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Abstract

Dynamic pricing and demand learning play an important role in airlines
because (1) in low demand flights unsold tickets are of little value after de-
parture, and (2) in high demand flights carriers may forego important profits
if the flight sells out and some relatively high willingness-to-pay consumers
have to be rationed. Under a price sensitive demand, stochastic peak-load
pricing suggests that at any point prior departure airlines should set higher
fares in expected peak flights, where demand is more likely to exceed capacity.
Moreover, in order to promote sales, lower fares should be set in expected off-
peak flights. Using a unique panel of U.S. airlines fares and seat inventories,
this paper shows that airlines learn about the demand as sales progress and
the flight date approaches. Forecasted values of occupancy rates and sold
out probabilities are employed to calibrate an ex-ante −before sales begin−
distribution of demand uncertainty. Nonparametric techniques are then used
to construct a latent variable to identify different expected demand states
at different points prior departure. This latent variable is utilized to dictate
the regime shift in a panel endogenous threshold model. Consistent with the
stochastic peak-load pricing predictions, the results show that higher fares
are set in the peak regime, while lower fares in the off-peak regime. The re-
sults proved to be robust to an alternative specification of a GMM dynamic
panel, were the assumption of strict exogeneity is relaxed. This is the first
paper to provide formal evidence of stochastic peak-load pricing in airlines
or to show that airlines learn about the demand and respond to early sales.
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1 Introduction

The term dynamic pricing, most commonly known as ‘yield management,’
is used to describe pricing and seat-inventory control decisions. It is impor-
tant in industries that deal with perishable products such as airlines, where
unsold seats perish when the flight leaves the gate. Similar examples involve
hotel rooms, fashion apparel, cabins on cruise liners, car rentals, entertein-
ment and sporting events, and restaurants. In all these cases the seller
can improve its revenues by dynamically adjusting the price of the product
rather than committing to a price schedule or a unique price throughout
the selling period. Demand uncertainty plays an important role in airline’s
dynamic pricing because tickets are sold in advance with prices being set
when carriers have limitted information about the total number of potential
consumers. Moreover, capacity is set in advance and can only be modiffied
at a relatively high marginal cost. When demand is relatively low, unsold
tickets are of little value for the carrier. Likewise, when demand is relatively
high the airline may give up important profits if some consumers with a
relatively high willingness-to-pay have to be rationed out. This may be the
case of a business traveler who has a very high willingness-to-pay for a ticket
but arrives when there are no tickets left.

Learning about a price sensitive demand as sales progress and the flight
date nears is crucial for airlines to price accordingly. The shadow cost of
capacity for the seats on a flight will be different at differents points in time
prior departure depending on the expected demand. When the probability
that demand will exceed capacity is large, the shadow cost of capacity is
large. Peak-load or congention pricing, defined as the practice of charging
higher prices during peak periods when capacity constraints cause marginal
costs to be high, is the pricing strategy that takes into account this shadow
cost. Borenstein and Rose (1994) provide a clear distintion between two
types of peak-load pricing in airlines. Systematic peak-load pricing reflects
variations in the expected shadow cost of capacity at the time the flight is
scheduled and before any ticket is sold, while stochastic peak-load pricing
that reflects uncertainty about individual flights that is resolved as the flight
date nears and tickets are sold. In this paper we control for systematic peak-
load pricing and analyze the impact of demand learning and stochastic peak-
load pricing on fares. If at the moment the ticket is sold carriers expect to
have a peak flight, they will charge higher fares. Moreover, expected off-peak
flights will be associated with lower fares.

Despite the large theoretical litterature on airlines’ pricing in economics,
marketing and opertional research journals, there is few empirical under-
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standing on how carriers are actually setting their fares and the dynamics
that govern their evolution as the flight date nears. This is the first empirical
paper that evaluates the very intuitive predictions of stochastic peak-load
pricing in airlines and to test whether airlines can reduce the cost of demand
uncertainty by responding to early sales. One of the reasons why this hasn’t
been done before is the lack of adequate data.1 While most of the empiri-
cal research in airlines uses the Bureau of Transportation Statistics’ DB1B,
which is a 10% random sample of tickets, recent research has begun analyz-
ing more detailed data that allows tracking day by day decisions by airlines.
Stavins (2001), and more recently Chen (2006), and Bachis and Piga (2007)
among others look at offered fares by airlines. However, non of these papers
has information on inventories of seats for each offered fare. This paper
takes advantage of a unique U.S. airline’s panel dissagregated at the ticket
level that contains the evolution of offered fares and seat inventories over
a period of 103 days for 228 domestic flights that departed on June 22nd,
2006. The data collection resembles experimental data which perfectly con-
trols for product heterogeneities and ‘fences’ that segment consumers. This
is key, since many price discrimination tools that define ticket characteristics
(e.g. saturday-night-stayover) are also used for stochastic peak-load pricing
to reduce demand uncertainty.2

To test whether airlines learn about the demand and implement a stochas-
tic peak-load pricing strategy, the empirical section initially obtains the op-
timal price schedule under no demand learning by calibrating the ex-ante
distribution of demand states. This is done using information on sold-out
probabilities and forecasted values of occupancy rates. The sold-out prob-
abilities are calculated using a second dataset from Expedia.com, and the
forecasted occupancy rates are obtained using time-series data on occupancy
rates from the T-100 of the Bureau of Transportation Statistics. Under the
Prescott (1975)’s type of models, this distribution should give us the optimal
price schedule, which holds through the entire selling horizon as long as air-
lines do not learn about the demand or if price commitments hold. The basic
idea in the testing is to analyze whether airlines deviate from this ex-ante
optimal price schedule as information about the demand is revealed. To cap-
ture the information about the demand that is revealed as sales progress, the
paper uses the techniques described in Racine and Li (2004) and estimates

1Another could be the challenge of comming up with an adequate empirical test.
2A round-trip ticket that involves peak flights may not benefit from a saturday-night-

stayover discount even if the stay has a Saturday night. Moreover, if it involves off-peak
flights, then the discount will have an stochastic peak-load pricing component and a price
discrimination component.
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a nonparametric model using both categorical and continuous data based
on flight- and route-level information to explain the evolution of sales. The
nonparametric results are used to construct a latent variable that can dis-
tinguish between different expected demand states at different points prior
departure for every flight in the sample. This latent variable is later utilized
to control the regime shift in the estimation of a panel endogenous threshold
model as described in Hansen (1999) and Hansen (2000).

The results are consistent with the stochastic peak-load pricing predic-
tions. The panel endogenous threshold estimates found the existance of two
pricing regimes. In expected peak flights, where demand is more likely to
exceed capacity and the shadow cost of a seat is high, airlines set higher
fares. For expected off-peak flights where demand is expected to be low, the
shadow cost of capacity will also be low. Hence, airlines will set lower fares
to incentivate sales. To control for the potential interaction between previ-
ous price levels and cumulative sales, the paper also estimates a dynamic
panel, where the assumption of strict exogeneity of the regressors is relaxed.
The GMM dynamic panel results from the difference estimator, as explained
in Holtz-Eakin et at. (1988) and Arellano and Bond (1991), and the system
estimator, as described Arellano and Bover (1995) and Blundell and Bond
(1998), where found to be consistent with the two pricing regimes and the
stochastic peak-load pricing predictions found before. Based on the system
GMM estimates, evaluated at the sample average fare of 291.09 dollars and
for a 100 seats airplane, selling one more seat increases fares by 38.1 cents in
an expected off-peak flight while increases fares by 58.5 cents in a expected
peak flight.

By testing for stochastic peak-load pricing and demand learning, this
paper explains an important source of price dispersion as well. Borenstein
and Rose (1994) calculated that the expected absolute difference in fares be-
tween two passangers on a route is 36% of the airline’s average ticket price.
One cost based source of this price dispersion is stochastic peak-load pricing.
Even though the figures found in this paper are not directly comparable to
this 36%, we find that an increase of one standard deviation in capacity uti-
lization increases peak fares by 6.5% within flight standard deviations more
than off-peak fares. This estimate is after controlling for systematic peak
load pricing, unobserved flight and route caracteristics, and ‘fences’ that
restrict consumers that are commonly used as price discrimination tools.

