greater than the 95th percentile 
snow observed at that airport during the winter sample 

NOAA data 

   

OTHER CONTROLS (defined for both departure and arrival airports) 

Airport Flights Total number of domestic flights scheduled to depart from (arrive at) 
the airport on a day, in hundreds 

OAG data 

Slot =1 if the airport is one of four slot-controlled airports (ORD, LGA, 
JFK, DCA) 

Authors’ construction 
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Table 2b 
Summary Statistics  

 
 Summer Sample Winter Sample 
 Mean St Dev Min Max Mean St Dev Min Max 

DEPENDENT VARIABLES 
        

Departure Delay (min) 13.7 35.3 0 1435 14.5 33.6 0 1129 
Cancelled 0.04 0.19 0 1 0.07 0.25 0 1 
         

OWNERSHIP VARIABLE 

Fraction Owned Regional 0.56 0.45 0 1 0.41 0.45 0 1 
         

SCALE OF OPERATIONS VARIABLES 

Total Flights (in hundreds) 3.45 2.71 0.03 9.26 3.07 1.99 0.03 5.86 
Regional Flights (in hundreds) 1.06 0.80 0.01 2.98 0.91 0.56 0.01 1.98 
         

WEATHER VARIABLES (departure airports) 

Rain (inches) 0.10 0.35 0 12.56 0.04 0.16 0 2.24 
Rain | Rain>75th Percentile=1 0.46 0.63 0.01 12.56     
Rain | Rain>95th Percentile=1 1.21      1.025 0.02 12.56 0.58 0.45 0.01 2.24 
Snow (inches)     0.46 1.57 0 17.13 
Snow| Snow>95th Percentile=1     6.36 3.29 1.4 17.13 
         

OTHER CONTROLS (departure airports) 

Airport Flights (in hundreds) 6.36 3.42 0.14 12.38 6.08 3.07 0.38 11.98 
Slot 0.13      0.33 0 1 0.22 0.42 0 1 
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Table 3 
First Stage Regression 

 
Dependent Variable Fraction Owned Regional 
Sample Summer Winter 

 (3-1) (3-2) 
INSTRUMENTS 
Fraction of Regional’s Routes Arriving at Hub 0.2350 0.2196 
 (0.0024)** (0.0066)** 
   

Average Annual Precipitation at Endpoints Served by Regional 0.0039 0.0192 
 (0.0001)** (0.0004)** 
   

Average Annual Snowfall at Endpoints Served by Regional 0.0095 -0.4327 
 (0.0001)** (0.0065)** 
   

-0.2424 0.0160 Average # of Months with Below Freezing Temperature at 
Endpoints Served by Regional  (0.0018)** (0.0002)** 
   
   

TOTAL # OF FLIGHTS   
Total Flights -0.1373 -0.3006 
 (0.0013)** (0.0020)** 
   

Rain>95th Percentile*Total Flights 0.0780 0.0523 
 (0.0062)** (0.0089)** 
   
Snow>p95*Total Flights  -0.0492 
  (0.0101)** 
   

TOTAL # OF REGIONAL FLIGHTS 
Regional Flights 0.5048 1.1280 
 (0.0039)** (0.0041)** 
   

Rain>95th Percentile*Regional Flights -0.2656 -0.0344 
 (0.0183)** (0.0182)+ 
   
Snow>p95*Regional Flights  -0.0507 
  (0.0231)* 
   

ARRIVAL AIRPORT CONTROLS   
Slot -0.0580 -0.0487 
 (0.0013)** (0.0020)** 
   

Airport Flights 0.0069 0.0036 
 (0.0001)** (0.0002)** 
   

Rain>95th Percentile -0.0042 -0.0013 
 (0.0017)* (0.0030) 
   

Snow>p95  0.0027 
  (0.0039) 
   

Rain>95th Percentile*Airport Flights -0.0030 -0.0000 
 (0.0005)** (0.0009) 
   

Snow>p95*Airport Flights  -0.0009 
  (0.0011) 
Observations 869,401 183,453 
F-statistic on instruments  F(4,860,428) = 8493.20 F(4,183,428) = 4994.35 
Prob>F 0.0000 0.0000 
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R-squared  0.57 0.57 
Robust standard errors in parentheses. + significant at 10%; * significant at 5%; ** significant at 1%.  Specifications include 
departure airport-date fixed effects and interactions of the instruments with the weather variables (coefficients not reported). 
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Table 4 
Effect of Owned Regional Use on Delays and Cancellations 

Direct Effect Only  
Summer Months 

 
Dependent Variable Departure Delay (min) Cancelled 
Estimation Method OLS 2SLS 2SLS 2SLS 2SLS 
Fixed Effects None None Departure 

Airport 
Departure 

Airport-Date 
Departure 

Airport-Date 
 (4-1) (4-2) (4-3) (4-4) (4-5) 

