
Market Structure and Multiple Equilibria in

Airline Markets∗

Federico Ciliberto†

University of Virginia
Elie Tamer‡

Northwestern University

First Version: October 2003
This Version: October 2007

Abstract

We provide a practical method to estimate the payoff functions of players in com-
plete information, static, discrete games. With respect to the empirical literature on
entry games originated by Bresnahan and Reiss (1990) and Berry (1992), the main
novelty of our framework is to allow for general forms of heterogeneity across play-
ers without making equilibrium selection assumptions. We allow the effects that the
entry of each individual airline has on the profits of its competitors, its “competitive
effects”, to be different across airlines. The identified features of the model are sets
of parameters (partial identification) such that the choice probabilities predicted by
the econometric model are consistent with the empirical choice probabilities estimated
from the data.

We apply this methodology to investigate the empirical importance of different
types of firm heterogeneity as determinants of market structure in the U.S. airline in-
dustry. We find that the competitive effects of large airlines (American, Delta, United)
are different from those of low cost carriers and Southwest. We also find that the com-
petitive effect of an airline is increasing in its airport presence, which is an important
measure of observable heterogeneity in the airline industry. Then, we develop a policy
experiment to estimate the effect of repealing the Wright Amendment on competition
in markets out of the Dallas airports. We find that repealing the Wright Amendment
would increase the number of markets served out of Dallas Love by 20 percent, and
that most of them would be served by Southwest.
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1 Introduction

We provide a practical method to estimate the payoff functions of players in complete in-

formation, static, discrete games. With respect to the empirical literature on entry games

originated by Bresnahan and Reiss (1990) and Berry (1992), the main novelty of our frame-

work is to allow for general forms of heterogeneity across players without making equilibrium

selection assumptions. These assumptions are typically made on the form of firm hetero-

geneity to ensure that, for a given value of the exogenous variables, the economic model

predicts a unique number of entrants. In the ensuing econometric models, multiple equilib-

ria in the identity of the firms exist, but the number of entrants is unique across equilibria.

This uniqueness leads to standard estimation of the parameter using maximum likelihood or

method of moments. On the other hand, models with general forms of player heterogeneity

have multiple equilibria in the number of entrants, and so the insights of BR and Berry do

not generalize easily.

We present an econometric framework that allows for multiple equilibria and where dif-

ferent selection mechanisms can be used in different markets. This framework directs the

inferential strategy on a “class of models,” each of which corresponds to a different selection

mechanism. We use the simple condition that firms serve a market only if, in equilibrium,

they make non negative profits, to derive a set of restrictions on regressions.1 In games

with multiple equilibria this simple condition leads to upper and lower bounds on choice

probabilities.2 The economic model implies a set of choice probabilities, which lies between

these lower and upper bounds. Heuristically, our estimator then is based on minimizing the

distance between this set and the choice probabilities that can be consistently estimated from

the data. Our econometric methodology restricts the parameter estimates to a set and thus

partially identifies the parameters.3 Each parameter in this set corresponds to a particular

1The idea of deriving results on a class of models goes back to Sutton (2000). Taking a class of models
approach to game theoretic settings, one “abandon(s) the aim of identifying some unique equilibrium out-
come. Instead, we admit some class of candidate models (each of which may have one or more equilibria)
and ask whether anything can be said about the set of outcomes that can be supported as an equilibrium of
any candidate model”. The necessary and weak condition on behavior is similar to the “viability condition”
discussed by Sutton (see also Sutton (1991)).

2Tamer (2003) also used this insight to show that, for a simple 2 × 2 game with multiple equilibria,
the model provides inequality restrictions on regression. Sufficient conditions are then given to guarantee
that these inequality restrictions point identify the parameter of interest. These conditions are not easy to
generalize to larger games. However, the paper noted that in general, inequality restrictions constrain the
parameter vector to lie in a set, the identified set, and an estimator was suggested (page 153).

3See footnote 2 above.
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selection mechanism that is consistent with the model and the data. We use recently de-

veloped inferential methods in Chernozhukov, Hong, and Tamer (2002) (CHT) to construct

confidence regions that cover the identified set with a prespecified probability.4

We apply our methods to data from the airline industry, where each observation is a

market (a trip between two airports).5 The idea behind cross-section studies is that in

each market firms are in a long-run equilibrium. The objective of our econometric analysis

is to infer long-run relations between the exogenous variables in the data and the market

structure that we observe at some point in time, without trying to explain how firms reached

the observed equilibrium. For example, we model the entry decision of American Airlines

as having a different effect on the profit of its competitors than the entry of Delta or of

low cost carriers has. More importantly, we perform a policy exercise using our estimated

model to study how the Wright Amendment, a law restricting competition in markets out

of Dallas Love airport, affects the state of these market with respect to competition, or their

structure. This law has been partially repealed in 2006, so we can compare the predictions

of our model with what actually happened.

We estimate two versions of a static complete information entry game. These versions

differ in the way that the entry of a firm, its “competitive effect,” affect the profits of its

competitors. In the simpler version, which follows the previous literature, these competitive

effects are captured by firm-specific indicator variables in the profit functions of other airlines.

These indicator variables measure the firms’ “fixed competitive effects.” In the more complex

version, a firm’s competitive effect is a variable function of the firm’s measure of observable

heterogeneity. The measure of observable heterogeneity that affects competitors’ profits is

an airline’s airport presence, which is a function of number of markets served by a firm out

of an airport. The theoretical underpinnings for these “variable competitive effects” are in

Hendricks, Piccione, and Tan (1997), who show that, as long as an airline has a large airport

presence, its dominant strategy is not to exit from a spoke market, even if that means to

suffer losses in that market. Thus, the theoretical prediction is that the larger an airline’s

airport presence, the larger its “variable competitive effects” should be.