By focusing on the role of the evolution of inventories on dynamic pric-
ing, this paper was able to identify three components in the evolution of
fares as the flight date nears. First, the stochastic peak load pricing compo-
nent as the difference in fares between peak and off-peak flights. Second, the
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effect of demand uncertainty and costly capacity on fares as explained in
the theoretical works by Prescott (1975), Eden (1990), Dana (1999b), and
more recetly by Deneckere and Peck (2005). The importance of this effect
to explain price dispersion has been previously documented empirically in
Escobari and Gan (2007). Finally, the third component, advance purchase
discounts. This last component is consistent with the price discrimination
argument in Dana (1998), where the existance of second degree price dis-
crimination takes the form of advance purchase discounts. Moreover, it
is also consistent with the existance of advance purchase discounts under
an uncertain peak demand period in Gale and Holmes (1992) and advance
purchase discounts with perfectly predictable peak demand times in Gale
and Holmes (1993). It is important to mention that both of the works by
Gale and Holmes do not consider the shadow cost of capacity and there is
no cost-based price variation. The predicted price dispersion suggests price
discrimination.

The organization of the paper is as follows. Section 2 presents a model
of pricing under demand uncertainty that extends to the empirical testing.
The data is explained in section 3. The empirical model is presented in
section 4. Finally, section 5 concludes de paper.

2 Airline Pricing under Demand Uncertainty

Airline pricing has three basic characteristics that make its study fascinat-
ing. First, capacity is fixed and can only be augmented at a relatively high
marginal cost. It is unlikely for carriers to change the size of the aircraft
once they have already started selling tickets. Doing so would involve a
large rescheduling of the fleet and airport slots. Second, air tickets expire
at a point in time; once the plane departs carriers can no longer sell tick-
ets. Tickets that haven’t been sold by then have little value to the carrier.
On the other hand, the carrier may still want to reserve a certain number
of seats if it expects to have last-minute travelers who are willing to pay
substantially higher fares (see Lin (2006)). Finally, the third characteristic,
there is uncertainty in the demand. This becomes crucial because airlines
sell in advance and fares have to be set when carriers have limmited in-
formation about the total number of potential passanger that will show up
to get a ticket. Under this basic scenario, it is key for carriers to learn
about the final state of demand as tickets are sold and the departure date
nears. If information about a price sensitive demand becomes available, air-
lines will want to adjuts their prices acordingly to maximize profits. These
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characteristics, common to various industries originated a large amount of
theoretical literature on optimal pricing of a perishable non-renewable asset
with stochastic demand. However, there is still few empirical understand-
ing about how actual prices are set. This is the first paper that provides
evidence of stochastic peak-load pricing in airlines. Moreover, it is also the
first to presents empirical evidence that shows that airlines learn about the
demand as the departure date nears.

Airline pricing, nevertheless, is much more sophisticated than dealing
with an an inventory of seats that expire at a point in time. Usually air tick-
ets involve complex itineraries and carriers exploid ‘fences’ such as saturday-
night-stayover requirement, minimun- and maximum-stay, nonrefundable
purchases, frequent flyier miles, blackouts, days in advance requirements, or
volume discounts to segment consumers. The nature of the dataset used
in this paper, that resembles a quasi-experiment, and the econometric tech-
niques employed, control for all these fencing devices and complex itineraries
to allow us focusing on the pricing of an inventory of seats that expire at
departure. Therefore, this overview of airline pricing under demand uncer-
tainty discusses just this case. We begin with the case where there is no
demand learning and capacity is costly. We then explain the implications
for pricing decisions when airlines learn about the demand through the info-
mation contained in early sales. At the end of the section we discuss about
the implications of two cost-based sources of price dispersion for airlines:
systematic and stochastic peak-load pricing.

2.1 Pricing without Demand Learning

The simplest model that explains dispersed prices for a homogeneous good
under costly capacity and demand undertainty is Prescott (1975). He con-
siders a model of hotel rooms where prices are set ex-ante −before the total
number of buyers is known−. Motivated with the airlines’ problem, Prescott
(1975)’s model assumes that there is a stochastic demand n for homogeneous
airline seats with a probability distribution function F (n). Consumers are
identical and purchase only one seat if the price is lower than a reservation
value p. The equilibrium prices will be dispersed with H(p) being the equi-
librium number of seats priced at p or below. Travelers observe all prices and
buy the less expensive unit available. In equilibrium, a seat priced p will be
vacant with probability F [H(p)]. Let λ be the unit cost of capacity incurred
on all units, whether these units are sold or not. In a perfectly competitive
market, the zero expected profit condition implies that expected revenue
should be equal to the unit cost of capacity, [1− F [H(p)]] · p = λ. This last
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equation can also be written as

p =
λ

1− F [H(p)]
≡ ECC (1)

for all p ∈ [λ, p]. Any price offered in equilibrium must be equal to the unit
cost of capacity divided by the probability that a unit offered at that price
will be sold. Dana (1999b) interprets this last term as the effective cost of
capacity (ECC), which is the revenue the carrier must earn if the seat is sold
in order to cover the unit capacity cost it incurs whether or not the seat is
sold. The intuition from this result is simple. Consider the case where there
are two equaly likely demand states and the cost of holding a seat in the
aircraft is $100. If a given seat in the aircraft is only sold during the high
demand state, the carrier has to charge a fare equal to $100/0.5 = $200, to
compensate the times the seat is not sold during the low demand state.

The key implication from the Prescott (1975) model is that lower-priced
units will be sold with higher probability and higher-priced unit with lower
probability. Therefore, sellers face the trade-off between price and the proba-
bility of making a sell. Even though Equation 1 is constructed for a perfectly
competitive market, Dana (1999b) derives an analog of Equation 1 for per-
fect competition, monopoly, and oligopoly. In all cases the key implication
is the same, however, in noncompetitive markets, the effect of ECC on fares
has to be adjusted by the size of the markup.

Prescott’s model was later formalized by Eden (1990) in a setting where
consumers arrive sequentially, observe all offers and after buying the cheap-
est available offer they leave the market. Eden derives an equilibrium that
exhibits price dispersion even when sellers are allowed to change their prices
during trade and have no monopoly power. It is important to realize that
the absence of price commitments alone is not enough to generate stochastic
peak-load pricing. Information about the final state of the demand has to
be revealed to price accordingly. Prescott’s “hotels” model, as pointed out
by Eden (1990) and Lucas and Woodford (1993), has an interesting time-
consistency property. Deneckere and Peck (2005) explain that even is firms
could sequentially compete by choosing a price after each market transaction
fares will still follow Equation 1. The requirement for fares to depart from
the original price schedule predicted by Equation 1 is that some additional
information about the final state of the demand is revealed as the flight date
approaches.
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2.2 Pricing with Demand Learning

If fares can adjust as information about the demand is revealed over time
the preditions from the dynamic pricing literature are very intuitive. As
explained in Lin (2006), when an airline sells seats for the same class, the
fares offered will be different depending on the time to departure and the
current seat inventory. The airline has incentives to promote sale when de-
parture time is approaching and inventories are high. On the other hand,
the airline may still want to reserve some seats if it expects to have some
last-minute travelers willing to pay substantially higher prices. Lin (2006)
presents a theoretical dynamic pricing model were customers arrive in ac-
cordance with a conditional Poisson process. Sellers learn about the final
state of the demand as sales move foreward and the optimal price adjusts
dynamically to maximize expected total revenue. The results indicate that
higher prices should be set when demand is expected to be larger. A similar
result is found in Gallego and van Ryzin (1994) and Kincaid and Darling
(1963), were at a given point in time prior departure optimal prices will be
higher if the inventory is lower, signaling a higher demand state.

There is a key difference between the models presented in Kincaid and
Darling (1963), Gallego and van Ryzin (1994), and Lin (2006), and the
Prescott (1975)’s type of models. In the first ones all costs related to the
production of the seat are sunk, so the value for the seller for an unsold
item is zero. If demand is expected to be low, fares are allowed to drop,
result that explains the ‘last minute deals’ or cheap fares that airlines offer
in some flights in order to promote sales. On the other hand, Prescott
(1975)’s type of models assume that capacity is costly; airlines have to be
able to cover the unit cost of capacity adjusted by the probability of sale for
each of the seats. Moreover, since there is no demand learning, fares will
always increase as sales progress, prediction that can be easily seen from
Equation 1. The simplification of no costly capacity in the first type of
models is not realistic, at least for airlines pricing, while the existance of
no demand learning in the second type seems also restrictive. However, as
information about the demand becomes available, pricing accordingly gains
significance while dealing with costly capacity looses atractiveness. This
difference in predicted outcomes as information about the demand becomes
available will let us identify the existance of demand learning.

The basic information carriers use to learn about the final state of the
demand is realized demand up to a given point prior departure. This is
basically how many seats have been sold up to a given point in time, which
contains some information about the speed of selling tickets and can be
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used to predict whether final demand may exceed capacity. Models that
take into account realized demand in its pricing policies include Gallego and
van Ryzin (1994), Chatwin (2000), and Lin (2006). The exact nature of how
information about current sales is taken into account to forecast the final
state of the demand is not necessarily important in this paper. Airlines may
have very different ways to use information about early sales to adjust price
later on, however, all these models have the same testable prediction. At
a given point in time, lower inventory levels, signaling an expected higher
demand, results in higher prices. Likewise, if time passes by and no seats
have been sold, this is evidence of approaching a low demand state, hence,
lower fares should be set. As will be pointed out below, this prediction
from operational research literature is equivalent to the stochastic peak-load
pricing prediction found in economics journals.