TOTAL # OF FLIGHTS  
Total Flights -0.90 -0.97 -0.25 -0.75 -0.0001 
 (0.15)** (0.15)** (0.21) (0.11)** (0.0006) 
  

Rain>95th Percentile*Total Flights -2.00 -1.97 -1.82 -0.59 0.0126 
 (1.62) (1.62) (1.60) (0.66) (0.0033)** 
    

TOTAL # OF REGIONAL FLIGHTS 
Regional Flights 2.29 2.56 1.81 3.66 -0.0005 
 (0.50)** (0.50)** (0.69)** (0.34)** (0.0018) 
     

Rain>95th Percentile*Regional Flights 9.64 9.54 9.16 5.82 -0.0319 
 (5.03)+ (5.02)+ (4.97)+ (2.02)** (0.0097)** 

 

FRACTION OWNED REGIONAL 
Fraction Owned -5.40 -6.14 -5.50 -5.60 -0.0120 
 (0.32)** (0.58)** (0.63)** (0.48)** (0.0022)** 

 

DEPARTURE AIRPORT CONTROLS 
Slot 2.48 2.37    
 (0.89)** (0.88)**    
      
Airport Flights 0.59 0.61    
 (0.07)** (0.07)**    
      
Rain>95th Percentile 12.54 12.55 12.40   
 (3.11)** (3.11)** (3.08)**   

 

Rain>95th Percentile*Airport Flights 1.52 1.51 1.44   
 (0.79)+ (0.79)+ (0.78)+   
      
ARRIVAL AIRPORT CONTROLS 
Slot 1.37 1.29 0.86 0.96 0.0194 
 (0.19)** (0.19)** (0.19)** (0.14)** (0.0008)** 

 

Airport Flights 0.13 0.14 0.13 0.13 0.0013 
 (0.02)** (0.02)** (0.02)** (0.01)** (0.0001)** 

 

Rain>95th Percentile 10.25 10.24 10.20 8.15 0.0410 
 (0.44)** (0.44)** (0.44)** (0.27)** (0.0014)** 

 

Rain>95th Percentile*Airport Flights 1.78 1.78 1.77 1.82 0.0089 
 (0.13)** (0.13)** (0.13)** (0.09)** (0.0004)** 
Observations 869,401 869,401 869,401 869,401 903,021 
Robust standard errors in parentheses. + significant at 10%; * significant at 5%; ** significant at 1%.  In (4-1)-(4-3), standard 
errors are clustered on departure airport-date. 
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Table 5 
Effect of Owned Regional Use on Delays and Cancellations 

Direct and Interaction Effects 
Summer Months  

 
Dependent Variable Departure Delay (min) Cancelled 
Estimation Method OLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 
Fixed Effects Departure Airport-Date 

 (5-1) (5-2) (5-3) (5-4) (5-5) (5-6) (5-7) 
TOTAL # OF FLIGHTS  
Total Flights -0.68 -0.70 -0.54 -0.74 0.0001 -0.0006 -0.0004 
 (0.08)** (0.11)** (0.11)** (0.11)** (0.0006) (0.0006) (0.0006) 
  

Rain>75th Percentile*Total Flights    -0.64   0.0032  
   (0.31)*   (0.0016)*  
       

Rain>95th Percentile*Total Flights -0.92 -1.40 -0.93  0.0097 0.0072  
 (0.66) (0.74)+ (0.79)  (0.0038)** (0.0040)+  
       

Rain*Total Flights    -0.32   0.0068 
    (0.49)   (0.0023)** 
    

TOTAL # OF REGIONAL FLIGHTS 
Regional Flights 3.43 3.48 2.91 3.59 -0.0010 0.0012 0.0006 
 (0.24)** (0.34)** (0.35)** (0.35)** (0.0018) (0.0019) (0.0018) 
     

  2.79   -0.0085  Rain>75th Percentile*Regional 
Flights    (1.00)**   (0.0051)+  
       

6.82 8.25 6.18  -0.0234 -0.0169  Rain>95th Percentile*Regional 
Flights (2.00)** (2.28)** (2.44)*  (0.0113)* (0.0121)  
       

Rain*Regional Flights    4.03   -0.0148 
    (1.43)**   (0.0067)* 

 

FRACTION OWNED REGIONAL 
Fraction Owned -5.15 -5.25 -4.87 -5.56 -0.0111 -0.0101 -0.0139 
 (0.12)** (0.48)** (0.52)** (0.51)** (0.0022)** (0.0024)** (0.0023)** 
       

  -1.45   -0.0039  Rain>75th Percentile*Fraction 
Owned   (1.24)   (0.0058)  
       

-3.05 -7.97 -6.23  -0.0217 -0.0163  Rain>95th Percentile* Fraction 
Owned (0.90)** (3.34)* (3.49)+  (0.0149) (0.0157)  
       

Rain* Fraction Owned    -1.92   0.0029 
    (1.77)   (0.0065) 

 