There are four sets of results. First, we find that the fixed competitive effects are much

smaller when we allow for variable competitive effects, suggesting that a firm’s competitive

4CHT that focus on constructing confidence regions for the argmin of a function (in this paper, the
minimum distance objective function). These methods cover the identified set with a prespecified probability.
Other econometric methods that can be used are Romano and Shaikh (2006), Bugni (2007), Molinari (2003)
and Andrews and Soares (2007).

5Berry (1992) used the same data source, but from earlier years.
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effect is a function of its airport presence (Table 3). Second, the competitive effects are

particularly large when a low cost carrier or Southwest are analysed (Table 5). In particular,

the entry of a low cost carrier or Southwest is associated with a marked lower probability of

observing large carriers in the same market, and viceversa. On the other hand, the entry of

a large carrier has a relatively smaller effect on the profits of another large carrier. Third,

we develop a policy experiment to estimate the effect of repealing the Wright Amendment

on competition in markets out of the Dallas airports (Table 6). We find that repealing the

Wright Amendment would increase the number of markets served out of Dallas Love by

20 percent, and most of them would be served by Southwest. Finally, when we estimate

the variance-covariance matrix, we find positive correlation in the errors (Table 4). The

competitive effects are smaller than when the unobservables are assumed to be independent

across firms, but are still economically and statistically significant. We infer that we need

to allow for positive correlation in the firm-specific unobservables to get the appropriate

measure of the competitive effects .

This paper contributes to a growing literature on inference in discrete games. In the

complete information setting, complementary approaches include Bjorn and Vuong (1985)

and Bajari, Hong, and Ryan (2005), where equilibrium selection assumptions are imposed.

Another approach makes informational assumptions. For example, Seim (2002), Sweeting

(2004), and Aradillas-Lopez (2005) consider the case where the entry game is with incom-

plete information, so that neither the firms nor the econometrician observe the profits of all

competitors. Recently, Pakes, Porter, Ho, and Ishii (2005) provide a novel economic frame-

work that leads to a set of econometric models with inequality restrictions on regressions.

They also provide a method for obtaining confidence regions. Andrews, Berry, and Jia (2003)

have recently proposed methods to construct confidence regions for models with inequality

restrictions that apply to entry models. Finally, further insights about identification in these

settings is given in Berry and Tamer (2006).

The remainder of the paper is organized as follows. Section 2 presents the empirical model

of market structure and the main idea of the econometric methodology. Section 3 formalizes

the inferential approach, providing conditions for the identification and estimation of the

parameter sets. Then, Section 4 discusses market structure in the US airline markets. Section

5 presents the estimation results. Section 6 reports the results of our policy experiment.

Section 7 concludes and provides limitations and future work.
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2 An Empirical Model of Market Structure

We follow Berry (1992) in modelling market structure. In particular, let the profit function

for firm i in market m be πim(θ;y−im) where y−im is a vector that represents other potential

entrants in market m, θ is a finite parameter of interest determining the shape of πim. This

function can depend on both market specific and firm specific variables.6

A market m is defined by Xm where Xm = (Sm, Zm, Wm). Sm is a vector of market

characteristics, which are common among the firms in market m and K is the number of

potential entrants. Zm = (Z1m, . . . , ZKm) is a vector of firm characteristics that enter into

the profits of all the firms in the market, for example some product attributes that consumers

value. Wm = (W1m, . . . , WKm) are firm characteristics that enter only into firm i’s profit,

such as the cost variables.

The profit function is

πim = S ′
mαi + Z ′

imβi + W ′
imγi +

∑

i6=j

δi
jyim +

∑

j 6=i

Z ′
jmφi

jyjm + ǫim (1)

where ǫim is the part of profits that is unobserved to the econometrician.7 We assume

throughout that ǫim is observed by all players in market m. Thus, this is a game of complete

information. It is interesting to note the similarity between this setup and the one recently

considered by Pakes, Porter, Ho, and Ishii (2005). There, the authors consider two sets

of unobservables. In addition to an unobservable that is similar to ǫ above, they allow

for another expectational unobservable that can arise as a result of players’ incomplete

knowledge of the exact profit function.

An important feature of this profit function is the presence of {δi
j , φ

i
j}, which summarize

the effect other airlines have on i’s profits. In particular, notice that this function can depend

directly on the identity of the firms (yj’s, j 6= i). Also, the effect on the profit of firm i of

having j in its market is allowed to be different than having k in its market (δi
j 6= δi

k). For

example, the parameters δi
j ’s can measure a particularly aggressive behavior of one airline

6The fully structural form expression of the profit function should be written in terms of prices, quantities,
and costs. However, because of lack of data on prices, quantities, and costs, most of the previous empirical
literature on entry games had to specify the profit function in a reduced form. There exist data on airline
prices and quantities, but these variables would be endogenous in this model. We would have to find adequate
instruments and extend our methodology to include additional regression equations, one for the demand and
one for the supply side. This is clearly beyond the scope of our paper. As stated in the introduction, the main
contribution of this paper is to take the models used by previous empirical literature on entry games and
allow for general forms of heterogeneity across players without making equilibrium selection assumptions.

7The linearity imposed on the profit function is not essential. We only require that the profit function be
known up to a finite dimensional parameter.
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(e.g. American) against another airline (e.g. Southwest).8 These competitive effects could

also measure the extent of product differentiation across airlines (Mazzeo (2002)). Finally,

the δi
j’s and φj could measure cost externalities among airlines at airports.9

3 Identification

We examine the conceptual framework that we use to identify the model. For simplicity,

we start with a bivariate game where we show how to analyze the identified features of

this game without making equilibrium selection assumptions. We then show that the same

insights carry over to richer games.