2.3 Peak-load Pricing in Airlines

Typical peak-load pricing models under certainty (systematic peak-load pric-
ing, e.g. Boiteaux (1949), Steiner (1957), Hirshleifer (1958), Williamson
(1966)) and peak-load pricing models under uncertainty (stochastic peak-
load pricing, e.g Brown and Johnson (1969), Visscher (1973), Carlton (1977))
they all suggest charging higher prices during peak times and lower prices
during off-peak times. However, as explained in McAfee and te Velde (2006)
these models poorly suit airline pricing. One important reason is that they
assume the existance of a spot market, where all consumers in the peak de-
mand pay a higher price and all consumers in the off-peak demand pay a
lower price. However, advance purchases and different expectations about
the demand prior departure are an important ingredient in the pricing prob-
lem.

For the airlines, fluctuations in the demand can be broken down into
two parts. The deterministic component that reffers to fluctuations in the
demand which are known to carriers before selling starts, and the stochastic
component of the demand for a flight, that is orthogonal to all information
carriers have at the time of scheduling. As explain in Borenstein and Rose
(1994), this two components of demand give rise to two different types of
peak-load pricing in airlines.

2.3.1 Systematic Peak-load Pricing

Fluctuations in capacity utilization across flights and across
In order for carriers to follow a systematic peak-load pricing strategy,
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they require prior knowledge of peak flights (or peak periods) when they
create their flight schedule. Hence, they can restrict the number of lower
priced seats in peak flights to divert demand from peak to off-peak flight
in order to expand output. In their empirical study, Borenstein and Rose
(1994) control for systematic peak-load pricing under the assumption that
this one is correlated with the variability in airlines’ fleet utilization rates
and airports’ operation rates. However, they are not able to measure the
effect of this peak-load pricing of fares. Escobari (2006) provides empirical
evidence of the existance of systematic peak-load pricing and shows that
airlines set higher fares in ex-ante known congested periods. Moreover he
estimates a congestion premia and provides support for the main empirical
prediction in Gale and Holmes (1993), less discount seats on peak periods.

2.3.2 Stochastic Peak-load Pricing

Demand learning can exist for systematic peak-load pricing. Learning mod-
els such as Burnetas and Smith (2000) have the seller learning from repe-
tition of identical experiments (same flight number through different days).
Stochastic peak-load pricing requires learning throughout the sales horizon
of a single event.

However, the typical dynamic pricing literature that comes from op-
erational research journals somehow overlooks some concepts economists
consider important. Explain the shadow cost of a seat This is how

If carriers set their prices as demand is revealed over time, Crew and
Kleindorfer (1986) explain that the optimal stochastic peak-load pricing
strategy will depend on the probability at the time the ticket is sold that
demand will exceed capacity and the expected shadow cost if this happens.

3 Data

The paper has two main sources of data, the Online Travel Agency (OTA)
Expedia.com, used to build two datasets, and the T-100 from the Bureau of
Transportation Statistics used to construct a third dataset. The first dataset
from Expedia.com is a panel with 228 cross-sectional observations over 35
periods making a total of 7980 observations. Each cross sectional observation
is a specific carrier’s non-stop flight in one of the 81 routes considered, where
a route is a pair of departing and destination cities. The observations in time
start 103 days prior departure and were gathered every three days up until
one day prior departure, making the 35 observations in time. All flights
depart the same date, Thursday June 22nd, 2006. The carriers considered
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are American, Alaska, Continental, Delta, United, and US Airways. The
number of flights per carrier was chosen to make sure that the share of each
of these carriers is close to its share in the US airlines’ market. This dataset
has similar characteristics the one used in Stavins (2001) with two important
differences. The data here is a panel and it has information about seat
availability at each fare, where fare is the cheapest available economy class
fare. The only two previous papers that work with such a detail information
on prices an inventories are Escobari (2006) and Escobari and Gan (2007).
The second dataset from Expedia.com was collected to obtain an estimate
of the sold out probabilities for each of the 81 routes.

Figure 1: Average and Standard Deviation of Fares
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The third dataset comes from the T-100 obtained from the Bureau of
Transportation Statistics. This is a panel containing average load factors at
departure for the same 81 routes over the period 1990 to 2005. This dataset
will be useful to estimate the expected number of tickets sold in each route,
used to derive the ex-ante demand uncertainty.

A flight that illustrates the stochastic peak-load pricing we are testing in
this paper is the one presented in Figure 2. This is flight Delta 1588, cov-
ering the 2111 miles between Atlanta, GA (ATL) and San Jose, CA (SJC)
with a Boeing 737-800 that has a total capacity of 199 economy class seats,
departs at 7:54 p.m. and arrives at 10:00 p.m. Figure 2 shows the evolution
of fares, inventories of seats and the expected evolution of seat inventories for
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Figure 2: Fares, Loads and Expected Loads (Delta 1588 ATL-SJC)
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a period of 103 days prior departure. As required by Prescott (1975), Eden
(1990), and Dana (1999b), fares represent the cheapest available fare for a
given flight at each point in time prior departure. A detailed explainaition
of why the fares from expedia.com used in this paper are representative for
the industry is presented in Escobari and Gan (2007) section 2.2. The evolu-
tion of inventories is best viewed as the ratio of available seats to total seats
in the aircraft. Along this paper we refer to this ratio as the load factor,
which is a ticket level load factor. The airline literature defines load factor
only once the plane departed as the percentage of seats filled with paying
passengers. Our load factor will go from zero when the plane is empty to
one when it is full. In this Delta flight 1588, the load factor went from 0.235,
103 days prior departure to 0.995 one day prior departure. An interesting
feature on this particular flight is that load factor is not necessarily increas-
ing monotonically. The decrease between 67 and 61 days prior departure
may be because some tickets have been reserved and never bought or maybe
bought but cancelled later. The exact calculation of the expected load fac-
tor will be explained below. For now, it is just important to know that it
is a measure of how the carrier, Delta, expects sales to evolve over time for
this particular flight under normal conditions and price commitments. If at
a given point in time the actual load factor is significantly above expected
load factor, it is reasonable for the carrier to believe that damand will exceed
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capacity and a stochastic peak-load pricing strategy would suggest charging
higher fares. This is exactly what happened during the period between 94
and 67 days prior departure. Load factor was relatively high as compared
to the expected evolution of load factor. At this consumers’ arrival rate,
demand would exceed capacity. Even if the arrival rate of future consumers
is independent of this high arrival rate, demand would still exceed capacity
if Delta keeps the same price schedule. The optimal stochastic peak-load
pricing would be to set higher fares, which is exactly what they do. When
load factor decreases between 67 and 61 days prior departure, fares also
decrease. Moreover, notice that during the last month of sales, load factor
increased even to higher levels, but this increase is just explained by the
expected load factor, so there is no reason to charge higher fares at this
point.

The evolution of sales in each flight in the sample is the result of tickets
being bought across a huge number of potential alternatives, where the
observed leg may be just part of a larger trip. What is important to realize
is that the fare charged by the carrier is the carrier’s response to the level
of inventories and this one has its own dynamics. Here we are just making
explicit what previous studies tha work with non-transactions data implicitly
assumed, e.g. Stavins (2001), Chen (2006), and McAfee and te Velde (2006).
It is reasonable to believe that fares for more complicated itineraries vary
accordingly with the one way fare. Bachis and Piga (2007) explain how some
european carriers price all its legs independently, so there is no extra charge
for one-way tickets. Actually, observing higher fares on one-way tickets is
perfectly consistent with the predictions in Prescott (1975), Eden (1990),
and Dana (1999b), where earlier purchasers benefit from lower fares. The
idea is simple, a round-trip fare is the combination of two parts. Because
the return date is further away from the purchase date, the second part is
being bought with more days in advance than the first, with the presumably
lower load factor. Hence, a round-trip ticket, measured as the summation
of these two parts will be less expensive that just multiplying the first part
of the ticket by two.

4 Empirical Model

The empirical model developed in this section is based on two testing pro-
cedures for stochastic peak-load pricing. The first one is just based on ana-
lyzing how the pricing of the next available ticket differs depending on the
expectations of demand. The testing will see whether an expected peak
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or an expected off-peak flight follow different pricing strategies. The sec-
ond testing procedure is build on the models developed by Prescott (1975),
Eden (1990), and Dana (1999b), where price dispersion exists in a setting
with capacity constraints and demand uncertainty. The key feature in these
models is that there is no demand learning as sales progress. Therefore,
we start building the price schedule based on these models and then we test
how pricing differs as carries learn about the demand. For the second testing
procedure we derive the ex-ante distribution of demand uncertainty, which
is before any information about actual sales is revealed. This will let us
calculate the effective cost of capacity, which should have a positive impact
on fares.