ARRIVAL AIRPORT CONTROLS 
Slot 0.99 0.96 0.78 0.71 0.0194 0.0186 0.0180 
 (0.14)** (0.14)** (0.14)** (0.14)** (0.0008)** (0.0008)** (0.0008)** 

 

Airport Flights 0.12 0.13 -0.01 0.07 0.0013 0.0009 0.0011 
 (0.01)** (0.01)** (0.01) (0.01)** (0.0001)** (0.0001)** (0.0001)** 

 

Rain>75th Percentile   3.50   0.0170  
   (0.12)**   (0.0006)**  
       

Rain>95th Percentile 8.14 8.13 5.34  0.0410 0.0275  
 (0.27)** (0.27)** (0.29)**  (0.0014)** (0.0015)**  
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Rain    7.05   0.0376 
    (0.21)**   (0.0011)** 

 

Rain>75th Percentile*Airport Flights   0.81   0.0022  
   (0.03)**   (0.0002)**  
        

1.82 1.82 1.16  0.0089 0.0071  Rain>95th Percentile*Airport 
Flights (0.09)** (0.09)** (0.09)**  (0.0004)** (0.0005)**  
       

Rain*Airport Flights    1.88   0.0080 
    (0.07)**   (0.0003)** 
Observations 869,401 869,401 869,401 869,401 903,021 903,021 903,021 
Robust standard errors in parentheses. + significant at 10%; * significant at 5%; ** significant at 1% 
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Table 6 
Effect of Owned Regional Use on Delays and Cancellations 

Direct and Interaction Effects 
Winter Months  

 
Dependent Variable Departure Delay (min) Cancelled 
Estimation Method 2SLS 2SLS 2SLS 2SLS 

 (6-1) (6-2) (6-3) (6-4) 
     

TOTAL # OF FLIGHTS     
Total Flights -0.68 -0.34 -0.0177 -0.0140 
 (0.27)* (0.29) (0.0019)** (0.0020)** 
     

Snow>95th Percentile*Total Flights -3.67  -0.0275  
 (2.93)  (0.0177)  
     

Rain>95th Percentile*Total Flights 2.18  0.0136  
 (1.18)+  (0.0090)  
     

Snow*Total Flights  -1.34  -0.0089 
  (0.54)*  (0.0026)** 
     

Rain*Total Flights  3.86  -0.0027 
  (1.89)*  (0.0119) 
     

TOTAL # OF REGIONAL FLIGHTS 
Regional Flights 3.83 2.53 0.0461 0.0334 
 (0.83)** (0.89)** (0.0057)** (0.0059)** 
     

Snow>95th Percentile*Regional Flights 15.64  0.1272  
 (8.22)+  (0.0500)*  
     

Rain>95th Percentile*Regional Flights -4.26  -0.0569  
 (3.47)  (0.0266)*  
     

Snow*Regional Flights  4.88  0.0328 
  (1.56)**  (0.0080)** 
     

Rain*Regional Flights  -8.01  -0.0234 
  (5.83)  (0.0392) 
     

FRACTION OWNED REGIONAL 
Fraction Owned -1.08 -0.52 -0.0192 -0.0130 
 (0.59)+ (0.61) (0.0037)** (0.0038)** 
     

Snow>95th Percentile*Fraction Owned -8.58  -0.0387  
 (4.83)+  (0.0330)  
     

Rain>95th Percentile*Fraction Owned 0.62  0.0091  
 (2.56)  (0.0193)  
     

Snow*Fraction Owned  -2.53  -0.0158 
  (0.92)**  (0.0052)** 
     

Rain*Fraction Owned  0.34  0.0056 
  (3.90)  (0.0275) 
     
     

ARRIVAL AIRPORT CONTROLS 
Slot -0.35 -0.46 0.0296 0.0219 
 (0.24) (0.24)+ (0.0021)** (0.0020)** 
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Airport Flights 0.15 0.15 0.0021 0.0022 
 (0.02)** (0.02)** (0.0002)** (0.0002)** 
     

Snow>95th Percentile     
     
     

Rain>95th Percentile 3.06  0.0327  
 (0.43)**  (0.0033)**  
     

Snow  1.06  0.0395 
  (0.14)**  (0.0008)** 
     

Rain  3.98  0.0489 
  (0.50)**  (0.0035)** 
     

Snow>95th Percentile*Airport Flights 1.08  0.0140  
 (0.20)**  (0.0014)**  
     

Rain>95th Percentile*Airport Flights 0.77  0.0037  
 (0.12)**  (0.0010)**  
     

Snow*Airport Flights  0.24  0.0020 
  (0.04)**  (0.0002)** 
     

Rain*Airport Flights  0.39  0.0044 
  (0.12)**  (0.0010)** 
     

Observations 183,453 183,453 197,081 197,081 
Robust standard errors in parentheses. + significant at 10%; * significant at 5%; ** significant at 1% 

 
  

 
 
 

 