3.1 Simple Bresnahan and Reiss 2 × 2 game

Consider the following version of the model above with two players:

{
y1m = 1[α1X1m + δ2y2m + ǫ1m ≥ 0]
y2m = 1[α2X2m + δ1y1m + ǫ2m ≥ 0]

(2)

Here, a firm is in market m if in a pure strategy Nash equilibrium it makes non-negative

profit. Following BR, Berry (1992), and Mazzeo (2002), we do not consider mixed strategy

equilibria10.

The econometric structure in (2) is a binary simultaneous equation system. With large

enough support for ǫ’s, this game has multiple equilibria. The presence of multiple equilibria

complicates inference due to the coherency issue (see Heckman (1978) and Tamer (2003)).

The likelihood function predicted by the model will sum to more than one. A way to

complete the model is by specifying a rule that “picks” a particular equilibrium in the

region of multiplicity. Another way to solve the coherency issue is to find some feature that

is common to all equilibria, and transform the model into one that predicts this feature

uniquely. Bresnahan and Reiss (1991a) and Berry (1992) follow this second approach.

When δ1, δ2 < 0 (monopoly profits are larger than duopoly profits), the map between the

support of the unobservables (the ǫ) and the set of pure strategy equilibria of the game is

8See the discussion in Bresnahan (1989)’s Section 2.2.3, “Supply Equations in “conjectural variations”
language,” for an interpretation of the δi

j ’s as measures of the expectations that each firm has on the behavior
of its competitors.

9See Borzekowski and Cohen (2004) for an example of a game of technology adoption with multiple
equilibria.

10It is simple, conceptually, to accommodate mixed strategies in our framework. We discuss this below.
See also Berry and Tamer (2006).
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illustrated in Figure 1. Notice that multiple equilibria in the identity, but not number of

firms, happen when −αiXi ≤ ǫi ≤ −αiXi − δ3−i for i = 1, 2 (we suppress dependence on

m for simplicity). The shaded center region of the figure contains payoff pairs where either

firm could enter as a monopolist in the simultaneous-move entry game.

small

Figure 1: Regions for multiple equilibria :
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Bresnahan and Reiss (1990) and Berry (1992) ensure the uniqueness of equilibrium in

the number of firms by assuming that the firms’ unobservable determinants of profits are

independent of the identity of the firms that are in the market. This assumes that firms’

heterogeneity enters in one another’s profit equations in the same way. If we drop these

assumptions, different equilibria can exist with different numbers of players.11

BR’s approach requires that one knows the sign of δ’s. Multiple equilibria exist when

externalities are present. The relevance of positive externalities can be represented in the

simple 2 × 2 discrete game illustrated in Figure 2. In this case, where δi > 0 for i = 1, 2,

and for −δ3−i − αiXi ≤ ǫi ≤ −αiXi both players enter or no player enters. Here, a player

benefits from the other player entering the market. We can again use BR’s approach and

estimate the probability of the outcome (1, 0), of the outcome (0, 1), and of the outcome

11Heuristically, in 3-player games where one is a large firm and the other two are small firms, there can
be multiple equilibria where one equilibrium includes the large firm as a monopolist, while the other has the
smaller two firms enter as duopolists (as we will discuss in the empirical section). This happens when one
allows differential effect on profits from the entry of a large firm vs a small one (δlarge 6= δsmall).
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“either (1, 1) or (0, 0).”

3.1.1 Main Idea

We illustrate the main idea starting with the case where the δ’s are negative. The choice

probabilities predicted by the model are

Pr(1, 1|X) = Pr
(
ǫ1 ≥ −α1X1 − δ2; ǫ2 ≥ −α2X2 − δ1

)

Pr(0, 0|X) = Pr
(
ǫ1 ≤ −α1X1; ǫ1 ≤ −α2X2

)

Pr(1, 0|X) = Pr
(
(ǫ1, ǫ2) ∈ R1(X, θ)

)
+

∫
Pr

(
(1, 0)|ǫ1, ǫ2, X

)
1
[
(ǫ1, ǫ2) ∈ R2(θ, X)

]
dFǫ1,ǫ2

(3)

where

R1(θ,X) =
{
(ǫ1, ǫ2) : (ǫ1 ≥ −α1X1; ǫ2 ≤ −α2X2) ∪ (ǫ1 ≥ −α1X1 − δ2;−α2X2 ≤ ǫ2 ≤ −α2X2 − δ1)

}

R2(θ,X) =
{
(ǫ1, ǫ2) : (−α1X1 ≤ ǫ1 ≤ −α1X1 − δ1;−α2X2 ≤ ǫ2 ≤ −α2X2 − δ2

}

X = (X1, X2) and θ is a finite dimensional parameter of interest that contains the α’s, the

δ’s and parameters of the joint distribution of the ǫ’s.

The first two equalities in (3) are simple. For example, the model predicts (1, 1) uniquely if

and only if the ǫ’s belong to the upper right hand side quadrant. The third equality provides

the predicted probability for the (1, 0) event. This probability consists of the case when

(1, 0) is the unique equilibrium of the game, i.e., when (ǫ1, ǫ2) ∈ R1, and also when (1, 0)

is a potentially observable outcome of the game and it is the outcome that “was selected.”