Common to both testing procedures, using nonparametric techniques we
then develop a measure of the evolution of the expected number of seats sold.
This measure is exogenous to the actual evolution of sales, so by comparing
actual sales with expected sales at any point prior departure we can obtain
information on the likelihood that demand will exceed capacity. An endoge-
nous panel threshold model is then estimated to separate between expected
peak and expected off-peak flight, allowing for different pricing strategies in
different regimes. To control for potential enogeneities, the empirical section
closes with the estimation of dynamic panels with a exogenous selection of
the threshold.

4.1 Ex-ante Distribution of Demand Uncertainty

The ex-ante distribution of demand uncertainty reffers to the distribution of
arriving consumers known to the carrier before any ticket is sold. Based on
this distribution, Prescott (1975) showed that the equilibrium prices will be
dispersed. In this subsection we calibrate the ex-ante distribution of demand
uncertainty. Under price commitments or if no information about the final
state of the demand is revealed as tickets get sold, this ex-ante distribution
of demand uncertainty should explain the observed price dispersion.

There exist uncertanty in the demand because carriers do not know ex-
ante the total number of passangers that will buy tickets. Consider the case
of having an infinite number of demand states. Let Nh be the number of
consumers who arrive at demand state h, where h = 0, . . . ,∞ and Nh ≤
Nh+1. This last inequality imply that consumers who arrive at demand
state h will also arrive at a higher-numbered demand state h + 1. Define a
batch as the additional number of travelers who arrive at demand state h
when compared to the inmediate lower demand state h− 1, therefore batch
h is given by Nh −Nh−1 with the first batch given by N0.

14



Each demand state h occures with probability ρh. Because all demand
states have at least N0 travelers, the probability that N0 travelers arrive is
Pr0 =

∫ ∞
0 ρκdκ = 1. In general, the probability that Nh travelers arrive is

given by Prh =
∫ ∞
h ρκdκ, the summation of all demand states that have at

least Nh consumers. Assume that each batch has one consumer buying a
ticket, hence the probability of selling seat h is the summation all demand
states that have at least h travelers buying a seat. Additionally, when
demand states are normally distribuited ρh = φh, with φ being the pdf
of a normal distribution, the probability of selling seat h is given by:

Prh =
∫ ∞

h
φκdκ|q(p) = 1− Φh|q(p) (2)

with q(p) being the distribution of prices and Φ the cdf of a normal distri-
bution.

This Prh corresponds to the F [h(p)] in Equation 1. To derive a measure
of the effective cost of capacity and its impact on fares, we will calibrate the
this distribution of demand uncertainty at a route level. To do this we follow
Escobari and Gan (2007) and assume normally distribuited demand states.
The key feature that allows the calibration process is that demand states
are censored when transformed to tickets sold. Once the aircarft is sold
out, higher demand states are no longer observed. To get the values of the
mean µ and the standard deviation σ, at the route level, for the normally
disctribuited demand states we first need two pieces of information, the
sold-out probabilities and the expected number of tickets sold for each of
the routes.

4.1.1 Sold-out probabilities

The sold out probabilities for each of the 81 routes are obtained using the
second dataset from Expedia.com. The fact that allows calculating these
sold-out probabilities is that airlines and online travel agencies do not display
their sold-out flights on their websites.3 First, a couple of weeks in advance
when no flight was expected to be sold-out yet, we made a census of all
the available non-stop flights in each of the 81 routes during seven days
between February 2nd and February 8th, 2007. The total number of flights

3The reason, acording to Roman Blahoski, spokesman of Northwestern, is that they
do not want to disapoint the travelers. Keeping the online display simple may also be a
motive, and according to Dan Toporek, spokesman of Travelocity.com, “showing sold-out
flights alonside available flights coulds be confusing.” Both of these quotes are from David
Grossman, “Gone today, here tomorrow,” USA Today, August 2006.
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were 5,881. Then, late the night before each of those seven days, we counted
the number of flights still available at each route. If a flight was no longer
there, it was assumed to be sold-out. The calculated sold out probability is
just the ratio of sold out flights to total number of flights for each route.

4.1.2 Expected number of seats sold

The expected number of seat sold are calculated using the T-100 from the
Bureau of Transportation Statistics. From the T-100, we obtain the average
load factors at depature time for the 81 routes over the period 1990 to 2005.
Each of these 81 series is used to estimate an ARMA model. Then, using a
one-step forecast we obtain the expected number of seats sold for 2006. For
routes where the expected number of seats sold is high, meaning that most
of the seats are expected to be sold, the calibration procedure will assign
higher probabilities to higher demand states. The details of the estimation
are available upon request.

4.1.3 Calibration

Let the underlying demand state h∗ be distribuited N(µ, σ2) and let m be
the total number of seats in the aircraft. The number of seats sold h is equal
to demand state h∗ before the plane sells out, h = h∗ if h < m, and equal
to total number of seats in the aircraft, h = m, otherwise. The expected
number of tickets sold is given by the first moment of the censored normal:

E(h) = Prob(h = m) · E(h|h = m) + Prob(h < m) · E(h|h < m)(
1− Φ

(m− µ

σ

))
·m + Φ

(m− µ

σ

)
·
[
1− σ

φ
(
(m− µ)/σ

)
Φ

(
(m− µ)/σ

)]
(3)

E(h|h < m) comes from the mean of a trucated density and the pdf and
cdf are evaluated at the moment the flight sells out. Therefore, Φ

(
(m −

µ)/σ
)

is interpreted as the sold out probability. With information on the
sold-out probabilities obtained in subsection 4.1.1 and the information on
the expected number of tickets sold obtained in subsection 4.1.3, we use
Equation 3 to obtain the values of µ and σ at the route level.

4.2 Learning the Stochastic Demand

As carriers learn about the state of the demand they may want to depart
from any price commitments to increase their profits. The way carriers use
actual bookings to infer about the state of the demand can be complex
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and may differ across carriers, but once some information is revealed, the
outcome predicted by the stochastic peak-load pricing is simple. Stochastic
peak-load pricing suggests charging higher fares in expected peak flights,
while charging lower fares in expected off-peak flights. To test if this is true,
the first step is to separate between expected peak and expected off-peak
flights.

Under ‘normal’ conditions, let’s say, when a flight is not expected to
be peak nor off-peak, sales should have a natural evolution over time as
the flight date approaches. The rate at which tickets are sold need not
be constant in time and may differ from route to route or across carries.
If tickets are sold faster than the ‘normal’ rate and at a given point prior
departure there are less seats left unsold than under ‘normal’ conditions,
it would be reasonable for the carrier to believe that this is a peak flight.
Clearly, this expected peak flight was not known to the carrier ex-ante,
before the flight was opened for booking.

To test for the existance of demand learning with the corresponding
stochastic peak-load pricing as the response to information about the final
state of the demand we take the following steps. First, using nonparametric
techniques we came with a measure of the evolution of sales under ‘normal’ or
average conditions. Then we estimate a panel endogenous threshold model
to see whether there are different pricing regimes when the expectation of
demand differs. The latent variable that dictates the regime switch is the
ratio of actual sales to expected sales at a point in time prior departure.
Higher sales relative to normal sales would be evidence of a peak-demand
flight. Finally, to control for potential endogeneity in the regressors we
estimate a dynamic panel with an exogenous disctintion of expected peak
and expected off-peak flights.

4.2.1 Nonparametric Estimation of Expected Sales

In this section we came with a measure of the evolution of sales under
average or normal conditions. That is, we estimate an exogenous measure
of expected sales as the departure date nears for each of the flights in the
sample. This measure of the evolution of sales for each flight is expected to
be captured by the flight, carrier and the route’s characteristics. Consider
the following nonparametric model of cumulative sales on various flight,
carrier, and route characteristics.
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LOADijt = g(DAY ADVijt, DEPTIMEij , DISTj , ROUSHAREij ,

HHIj ,HUBij , SLOTj , DIFRAINj , DIFSUNj

DIFTEMPj , AV EHHINCj , AV EPOPj , AAj , ALj

COj , DEj , UNj , USj) + ηijt (4)

The subscript i refers to flight, j to route, and t is time. Equation 4 is
a panel estimated using kernel methods for mixed datatypes as explained
in Li and Racine (2007). The dependent variable is LOAD, defined as the
total number of seats sold divided by the total number of seats in the air-
craft. The explanatory variables include the number of days in advance
DAY ADV , and various flight and route characteristics denoted by X. Ta-
ble 1 provides the summary statistics of these variables.4 The evolution
of the expected cumulative sales for flight i, E(LOADijt|DAY ADV,X),
is obtained first by estimating Equation 4 using the observations from all
other routes except the route from flight i as train data. Then flight i’s
characteristics are used as evaluation data. This means that Equation 4
is estimated 81 times, once for each route, and evaluated 228 times at the
corresponding flight’s characteristics. To illustrate part of the results, the
estimated nonparametric expected sales at different points prior departure
and for different trip distances is shown in Figure 3. This was done using
all datapoints as train data and with the remaining variables held constant
at their median values for the evaluation points.5

4A detailed description of the explanatory variables is included in Appendix A.
5Because of the large number of observations and for computational tractability, the

bandwidths were obtained via rule-of-thumb (see Li and Racine (2007)).
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Table 1: Summary Statistics
Variables Mean Std. Dev. Min. Max. Obs.
For the nonparametric estimation

LOAD .509 .252 .012 1.000 7933
DAY ADV 52.289 30.154 1.000 103.000 7933
DEPTIME .451 .176 .229 .910 7933
DIST 1104.380 620.720 91.000 2604.000 7933
ROUSHARE .665 .314 .119 1.000 7933
HHI .684 .287 .259 1.000 7933
HUB .737 .440 .000 1.000 7933
SLOT .298 .458 .000 1.000 7933
DIFRAIN 2.010 1.484 .000 4.900 7933
DIFSUN 7.911 8.461 .000 45.000 7933
DIFTEMP 6.210 4.137 .000 19.000 7933
AV EHHINC 35580 4620 25198 53430 7933
AV EPOP 1044072 631862 187704 2897818 7933

For the calibration of demand uncertainty
Forecasted LF .739 .083 .469 .890 81
Sold-out probability .227 .104 .037 .571 81

For the endogenous panel threshold estimation
FAREa 291.087 171.879 54.000 1224.000 7933
LOAD .509 .252 .012 1.000 7933
ECC 1.557 .940 1.000 11.668 7933
E(LOAD|DAY ADV,X) .504 .208 .000 .980 7933
S (latent variable) 1.026 .417 .024 3.977 7933

For the dynamic panel
PEAK = I(S > 1.18) .284 .451 .000 1.000 7933

Notes: a The standard daviation for FARE between flights is 152.933, and

within is 78.751.

Figure 3: Estimated Nonparametric Expected Sales
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4.2.2 Endogenous Threshold Estimation

Under the existance of menu costs, the benefits from switching pricing strate-
gies may still be lower than the costs. Therefore even if carriers get to learn
about the state of the demand, some degree of price flexibility is necesary
in order to have stochastic peak-load pricing. Moreover, demand is never
fully learned; as sales take place and some information is revealed about
the demand, there will always be some uncertainty remaining about its final
state of the demand. Under this scenario, carriers will want to wait until
they have enough evidence toward having an expected peak or an expected
off-peak flight before deciding to switch its pricing strategies. This sug-
gest the existance of different pricing regimes for different expected demand
states rather than a continuum of fully adjustable fares sensitive to every
new peace of infomation about the expected final state of the demand. In
this subsection we estimate and endogenous panel threshold model to test
for the existance of different pricing regimes. The different regimes are given
by the different expectations of the final state of the demand.

The E(LOADijt|DAY ADVijt,Xijt) estimated in the previous section is
a measure of the expected evolution of sales for flight i under average condi-
tions and it is independent to the actual evolution of sales given by LOADijt.
This is because the observations of the load factor of flight i were never in-
cluded in the nonparametric estimation of E(LOADijt|DAY ADVijt,Xijt)
for the same flight i. By independent we mean that if flight i is expected
to be a peak-flight, is independent from the average of the other −i flights
from being peak-flights. Therefore, the ratio

Sijt =
LOADijt

E(LOADijt|DAY ADVijt,Xijt)
(5)

contains the necessary information to know whether at time t prior departure
actual sales are high, low or about the same as compared to sales under
average conditions. If at a given point prior departure this ratio is relatively
large, it would be reasonable for carriers to think they are in a peak period
and that expected demand will be greater than the allocated capacity. On
the other hand, low values indicate that sales are low relative to average or
normal sales and it would be reasonable for airlines to think they are in an
off-peak period and some seats may be left unsold.

The ratio Sijt has some interesting properties. Recall that the dataset
was constructed in a way that all flights share the same departure date, hence
they also share the same dates prior departure. If, for example, sales are
higher/lower during weekends, this should affect all flights and will change
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both, LOADijt and E(LOADijt|DAY ADVijt,Xijt). Therefore the ratio
Sijt should remain unchanged. We assume carriers already know whether
specific dates affect sales (e.g. weekends) and take this into account in
their calculations of expected demand. Higher or lower sales on a given
point in time common to all flight will have no impact on the definition of
expected peak and expected off-peak flight. What is even more important,
the construction of this ratio allows us to control for systematic peak-load
pricing. During ex-ante know congested periods, stochastic peak-load pricing
suggests that carriers will charge higher fares. As explained in Borenstein
and Rose (1994), this type of peak-load pricing arises at an airport or fleet
level. Here, the most likely capacity constraint is given by the total number
of aircrafts. As a result systematic peak-load pricing should affect all flights
keeping the ratio Sijt unchanged. The drawback in this approach is that
we will not be able to measure the effect of systematic peak-load pricing on
fares. For an estimation of the congestion premia on fares due to systematic
peak-load pricing, see Escobari (2006).

This section estimates a threshold model to test whether carriers have
different pricing strategies for different expected states of the demand. Stochas-
tic peak-load pricing suggests that when demand is expected to be greater
than fixed capacity, carriers will set higher fares. The latent variable that
will control the shift between expected peak and expected off-peak flights
is Sijt. To avoid an arbitrary selection of the number of pricing regimes
and selection of the threshold(s), we estimate the model using the panel
threshold regression methods with individual-specific fixed effects of Hansen
(1999). The equation to be estimated has the form

ln(FARE)ijt = δ0DAY ADVijt + δ1 ln(ECC)ijt · I(Sij,t−1 6 γ)
+δ2 ln(ECC)ijt · I(γ < Sij,t−1) + νij + εijt (6)

where I(·) is the indicator function, Sijt is the threshold variable and γ is
the threshold. Moreover, νij is the unobserved carrier- and flight-specific
effect, εijt is error term, and as before the subscripts i denotes flight, j is
route and t is time. Another way of writting Equation 6 is

ln(FARE)ijt = δ0DAY ADVijt

+

{
δ1 ln(ECC)ijt + νij + εijt if Sij,t−1 6 γ (off-peak)

δ2 ln(ECC)ijt + νij + εijt if γ < Sij,t−1 (peak).

For the case of Equation 6, the observations are divided into two pricing
regimes depending on whether the threshold variable Sij,t−1 is smaller or
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larger than the threshold. The regime-independent variables DAY ADV , is
included to control for a time trend. Even though Equation 6 is illustrated
for only one threshold, the actual estimation process test for the existance
of up to three thresholds, allowing for up to four different pricing regimes.
In the absence of regime changes, Equation 6 follows the form suggested by
the theory under no demand learning in Equation 1.

Given the construction of the dataset we perfectly control for important
sources of price dispersion observed in the industry (e.g. saturday-night stay-
over, minimum and maximum stay, different connections/legs, fare class, re-
fundability). Moreover, estimating the model using flight fixed effects allows
controlling for unobservable time invariant characteristic, which include all
the time invariant control variables included in Stavins (2001) (e.g. flight,
carrier, and route characteristics). The main coefficient of interest is the
Effective Cost of Capacity ECC. Prescott (1975)’s type of models predict
a positive effect of ECC on fares. However, this is true under no demand
learning or under price commitments. Under the specification of Equation 6,
the coefficient on ECC is allowed to be different across flights and at differ-
ent points prior departure, depending on the expectations of the demand.
As predicted by stochastic peak-load pricing, higher expected demand states
will be associated with a greater impact of ECC on fares, while lower ex-
pected demand states will be associated with lower or even a negative co-
efficient on ECC. The empirical specification is estimated as a constant
elasticity model in ln− ln form. This is because both variables FARE and
ECC are measured in dollars. Moreover, recall that ECC = λ/Pr, then
estimating the equation using the logarithm of ECC allows separating it’s
components in two. ln(λ) goes as part of the regression intercept while the
coefficient on ln(Pr)−1 remains the same as the coefficient on ln(ECC).
We can then interpret this coefficient as the impact of an percentage in-
crease in ECC or a percentage decrease in the selling probability, Pr, on
fares. The interpretation of this elasticity measure does not need to know
the value of λ. An alternative specification replaces lnECC with LOAD in
Equation 6. The stochastic peak-load pricing analysis follows the same logic
as with lnECC, however, the interpretation is somehow different. Here a
change in LOAD represents an increase capacity utilization.