The selection mechanism is the function Pr((1, 0)|ǫ1, ǫ2, X) which is allowed to depend on

the unobservables in an arbitrary way, is unknown to the econometrician and can differ in

different markets. This term is an infinite dimensional nuisance parameter.12

Heuristically, the identified features of the above model is the set of parameters for which

there exists a proper selection function such that the choice probabilities predicted by the

model are equal to the empirical choice probabilities obtained from the data (or consistently

estimated). We exploit the fact that this (selection) function is a proper probability and

hence lies in [0, 1]. Hence, an implication of the above model is the following:

Pr
(
(ǫ1, ǫ2) ∈ R1

)
≤ Pr((0, 1)) ≤ Pr

(
(ǫ1, ǫ2) ∈ R1

)
+ Pr

(
(ǫ1, ǫ2) ∈ R2

)
(4)

12If we were to allow for mixed strategy equilibria, then each choice probability in (3) will need to be
adjusted to account for each outcome being on the support of the mixed strategy equilibrium. More on this
below.
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The model predicts the first two equations in (3) above and the inequality restriction on

the choice probability of the (1, 0) in (4). The upper and lower bound probabilities for the

(1, 0) event are illustrated in Figure 3 below. Sufficient point identification conditions based

Figure 2: Upper and Lower probability Bounds on the Pr(0, 1) :

 

 

 

ε1 

ε2 

0,0 

-∆,-∆ 

(1,0) 

(0,1) 

(0,0) 

(1,0) 

(0,1) 
(1,1) 

(1,0) 

(0,1) 

 

 

 

ε1 

ε2 

0,0 

-∆,-∆ 

(1,0) 

(0,1) 

(0,0) 

(1,0) 

(0,1) 
(1,1) 

(1,0) 

(0,1) 

The shaded area in the graph on the right hand side represents the region for (ǫ1, ǫ2) that would predict
the outcome (0, 1) uniquely. The shaded region in the graph on the left hand side represents the region
where (0, 1) would be predicted if we always select (0,1) to be the equilibrium in the region of multiplicity.
The probability of the epsilons falling in the respective regions provide an upper and a lower bound on the
probability of observing (0,1).

on the predicted choice probabilities of the (0, 0) and (1, 1) outcomes were given in Tamer

(2003). In the next section, we extend this inferential approach to more general games.

3.2 Identification: General Setup

Here, we consider general games with many players and basically extend the insights from

the previous section on bivariate games. We consider models where the number of markets

is large, as opposed to requiring that the number of players within each market is large. We

also require that the joint distribution of ǫ be known up to a finite parameter vector which

is part of the parameter vector θ. As in the setup above, our approach to identification is to

“compare” the (conditional) distribution of the observables (the data) to the one predicted

by the model at a given parameter value.

To estimate the conditional choice probability vector P (y|X), a nonparametric conditional

expectation estimator can be used. We then derive the predicted choice probabilities in any

given market m and find parameters that minimize their distance (to be formally defined
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below). We first provide an assumption that is used throughout.

Assumption 1 We have a random iid sample of observations (ym,Xm), m = 1 . . . n. Let

n → ∞. The unobserved random vector ǫ is continuously distributed on RK independently of

X = (X1, . . .XK) with a joint distribution function F that is known up to a finite dimensional

parameter that is part of θ.

The predicted choice probability for y′ given X:

Pr(y′|X) =

∫
Pr(y′|ǫ, X)dF

=

∫

R1(θ,X)

Pr(y′|ǫ, X)dF +

∫

R2(θ,X)

Pr(y′|ǫ, X)dF

=

∫

R1(θ,X)

dF

︸ ︷︷ ︸
Unique Outcome Region

+

∫

R2(θ,X)

Pr(y′|ǫ, X)dF

︸ ︷︷ ︸
Multiple Outcome Region

where y′ = (y′
1, . . . , y

′
K) is some outcome, for example American, Southwest, and Delta serv-

ing the market. The third equality splits the likelihood of observing y′ into two regions,

R1(θ, X) and R2(θ, X). The first region of the unobservables, R1(θ, X), is one where y′ is

the unique observable outcome of the entry game. The second region, R2, is where the game

admits multiple potentially observable outcomes one of which is y′. The region R2 can be

complicated. For example, in a subregion of R2, y′ and y′′ are the equilibria, while in another

subregion of R2, y′ and y′′′ are the equilibria.

Mixed strategy equilibria can also exist in region R2 and if y′ is on the support of the mixing

distribution, then y′ is a potentially observable outcome. Hence, allowing for mixed strategies

does not present additional problems, but in our empirical application, for computational

simplicity, we do not allow for mixing (for more on inference with mixed strategies, see Berry

and Tamer (2006)).

The probability function Pr(y′|ǫ, X) is the selection function for outcome y′ in regions of

multiplicity. This function is unspecified. Bjorn and Vuong (1985) assume that this function

is a constant. More recently, Bajari, Hong, and Ryan (2005) use a more flexible parametriza-

tion.

To obtain the sharp identified set, one way to proceed is to use semiparametric likelihood

where the parameter space contains the space of unknown probability functions that include

the selection functions. Although this is an attractive avenue to proceed theoretically, it

10



is difficult to implement practically since one would need to optimize over a set of infinite

dimensional nuisance functions. A practical way to proceed is to exploit the fact that the se-

lection functions are probabilities and hence bounded between 0 and 1, and so an implication

of the above model is
∫

R1(θ,X)

dF ≤ Pr(y′|X) ≤
∫

R1(θ,X)

dF +

∫

R2(θ,X)

dF (5)

In vectorized format, these inequalities correspond to the following upper and lower bounds

on conditional choice probabilities

H1(θ,X) ≡




H1

1 (θ, X)
...

H2K

1 (θ, X)



 ≤




Pr(y1|X)

...
Pr(y2K |X)



 ≤




H1

2 (θ, X)
...

H2K

2 (θ, X)



 ≡ H2(θ,X) (6)

where Pr(y|X) (the vector of the form (Pr(0, 0), Pr(0, 1), . . .) is a 2k vector of conditional

choice probabilities. The inequalities are interpreted element by element.

The H’s are functions of θ and the distribution function FΩ where Ω is part of the vector

θ. For example, these functions were derived analytically in (4) for the 2 × 2 game . The

lower bound function H1 represents the probability that the model predicts a particular

market structure as the unique equilibrium.13 H2 contains in addition the probability mass

of the region where there are multiple equilibria.