In order to estimate the nonlinear specification in Equation 6 we follow
the procedure proposed in Hansen (1999). First, to eliminate the unobserved
carrier- and flight-specific effects, for a given γ and for each flight we obtain
the deviations from the time averages. Stacking the data over all flights
we obtain Y = V(γ)δ + ε, where Y and V(γ) are just the stacked fixed-
effects transformation just explained on ln(FARE) and the set of explana-
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tory variables respectively. Notice the values of the explanatory variables
are a function of the value of the threshold. For any given γ, the vector
of slope coefficients δ can be estimated by ordinary least squares to obtain
δ̂(γ). Chan (1993) and Hansen (2000) recommend the estimation of γ by
least squares, hence its estimator is

γ̂ = arg min
γ

Y ′(I −V(γ)′(V(γ)′V(γ))−1V(γ)′)Y. (7)

After γ̂ is found, the estimate for the slope coefficients is δ̂(γ̂). Then
the next step is to find out if the threshold is statistically significant. The
null hypothesis of no threshold in Equation 6 can be characterized by H0:
δ1 = δ2. As explained in Hansen (1999), classical tests have non-standard
distributions because under the null γ is not identified. Therefore, we follow
Hansen (1996) and simulate the asymptotic distribution of the likelihood
test by bootstraping. The likelihood ratio to test H0 is

F1 = (SSE0 − SSE1(γ̂))/σ̂2 (8)

where SSE0 is the sum of squared errors under the null after the the fixed-
effects transformation is made. Similarly, SSE1 is the sum of squared errors
of the fixed-effects transformation made on Equation 6. For a larger number
of thresholds the idea is similar, with the important characteristic that se-
quential estimation is consistent. Therefore, in order to test for the number
of thresholds, we allow for sequentially zero, one, two, and three thresholds.
As in Hansen (1999), the observations are first sorted on the threshold vari-
able and the search of the threshold is restricted to specific quantiles. The
more quantiles the finer the grid to which the search is limited. Bootstrap-
ping simulates the asymptotic distribution of the likelihood ratio test. This
likelihood ratio is used to test whether the threshold is statistically signif-
icant under the null of no threshold. When rejecting the null, one more
threshold is included.6

Table 2 provides the results that test for the number of thresholds: the
test statistics F1 and F2, along with the bootstrap p-values and critical
values. From the bootstrap p-values, the null of no threshold for the one
threshold model is rejected at a 1% level in all specifications. However, no
evidence of further thresholds is found. The results for the three thresholds
model are not reported since non of the second thresholds was found to
be significant. Because the original dataset is unbalanced and the testing

6The estimation used 400 quantiles and 300 bootstrap replications for each of the
bootstrap tests.
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procedure implemented in this section only allows for balanced panels, we
work with two subsets of the data. The first one has 198 flights over 35
time periods (covering a period of 100 days prior departure) is reported in
Columns (1) and (3). The second has 216 flights over 34 time periods (103
days prior departure) and is reported in Columns (2) and (4).

Table 2: Tests for threshold effects
LOAD ln(ECC)

(1) (2) (3) (4)
Test for a single threshold

F1 77.735 113.161 109.968 161.568
p-value 0.010 0.000 0.010 0.003
Bootstrap critical values

10% 47.578 45.580 62.897 57.310
5% 54.875 52.449 82.918 68.455
1% 69.513 63.036 103.242 130.663

Test for a double threshold
F2 19.136 23.838 16.713 33.609
p-value 0.473 0.360 0.720 0.243
Bootstrap critical values

10% 33.728 36.242 45.522 46.067
5% 38.969 43.942 52.422 58.614
1% 54.101 63.603 75.602 76.973

Notes: Because non of the second thresholds was found signifi-

cant, the tests for triple thresholds are not reported. Columns

(1) and (3) have 6732 observations across 198 flights and

columns (2) and (4) have 7128 across 216 flights.

The point estimates for the thresholds in all four specifications, along
with the asymptotic 95% confidence intervals are presented in Table 3. All
point estimates lie around 1.171 and 1.184 and the confidence intervals are
very tight, indicating little uncertainty about the nature of this division. The
results indicate the existance of two pricing regimes. The first pricing regime
occurs when γ < Sij,t−1. Notice that in this regime actual sales are relatively
larger than sales under average conditions, hence we call this the peak period
pricing regime. The second regime is characterized by γ > Sij,t−1. This
will be reffered as the off-peak period pricing regime since actual sales are
relatively lower that sales under average conditions.

The confidence interval construction shown in Figure 4, tabulated for
specification in Column (1) of Tables 2 and 3, provides further insights for
the threshold results. The point estimate is the value of γ at which the
likelihood ratio is equal to zero. The confidence interval [γ, γ], are the
values for γ for which the likelihood ratio lies beneath the straight line.
Moreover, there are no other major dips in the likelihood ratio, which would
be evidence of a third pricing regime.
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Table 3: Threshold estimates
LOAD ln(ECC)

(1) (2) (3) (4)
γ 1.171 1.184 1.184 1.184

Asymptotic 95% confidence interval
γ 1.183 1.184 1.184 1.184
γ 1.171 1.171 1.171 1.170

Notes: The test for a triple threshold not reported, since non

of the second thresholds was found significant. Columns (1)

and (3) have 6732 observations across 198 flights and columns

(2) and (4) have 7128 across 216 flights.

Figure 4: Confidence interval construction in single threshold model

The regression estimates for the single threshold model are presented in
Table 4. The first noticiable result is that Columns (1) and (2) are very
similar, while (3) and (4) also look alike. Thus, the two balanced subsam-
ples yield very similar results. The figures in parentheses are White-robust
t-statistics. The regime-independent coefficient DAY ADV , included as a
control for a time trend is highly significant in all four specifications. The
coefficient on DAY ADV in Column (4) means that after controlling for
capacity constraints and demand uncertanty, route, carrier and flight char-
acteristics, ticket characteristics that segment consumers and systematic and
stochastic peak-load pricing, buying a ticket one day in advance reduces the
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ticket price by 56.3 cents.7 This is a measure of second degree price dis-
crimination in the form of advance-purchase requirements. As pointed out
in Dana (1998), for advance-purchase discounts to be classiffied as discrim-
inatory, it is necessary to define an appropiate measure of costs. Prices are
considered discriminatory when the price markups over costs are different
for different consumers. Hence the importance of having an appropirate
measure of costs. In this analysis, the costs for different seats in the same
aircraft may be different due to the existance of uncertain demand and costly
capacity. These different costs are captured by ECC. Finally, notice that we
are fully controlling for other sources of second degree price discrimination
such as Saturday night stayover.

Table 4: Regression estimates: single threshold model
Regressor LOAD ln(ECC)

(1) (2) (3) (4)
Regime-independent coefficients

DAY ADV/103 −1.671 −1.520 −2.235 −1.969
(−9.164) (−8.989) (−17.230) (−15.759)

Regime-dependent coefficients
LOADijt · I(γ > Sij,t−1) 0.300 0.236

(9.033) (7.752)
LOADijt · I(γ < Sij,t−1) 0.428 0.386

(12.617) (11.704)
ln(ECC)ijt · I(γ > Sij,t−1) 0.112 0.079

(7.959) (5.564)
ln(ECC)ijt · I(γ < Sij,t−1) 0.254 0.251

(11.821) (11.460)
R-squared 0.893 0.895 0.897 0.899

Notes: The independent variable is ln(FARE). t-statistics in parentheses based on

White-robust standard errors. All regressions are estimated with flight fixed effects,

not reported. Columns (1) and (3) have 6732 observations across 198 flights and

columns (2) and (4) have 7128 across 216 flights. I(γ < Sijt) is reffered as the peak

period, while I(γ > Sijt) is the off-peak period.

The variables we are mostly interested in are the regime-dependent.
From Table 4 we observe that LOAD in Columns (1) and (2) and ln(ECC)
in Columns (3) and (4) are all highly significant and have a positive effect on
fares on both regimes. In all four specifications the off-peak period regime,
γ ≥ Sij,t−1, has a lower coefficient than the peak period regime, γ < Sij,t−1.
We know from the results in Table 2 that the coefficients in both regimes
are significantly different. The results from Column (2), evaluated at the
subsample average fare of 285.85 dollars indicate that in a 100 seat aircraft,
having one seat less available increases fares by 67.5 cents in an expected

7This one is calculated using the average fare for the subsample used in the estimation
of Column (4). This is 285.85×−1.969/103 = −0.563 dollars.
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off-peak flight while increases fares by 110.3 cents in an expected peak flight.
Columns (3) and (4) require some additional care. The effect of ECC on
fares as predicted by Prescott (1975)’s type of models is positive. However,
as sales progress and carriers learn about the state of the demand, the co-
efficient on ECC will be the outcome of two different type of models. The
Prescott (1975)’s type and stochastic peak-load pricing. The later only pre-
dicts that fares will be larger during expected peak flights. Thus the only
requirement on our regime-dependent coefficients is that the expected peak
regime should have a larger coefficient that the expected off-peak regime.
When capacity is not costly and expected demand is smaller than allocated
capacity, carriers will be willing to sell the last seats in the aircraft for any
price above the operating marginal cost (e.g. bagage transportation, soft
drink and pretzels). Consequently the last seats could be priced very low
and the coefficient on ECC could be negative indicating lower fares for later
seats. However, the results are consistent with having costly capacity and
provide important evidence supporting Prescott (1975)’s type of models, al-
ready documented in Escobari and Gan (2007). Columns (3) and (4) show
that fares respond positively to ECC in both peak and off-peak regimes.
Furthermore, there is also an important evidence supporting the existance
of stochastic peak-load pricing with the peak regime coefficient being greater
than in the off-peak regime.8

Fares will be increasing at a higher rate during expected peak regimes.
Carriers forecasting that demand will be greater than allocated capacity
will set higher fares to increase their profits and sell the remaining available
capacity to travelers with higher valuations. If price commitments were to
prevail or if carriers do not learn about the state of the demand, the flight will
still sell-out in a high demand period. However in the absence of stochastic
peak-load pricing existing capacity will be allocated to travelers that arrive
first and not necessarily to travelers with higher valuations sorted by higher
prices. On the other hand, when a low demand flight is expected, fares will
increase at a lower rate. This is consistent with cheap fares offered close
to depature and ‘last minute deals’. Airlines offer this kind of tickets when
damand falls short and allocated capacity is likely to remain underutilized.

Figure 5 shows the percentage of expected peak flights and the percent-
age of flights switching pricing regimes as the flight date approaches. We
see that the percentage of flights expected to be peak is fairly constant and

8In this case a direct interpretation of the coefficient on ECC, as we did with LOAD,
would not be entirely correct since ECC is constructed based on an ex-ante distribution
of demand uncertainty.
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Figure 5: Percentage of Expected Peak Flights

0%

5%

10%

15%

20%

25%

30%

35%

103 97 91 85 79 73 67 61 55 49 43 37 31 25 19 13 7 1

0%

2%

4%

6%

8%

10%

12%

Days Prior Departure

P
e

rc
e

n
ta

g
e

 o
f 

E
x
p

e
c
te

d
 P

e
a

k
 F

lig
h

ts
P

e
rc

e
n

ta
g

e
 o

f F
lig

h
ts

 S
w

tc
h

in
g

 P
ric

in
g

 R
e

g
im

e
s

Percentage of flights switching pricing regimes

Percentage of expected peak flights

ranges from 24% to 32% of the sample over time. Moreover, the percentage
of flights switching pricing regimes is very volatile. On average 5% of the
flights switches regimes every three days. That is equivalent to say that each
flight switches regime 1.5 times over the period studied.9 It is interesting to
see that the sharp increase in fares close to departure commonly observed
in the industry is the result of second degree price discrimination and the
combination of costly capacity and demand uncertainty, not the result of
peak-load pricing. It is true that those higher fares close to departure are
associated higher demand states, but they are higher because the effective
cost of capacity ECC is larger (see Dana (1999b)).

4.2.3 Dynamic Panel with Exogenous Threshold

The previous endogenous threshold estimation used the methods described
in Hansen (1999) and Hansen (2000) to identify two pricing regimes. This
procedure developed for non-dynamic balanced panels required us to assume
strict exogeneity of the regressors and to work with two balanced panels,
subsets of the original unbalanced dataset. In this subsection we take care of
these two issues. We will reestimate the model as suggested in Equation 1 to

9This should be viewed as a lower bound since increasing the frequency at which the
data is observed would increase the number of times a flight switches regimes.
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test for the existance of demand learning, but this time using dynamic panel
techniques as developed in Holtz-Eakin et at. (1988), Arellano and Bond
(1991), Arellano and Bover (1995), and Blundell and Bond (1998). This
will let us work with the entire unbalance panel and relax the assumption
of strict exogenous regressors. We will assume that the switch between the
two pricing regimes is the same as the one estimated in the previous part.
Specifically, the equation to be estimated is

ln(FARE)ijt = α ln(FARE)ij,t−1 + β1DAY ADVijt + β2PEAKij,t−1

+(δ0 + δ1PEAKij,t−1) · ln(ECC)ijt + νij + εijt (9)

The idea is the same as in the estimation of Equation 6. This means
analyzing the the effect of the effective cost of capacity on fares under no
demand learning as suggested by Equation 1, while allowing for the existance
of different pricing regimes when the expectation of future demand differs.
As found in section 4.2.2, here we allow for the coefficient of ECC on fares
to have two possible values that represent the expected peak and expected
off-peak regimes. The division between these two regimes is assumed to be
the same as before. Then the variable that dictates the shift is PEAKijt =
I(Sijt > 1.18), with the 1.18 taken from estimates reported in Table 3.
PEAK takes the value of one when the flight is expected to be a peak flight
and is zero if it is expected to be an off-peak. This two pricing regimes
will be significantly different if the intreaction coefficient δ1 is statistically
significant. Then, during an expected off-peak flight the effect of ECC on
fares will be δ0, while in an expected peak-flight it will be δ0 + δ1. As
before DAY ADV controls for any time trend. The coefficient on the lagged
depedent variable, ln(FAREij,t−1), is not of direct interest, but allowing for
dynamics in the underlying process may be crucial for recovering consistent
estimates of the other parameters. As in the previous section, for a second
specification ln(ECC) will be replaced with LOAD.

The reason why a dynamic estimation is important is because both the
effective cost of capacity, ECC, and the load factor, LOAD, are functions
of cumulative sales. But the number of tickets that have already been sold
−cummulative sales− depend on previous price levels. So there is reason
to believe that the assumption of strict exogeneity of the regressors may
be violated. The way the panel estimator presented in this section controls
for endogeneity is by using ‘internal instruments’. We assume that the
explanatory variables are only ‘weakly exogenous’, which means that the
cummulative sales can be affected by current and past realization of fares,
but must be uncorrelated with future realizations of the error term. Weak
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exogeneity does not mean that consumers do not take into account expected
future changes in fares in their decisions to buy or not a ticket; it just
means that future (unanticipated) shocks in fares do not influence current
cummulative sales or the decision to buy a ticket. We will assess the validity
of this weak exogeneity assumption below.

To estimate Equation 9, we first take first-differences to eliminate carrier-
and flight-specific effects. Then the resulting equation requires instruments
to deal with the potential endogeneity of the explanatory variables and with
the problem that the construction of the new error term, εijt−εij,t−1, is corre-
lated with the lagged dependent variable, ln(FAREij,t−1)− ln(FAREij,t−2).
The GMM difference panel estimator that we will report constructs its mo-
ment conditions under the assumptions that the error term, ε, is not serially
correlated, and that the explanatory variables are weakly exogenous. Then
the moment conditions used for the difference estimator are:

E[yij,t−s(εijt − εij,t−1)] = 0 for s ≥ 2; t = 3, . . . , T , (10)

E[Wij,t−s(εijt − εij,t−1)] = 0 for s ≥ 2; t = 3, . . . , T . (11)

where yijt is the natural logarithm of fare and Wijt is the set of explanatory
variables other that the lagged logarithm of fare.

Blundell and Bond (1998) point out an statistical shortcomming with
this difference estimator. When the explanatory variables are persistent over
time, lagged levels of these variables are weak instruments for the regression
equation in differences. To reduce the potential biases and imprecision asso-
ciated with the usual difference estimator we employ the system estimator
suggested in Blundell and Bond (1998). This system estimator combines
the regression in differences with the regression in levels. The instruments
for the regression in differences are the same as above. The instruments
for the regression in levels are the lagged differences of the corresponding
variables. The validity of these instruments relies on the following addi-
tional assumption: There is no correlation between the differences of the
right-hand side variables in Equation 9 and the flight-specific effects, but
there may be correlation between the levels of the right-hand side variables
and the flight-specific effects. Then, for the regression in levels included as
a second part of the system the additional moment conditions are:

E[(yij,t−s − yij,)(νij + εijt)] = 0 for s = 1, (12)

E[(Wij,t−s −Wij,t−s−1)(νij + εijt)] = 0 for s = 1. (13)

To address the validity of the instruments we consider two specification tests
suggested in Arellano and Bond (1991), Arellano and Bover (1995), and
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Blundell and Bond (1998). To test the overall validity of the instruments
we provide a Sargan test of over-identifying restrictions, which analyzes the
sample analogs of the moment conditions used in the GMM estimation. To
test the hypothesis that the error term, εijt, is not serially correlated, we
test whether the differenced error term is second-order serially correlated.