The identified feature is the set of parameter values that obey these restrictions for all

X almost everywhere and represents the set of economic models that is consistent with the

empirical evidence. More formally,

Definition 1 Let ΘI be such that

ΘI = {θ ∈ Θ s.t. inequalities (6) are satisfied at θ ∀ X a.s.} (7)

We say that ΘI is the identified set.

In general, the set ΘI is not a singleton and it is hard to characterize this set, i.e., find

out whether it is finite, convex, etc. Next, following Tamer (2003) we provide sufficient

conditions that guarantee point identification.

13Notice that there are cross equation restrictions that one can exploit in the “cube” defined in 5 above,
like the fact that the selection probabilities sum to one.
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3.3 Exclusion Restriction

The system of equation we consider is similar to a simultaneous equation system except

that here the dependent variable takes finitely many values. As in the classical simultaneous

equation system, exclusion restrictions can be used to reach identification. In particular,

exogenous variables that enter one firm’s profit function and not the other’s play a key role.

We explain using model (2) above.

Theorem 2 We have a random iid sample of observations (y1i, yi2, x1i, x2i), i = 1 . . . n. Let

n → ∞. The unobserved random vector (ǫ1, ǫ2) is continuously distributed on R2 indepen-

dently of (x1, x2) with a (unknown) joint distribution function F (., .). Suppose x1 (x2) is

such that x1
1|x−1

1 , x2 (x1
2|x−1

2 , x1) is continuously distributed with support on R, α1
1 = α1

2 = 1

and xi = (x1
i , x

−1
i ) for i = 1, 2, and similarly for (α1

1, α
−1
1 ). Then, (α−1

1 , α−1
1 , δ1, δ2) and F

are identified.

proof: First, consider the choice probabilities for (0, 0):

P (0, 0|x1, x2) = P (0, 0|x1
1, x

−1
1 ; x1

2, x
−1
2 ) = P (ǫ1 ≥ x1α1; ǫ2 ≥ x2α2)

as x1
1→−∞
= P (ǫ2 ≥ x2α2)

(8)

Hence, we see that the choice probabilities for (0, 0) as we drive x1
1 to −infty isolates the

distribution function for ǫ2 and the parameter α2. Hence, conditioning on those x1
1’s, (where

player 1 is out of the market with probability one regardless of what 2 does), this (0, 0)
choice probability point identifies both the marginal distribution of ǫ2 and α2.
Similarly, by driving x1

2 to −∞, we can identify both the marginal distribution of ǫ1 and α1.
The same lines as above can be used to also identify (δ1, δ2) along with the joint distribution
of (ǫ1, ǫ2). 2

Independent variation in one regressor while driving another to take extreme values on its

support (identification at infinity) identifies the parameters of Model (2). In more realistic

games with many players, variation in excluded exogenous variables (like the airport presence

or cost variables we use in the empirical application) help shrink the set ΘI .

3.4 Estimation

The estimation problem is based on the following:

H1(θ,X) ≤ Pr(y|X) ≤ H2(θ,X) (9)
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This is a statistical structure that is based on a set of moment inequalities. Our inferential

procedures uses the following objective function:

Q(θ) =

∫ [
‖ (P (X) − H1(X, θ))− ‖ +

∥∥(P (X) − H2(X, θ))+
∥∥]

dFx

where (A)− = [a11[a1 ≤ 0], . . . , a2k1[a2K ≤ 0]] and similarly for (A)+ for a 2k vector A and

where ‖.‖ is the Euclidian norm. It is easy to see that Q(θ) ≥ 0 for all θ ∈ Θ and that

Q(θ) = 0 if and only if θ ∈ ΘI , the identified set in definition 1 above.

The object of interest is either the set ΘI or the (possibly partially identified) θI . We

mainly focus on inference on ΘI since we view ΘI as the set of parameters where each is

consistent with an economic model based on particular selection mechanism that could have

generated the observed data. For example, one such model selects in the region of multiplicity

the airline with the largest market presence at either end of the market, while another model

always selects the the airline with the largest profits in that market. The first model will yield

a θ ∈ ΘI that is, possibly, different than one obtained using the second selection mechanism

and both of these parameters are in ΘI . Statistically, the main difference in whether one

considers ΘI or θI as the parameter of interest is that confidence regions for the former are

weakly larger that for the latter. Evidently, in the case of point identification the regions

coincide asymptotically.

Inference in partially identified models is a current area of research in econometrics and in

this paper we follow the framework of Manski and Tamer (2001) and Chernozhukov, Hong,

and Tamer (2004)14. To consistently estimate the set ΘI , we first take a sample analog of

Q(.). To do that, we first replace Pr(y|X) by a consistent estimator Pn(X). Then, define

the set Θ̂I as

Θ̂I = {θ ∈ Θ | nQn(θ) ≤ νn} (10)

where νn → ∞ and νn

n
→ 0 (take for example νn = ln(n)) and

Qn(θ) =
1

N

n∑

i=1

[∥∥(Pn(Xi) − H1(Xi, θ))−
∥∥ +

∥∥(Pn(Xi) − H2(Xi, θ))+

∥∥]
(11)

14Other set inference methods that one can use to obtain confidence regions for sets include: Andrews,
Berry, and Jia (2004) Beresteanu and Molinari (2005), Romano and Shaikh (2006), Pakes, Porter Ishii and
Ho (2006) and Bugni (2007).
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where d(.; .) is a distance function that is continuously differentiable with respect to both

arguments. The theorem below shows that the set estimator defined above is a Hausdorff-

consistent estimator of the set ΘI .

Theorem 3 Let assumption 1 hold. Suppose that for the function Qn defined in (11): i)

supθ|Qn(θ) − Q(θ)| = Op(1/
√

n) and ii) Qn(θI) = Op(1/n) for all θI ∈ ΘI . Then, we have

that w.p. approaching to one:

Θ̂I ⊆w.p.1 ΘI and ΘI ⊆w.p. 1 Θ̂I

proof: First, we show that Θ̂I ⊆wp1 ΘI . This event is equivalent to the event that Q(θn) =

op(1) for all θn ∈ Θ̂I . We have:

Q(θn) ≤ |Qn(θn) − Q(θn)| + Qn(θn)

= OP (1/
√

n) + O(νn/n) = op(1)

On the other hand, we now show that ΘI ⊆w.p.1 Θ̂I . This event, again, is equivalent to the
event that Qn(θI) ≤ νn/n with probability one for all θI ∈ ΘI . We have from the hypothesis
of the theorem:

Qn(θI) = Op(1/n)

The above can be made less than νn/n with probability approaching to one. 2

To conduct inference in the above moment inequalities model we use the methodology of

CHT where the above is a canonical example of a moment inequality model. We construct

a set Cn such that limn→∞ P (Θ̂I ⊆ Cn) = 1 − α for a prespecified α ∈ (0, 1). In fact, the

Cn we construct not only will have the coverage property above but will also be consistent

in the sense of the theorem above. Our confidence regions will be also of the form of level

sets, Cn(c), i.e., Cn(c) = {θ ∈ Θ : nQn(θ) ≤ c} (for example any level set Cn(νn) for

any νn → ∞ and νn/n → 0 will be a consistent set). To build a set that obeys the

coverage property also, we start with an initial estimate of ΘI . This set can be for example

Cn(c0) = Cn(0). Then, we will subsample the statistic supθ∈Cn(c0)nQn(θ) and obtain the

estimate of its (1 − α) quantile, c1. We will then redo the above step replacing c0 with

c1. Then, we report Cn ≡ Cn(c2) as our confidence region. If the object of is a unique

but unidentified parameter (as opposed to a set), it is possible to provide a modification

of our confidence regions whereby these cover the parameter with at least the prespecified

probability. Confidence regions for parameters are based on the principle of collecting all

the parameters that cannot be rejected. These confidence regions are usually strictly smaller
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than ones that cover the set. In the Appendix, we provide the conditions needed for the

estimated confidence sets to have desirable asymptotic coverage properties. These conditions

are based on results obtained in CHT.

3.5 Simulation

In general games, it is not possible to derive the functions H1 and H2 analytically. We

provide here a brief description of the simulation procedure that can be used to obtain an

estimate of these functions for a given X and a given value for the parameter vector θ.

The Appendix studies the large sample properties of the estimator based on the simulated

objective function.

We first draw R simulations of market and firm unobservables for each market m. These

draws remain fixed during the optimization stage. We transform the random draw into one

with a given covariance matrix. Then, we obtain the “payoffs” for every player i as a function

of other players’ strategies, observables and parameters. This involves computing 2k-vector

of profits for each simulation draw and for every value of θ. If π(yj,X, θ) ≥ 0 for some

j ∈ {1, ..., 2K}, then yj is an equilibrium of that game. If this equilibrium is unique, then

we add 1 to the lower bound probability for outcome yj and add 1 for the upper bound

probability. If the equilibrium is not unique, then we add a 1 only to the upper bound of

each of the multiple equilibria’s upper bound probabilities. For example, the upper bound

on the outcome probability Pr(1, 1, ..., 1|X) is

Ĥ2K

2 (X, θ) =
1

R

R∑

j=1

1
[
π1(X1, θ;y

2K

−1 , ǫ
j
1) ≥ 0, . . . , π2K (X2K , θ;y2K

−2K , ǫj

2K ) ≥ 0
]

where 1[∗] is equal to one if the logical condition ∗ is true and where R is the number of

simulation where we assume here that R increases to infinity with sample size (more on the

rate of increase is in the appendix15).

The methods developed by McFadden (1989) and Pakes and Pollard (1989) can be easily

used to show that Ĥi(X, θ) converges almost surely uniformly in θ and X to Hi(X, θ) as the

number of simulations increases for i = 1, 2. More detailed arguments for consistency of the

simulated estimator are given in the appendix.

15Since the objective function is nonlinear in the moment condition that contains the simulated quantities,
it is important to drive the number of simulations to infinity since otherwise, there will be a simulation error
that does not vanish and can lead to inconsistencies
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4 Market Structure in the U.S. Airline Industry

Our work contributes to the literature started by Reiss and Spiller (1989) and continued by

Berry (1992). Reiss and Spiller (1989) provided evidence that unobservable firm heterogene-

ity in different markets is important in determining the effect of market power on airline

fares. Berry (1992) shows that firm observable heterogeneity, such as airport presence, plays

an important role in determining airline profitability, providing support to the studies that

show a strong positive relationship between airport presence and airline fares.16 Berry also

finds that profits decline rapidly in the number of entering firms, consistently with Bresnahan

and Reiss (1991b).

In this paper, we investigate the role of heterogeneity in the effects that each firm’s entry

has on the profits of its competitors, and we call this their “competitive effect”. Then, we

use our model to perform a policy exercise on how market structures will change in markets

out of and into Dallas after the repeal of the Wright Amendment.

4.1 Data Description

To construct the data we follow Berry (1992) and Borenstein (1989). Our data comes from

the second quarter of 2002’s Airline Origin and Destination Survey (DB1B). We discuss the

data construction in detail in the Appendix. Here, we provide information on the main

features of the dataset.

Market Definition We define a market as the trip between two airports, irrespective of

intermediate transfer points and of the direction of the flight. The dataset includes a sample

of markets between the top 50 MSAs, ranked by the population size. In this sample we also

include markets that are temporarily not served by any carrier, which are the markets where

the number of observed entrants is equal to zero. The selection of these markets is discussed

in the Appendix. Our dataset includes 3,332 markets.