The dynamic panel estimates show that the load factor, LOAD, and the
effective cost of capacity, ln(ECC), both have a significant impact on fares
under both pricing regimes. Table 5 reports the results using the differences
and the system estimators described above. Additionally, for comparative
purposes we report the panel estimates when the estimation is done in levels
using flight fixed effects. Table 5 also presents the p-values for the Sargan
test and the serial correlation test. The null hypothesis for the Sargan
test is that the instrumental variables are uncorrelated with the residuals
(valid specification). Whereas in the null hypothesis for the serial correlation
test is that errors in the differenced equation exhibit no second-order serial
correlation (valid specification).
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Table 5: Regression estimates: GMM Dynamic panel
Levels First diff. System

(1) 1.18 (2) (3)
Load Factor

ln(FARE)ij,t−1 0.691 0.742 0.992
(31.640) (47.421) (420.941)

DAY ADVijt/103 −0.240 1.704 −0.083
(−1.550) (6.216) (−0.749)

PEAKij,t−1 −0.115 −0.164 −0.045
(−5.780) (−3.753) (−2.798)

LOADijt 0.235 0.519 0.131
(8.950) (11.543) (7.128)

LOADijt · PEAKij,t−1 0.215 0.272 0.070
(6.200) (4.032) (2.493)

Sargan testa(p-value) 0.285 0.379
Serial correlation testb(p-value) 0.872 0.897

Effective cost of capacity
ln(FARE)ij,t−1 0.695 0.693 0.973

(31.840) (44.551) (200.427)
DAY ADVijt/103 −0.849 0.839 0.972

(−7.840) (5.269) (6.365)
PEAKij,t−1 0.004 −0.029 −0.097

(0.480) (−1.134) (−2.395)
ln(ECC)ijt 0.098 0.259 0.167

(8.620) (15.016) (8.188)
ln(ECC)ijt · PEAKij,t−1 0.068 0.166 0.087

(3.980) (4.974) (1.650)
Sargan testa(p-value) 0.302 0.314
Serial correlation testb(p-value) 0.838 0.952

Notes: The dependent variable is ln(FARE). t-statistics in parentheses based on White

robust standard errors. PEAK = I(S > 1.18). a The null hypothesis is that the instruments

are not correlated with the residuals (valid specification). b The null hypothesis in that

the errors in the first-difference regression exhibit no second-order serial correlation (valid

specification).

The results for the load factor in the upper part of Table 5, show that
for the levels, difference, and system dynamic panel regressions, the effect
of LOAD on fares is positive and highly significant. Moreover, it is greater
in an expected peak flight than in an expected off-peak flight, with the
difference being also statistically significant with all three estimators. The
significance of this difference can be appreciated by looking at the t-statistics
of the coefficient on the interaction variable LOADijt · PEAKij,t−1. In
particular, based on the system GMM estimates, evaluated at the sample
average fare of 291.09 dollars and for a 100 seats airplane, having one less
seat available increases fares by 38.1 cents in an expected off-peak flight
while increases fares by 58.5 cents in a expected peak flight. The ECC
specification reported in the lower part of Table 5 supports the previous
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findings. As suggested by the theory in the Prescott (1975)’s type of models,
ECC has a positive impact on fares. Moreover, as information about the
final state of the demand becomes available, the results are consistent with
stochastic peak-load pricing with higher fares being set in expected peak
demand periods and lower fares set in expected off-peak periods.

The regressions satisfy the specification tests. There is no evidence of
second order serial correlation and the regressions pass the Sargan specifica-
tion test. Regarding the sign on DAY ADV , this one is no longer comparable
with the one reported in Table 4 because of the existance of the lagged de-
pendent variable in the dynamic panel regressions. This also explain why
the sign on DAY ADV is so volatile.

5 Conclusions

One important source of uncertainty for airlines is that they have limited
information about the demand at the moment of scheduling a flight. Be-
cause tickets are sold in advance, prices should be set in an environment of
uncertainty about the total number of arriving consumers. Having a good
aproximation of the expected demand is key because (1) seats left unsold
have little value after departure, and (2) carriers may forgone important
profits if the flight sells out and some consumers that would have paid even
higher prices have to be rationed.

In this paper we initially calibrate the ex-ante −before any ticket is sold−
distribution of demand uncertainty using information on sold-out probabil-
ities and forecasted values of occupancy rates. Under the Prescott (1975)’s
type of models of costly capacity and demand uncertainty, fares will be dis-
persed will lower priced units being sold before higher priced units. After
controlling for restrictions that segment consumers (e.g. saturday-night-
stayover, minimum and maximum stay, different conections/legs, fare class,
refundability), the calibrated ex-ante demand uncertainty should be enough
to explain the observed price dispersion if (1) there exist price commitments
or (2) carriers do not learn about the final state of the demand as the flight
date approaches.

Using nonparametric techniques we then construct a latent variable that
is used as a proxi to identify different expected final demand states at dif-
ferent points prior departure. Using this latent variable we estimate a panel
endogenous threshold model to test whether carriers abandon price com-
mitments as they learn about the final state of the demand. The result
identified two different pricing regimes. Consistent with the predictions of
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stochastic peak-load pricing, in the expected peak flight regime fares will
be higher, while in the expected off-peak flights fares will be lower. To
control for potential endogeneity of the regressors and the interaction be-
tween cummulative sales and previous level of prices, we also estimate a
dynamic panel model. The results also supported the existance of stochastic
peak-load pricing in airlines.

The findings in this paper, as well as the

A Appendix: Variable Description

FAREijt: Price in US$ paid for the one-way airfare.

LOADijt: Load factor, defined as total number of seats sold at time t di-
vided by total number of seats in the aircraft.

ECCijt: Effective cost of capacity, calculated by dividing costly capacity, λ
(initially normalized to one), by the probability that this seat will be
sold. For the censored normal case this one is given by

ECCijt =
λ

Prhijt

= λ ·
[ ∫ ∞

hijt/mij

√
2πσ2

j · exp
(
− (κ− µj)2/2σ2

)
dκ

]−1

mij is the total number of seats in the aircraft and hijt is the number
of seats that have already been sold. The values for µj and σj are
obtained from the calibration procedure in section 4.1.3.

DAY ADVijt: Number of days in advance the ticket was purchased.

Sijt: Threshold variable, defined as the ratio of actual seats sold to expected
number of seats sold. Sijt = LOADijt/E(LOADijt|DAY ADVijt,Xijt).

PEAKijt: Variable equal to one if flight i is expected to be a peak flight,
PEAKijt = I(γ < Sijt).

DEPTIMEj: Time of the day the flight departed.

DISTj: Nonstop mileage between the two endpoint airports on a route.

ROUSHAREij: Carrier’s share on the route based on total number of seats
in direct flights for the day of the flight.
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HHIj: Herfindahl-Hirshman Index of concentration on the observed route,
with ROUSHARE used as the measure of market share of each car-
rier.

HHIj =
N∑

i=1

ROUSHARE2
ij

HUBij: Variable equal to one if the carrier has a hub in the origin or des-
tination airports.

SLOTj: In some airports like Chicago O’Hare (ORD), Kennedy (JFK), La
Guardia (LGA), and Reagan National (DCA), the U.S. government
has imposed limits on the number of takeoffs and landings that may
take place each hour. To take into account the scarcity value of ac-
quiring a slot, the variable SLOT equals to one if either endpoint of
route j is one of these airports and zero otherwise.

DIFTEMPj: Absolute difference in average end of October temperatures,
measured in Fahrenheit degrees, between the departure and destina-
tion cities.

DIFRAINj: Absolute difference in average end of October precipitation,
measured in inches, between the departure and destination cities.

DIFSUNj: Absolute difference in average end of October sunshine, mea-
sured in percentage, between the departure and destination cities.

AV EHHINCj: Average of the median household income in the two cities.

AV EPOPj: Average population in the two cities. For cities with more than
one airport, the population is apportioned to each airport according to
each airport’s share of total enplanements. Source: Table 3, Bureau of
Transportation Statistics, Airport Activity Statistics of Certified Air
Carriers: Summary Tables 2000.

AAj , ALj , COj , DEj , UNj , USj: Variables equal to one if the carrier on
route j is American, Alaska, Continental, Delta, United, or US Air-
ways respectively.
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