Carrier Definition We focus our analysis on the strategic interaction between American,

Delta, United, and Southwest because one of the objectives of this paper is to develop the

policy experiment to estimate the impact of repealing the Wright Amendment. To this end,

we need to pay particular attention to the nature of competition in markets out of Dallas.

Competition out of Dallas has been under the close scrutiny of the Department of Justice.

In May 1999, the Department of Justice filed an antitrust lawsuit against American Airlines

16See Borenstein (1989) and Evans and Kessides (1993).
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charging that the major carrier tried to monopolize service to and from its Dallas-Fort Worth

hub (DFW).17 So, using data from 2002, a year after American won the case against the

DOJ, we investigate whether American shows a different strategic behavior than other large

firms. Among the other large firms, Delta and United are of particular interest because they

interact intensely with American at its two main hubs, Dallas (Delta) and Chicago O’Hare

(United).

In addition to considering American, Delta, United, and Southwest individually, we build

two additional categorical variables that indicate the types of the remaining firms.18

The categorical variable Medium Airlines, MAm, is equal to 1 if either America West,

Continental, Northwest, or USAir is present in market m. Lumping these four national

carriers in one type makes sense if we believe that they do not behave in strategically different

ways from each other in the markets we study. To facilitate this assumption, we drop markets

where one of the two endpoints is a hub of the four carriers included in the type Medium

Airlines.19

The categorical variable Low Cost Carrier Small, LCCm, is equal to 1 if at least one of

the small low cost carriers is present in market m. Small low cost carrier include 13 smaller

airlines.

4.2 Variable Definitions and Descriptive Statistics

We now introduce the variables used in our empirical analysis. Table 1 presents the summary

statistics for these variables.

17In particular, in April 27, 2001, the District Court of Kansas dismissed the DOJ’s case, granting
summary judgement to American Airlines. The Doe’s complaint focused on American’s responses to
Vanguard Airlines, Sun Jet, and Western Pacific. In each case, fares dropped dramatically and pas-
senger traffic rose when the LCCs began operations at DFW. According to the Department, American
then used a combination of more flights and lower fares until the low cost carriers were driven out of
the route or drastically curtailed their operations. American then typically reduced service and raised
fares back to monopoly levels once the low cost carriers were forced out of DFW routes. The com-
plaint can be downloaded at www.usdoj.gov/atr/public/press releases/1999/2439.htm. In the lawsuit, the
DOJ claimed that American responded aggressively against new entry of low cost carriers in markets out
of Dallas/Fort Worth, a charge that was later dismissed. The Memorandum and Order is available at
http : //www.usdoj.gov/atr/cases/f8100/8134.htm.

18In a previous draft of this paper, which is available from the authors’ websites, we showed that we
could also construct vectors of outcomes where an element of the vector is the number of how many among
Continental, Northwest, America West and USAir are in the market. This is analogous to a generalized
multi-variate version of Berry [1992] and, especially, of Mazzeo (2002). We chose to let MAm and LCCm

be categorical variables since most of the time they take either a 0 or 1 value.
19See the Appendix for a list of these hubs.
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Airport Presence Using Berry’s (1992) insight, we construct measures of carrier hetero-

geneity using the carrier’s airport presence at the market’s endpoints. First, we compute

a carrier’s ratio of markets served by an airline out of an airport over the total number of

markets served out of an airport by at least one carrier.20 Then, we define the carrier’s

airport presence as the average of the carrier’s airport presence at the two endpoints. We

maintain that the number of markets that one airline (e.g. Delta) serves out of one airport

(e.g. Atlanta) is taken as given by the carrier when it decides whether to serve another

market.21

There might be an interacting effect between one carrier (e.g. Delta) serving a particular

market and its airport presence on another carrier’s (e.g American) profit of serving that

market. To address this possibility, we run specifications where the competitive effect of

a firm varies with its airport presence. As mentioned in the introduction, the theoretical

underpinnings for these variable competitive effects are in Hendricks, Piccione, and Tan

(1997).

Cost In specifications where the airport presence of one carrier is excluded from the profit

equations of its competitors, airport presence of its competitors is the excluded variable that

identifies the competitive effects of the firms. This exclusion restriction was first used by

Berry (1992). Airport presence is a market-carrier specific variable that shifts the individual

profit functions without changing the competitors’ profit functions. For example, the market

presence of American is excluded from the profit function of Delta.

In specifications where we include a competitor’s market presence in the profit equations,

we need new exclusion restrictions. Cost variables only enter into the profit equation of

one firm but not of its competitors. A firm-market specific measure of cost is not available.

Thus, we use the geographical distance between a market’s endpoints and the closest hub

of a carrier as a proxy of the cost that a carrier has to face to serve that market.22 Notice

that this is a good measure of the opportunity cost of serving a market even when a carrier

serves that market on a nonstop basis because it measures the cost of the best alternative

20See the discussion in the Appendix for more on this.
21The entry decision in each market is here interpreted as a “marginal” decision which takes the network

structure of the airline as given. This marginal approach to the study of the airline markets is also used in the
literature that studies the relationship between market concentration and pricing. For example, Borenstein
(1989) and Evans and Kessides (1993) do not include prices in other markets out of Atlanta (e.g. ATL-
ORD) to explain fares in the market ATL-AUS. The reason for this “marginal” approach is that modeling
the design of a network is too complicated.

22Data on the distances between airports are from the dataset Aviation Support Tables : Master Coordi-

nate, available from the National Transportation Library.
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to non-stop service, which is a connecting flight through the closest hub.

The Wright Amendment The Wright Amendment was passed in 1979 to stimulate the

growth of the airport Dallas/Fort Worth. To achieve this objective, the Congress restricted

airline service out of Dallas Love, the other major airport in the Dallas area. In particular,

the Wright Amendment permitted air carrier service between Love Field and only airports

in Texas, Louisiana, Arkansas, Oklahoma, New Mexico, Alabama, Kansas, and Mississippi,

provided the air carrier does not permit through service or ticketing and does not offer for sale

transportation outside these states.23 In October 2006, a bill was enacted that determined

the full repeal of the Wright Amendment in 2014. Between 2006 and 2014, nonstop flights

outside the Wright zone would still be banned; connecting flights outside the Wright zone

would be allowed immediately; and only domestic flights would be allowed out of Dallas

Love.

We construct a binary variable, Wright, equal to 1 if entry into the market is regulated by

the Wright Amendment, and 0 otherwise. Wright is equal to 1 for the markets between DAL

or DFW and any airport except the ones located in Texas, Louisiana, Arkansas, Oklahoma,

New Mexico, Alabama, Kansas, and Mississippi.

We also construct another categorical variable, called Dallas Market, which is equal to 1 if

the market is between any of the two Dallas airports and any other airport in the dataset.

This variable controls for the presence of a Dallas fixed effect. More details on the Wright

Amendment are given in the appendix.

Control Variables We use six control variables. Three of these are demographic variables.

The average of the city populations at the market endpoints measures the market size. The

averages of the per capita incomes and of the rates of income growth of the cities at the market

endpoints measure the strength of the economies at the market endpoints. The other three

are geographical variables. The non-stop distance between the endpoints is the measure of

market distance. The distance from each airport to the closest alternative airport controls

for the possibility that passengers can fly from different airports to the same destination.24

Finally, we construct the distance from the market endpoints to the geographical center of

23The Shelby Amendment, passed in 1997, dropped the original restriction on flights between Dallas Love
and airports in Alabama, Kansas, and Mississippi. In 2005, an amendment was passed that exempted
Missouri from the Wright restrictions.

24For example, Chicago Midway is the closest alternative airport to Chicago O’Hare. Notice that for each
market we have two of these distances, since we have two endpoints. Our variable is equal to the minimum

of these two distances.
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the United States. This variable is intended to control for the fact that, just for purely

geographical reasons, cities in the middle of the US have a larger set of close cities than

cities on the coasts or cities at the borders with Mexico and Canada.25

Table 1: Summary Statistics

Markets Served
All

Markets
Mean (s.d.)

Airport Presence (Carrier Specific) (pct)
0.266

(0.218)

Cost, Distance from Hub (Carrier Specific) (1e2)
0.341

(0.265)

Wright Amendment (0/1)
0.067

(0.250)

Dallas Airport (0/1)
0.072

(0.259)

Market Size (Population) (1e7)
0.297

(0.256)

Per Capita Income (1e5)
0.323

(0.037)

Income Growth Rate
5.191

(0.565)

Market Distance (1e3)
1.055

(0.613)

Closest Airport (1e2)
0.353

(0.212)

Distance from Center (1e3)
1.563

(0.592)
N 3,332

Market Size Does Not Explain Market Structure To motivate the analysis that fol-

lows, we have classified markets by market size of the connected cities. The relevant issue is

whether market size alone determines market structure (Bresnahan and Reiss (1990)). Table

2 contains quartiles of market size vs the number of firms serving the market. This table

provides some evidence that the variation in the number of firms across markets cannot be

explained by market size alone.

25Notice that for each market we have two of these distances, since we have two endpoints. Our variable
is equal to the sum of these two distances.
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Table 2: Distribution of the Number of Carriers by Market Size

Number of
Firms

Large Medium Large Medium Small Small Total

0 8.59 15.25 8.40 14.89 11.76
1 29.05 35.17 33.49 52.70 37.61
2 22.81 23.17 22.93 22.21 22.78
3 15.49 14.89 16.93 7.20 13.63
4 12.00 6.24 11.52 2.40 8.04
5 10.68 4.56 4.92 0.48 5.16
6 1.44 0.72 1.80 0.12 1.02
N 833 833 833 833 3,332

Cross tabulation of the number of firms serving a market by the Market Size, which is here measured
by the average of the populations at the market endpoints.

5 Empirical Results

This section presents the results for various specifications of Model 1. Throughout the rest of

the paper, we simplify the analysis by introducing the following restrictions: βi = β, αi = α,

and φi
j = φj , ∀i, j. These restrictions are not necessary, but reduce the number of parameters

to be estimated, and the computational burden. We also modify the error structure. First,

we include firm-specific unobserved heterogeneity, uim. In one specification (Column 2 of

Table 4), we estimate the covariance matrix of the unobserved variables. Then, we add

market specific unobserved heterogeneity, um. Finally, we add airport specific unobserved

heterogeneity, uo
m and ud

m. uo
m is an error that is common across all markets whose origin is

o and ud
m is an error that is common across all markets whose origin is d.26 uim, um, uo

m, and

ud
m are independent normally distributed, except than when explicitly mentioned. Recall

that ǫim is the sum of all four errors. To use our inference methods, we first need to compute

the conditional choice probabilities. We estimate these using a multinomial logit model.27.

26Recall that our markets are defined irrespective of the direction of the flight. Thus, the use of the terms
origin and destination is only made to mean either one of the market endpoints.

27Ideally, one would want to use a nonparametric estimator of the conditional choice probabilities. This
was done in a previous version of the paper. the problem with this is the fact that the bins for the data can
contain a small number of observations because of the large number of market structures (2k) crossed with
the richer set of covariates that we use in this version. So, for computational simplicity, and to avoid the
problem of too few observations in a given bin, we use a multinomial logit model. In the previous version
where we did use the nonparametric estimator, we also used a multinomial logit estimator and the results
were not significantly different.
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We estimate two versions of the following model:

Main Empirical Model

πim = S ′
mα + Z ′

imβ + W ′
imγi +

∑

j 6=i

δi
jyim +

∑

j 6=i

Z ′
jmφjyjm + uim + um + uo

m + ud
m

(12)

The first version, called “Fixed Competitive Effects,” does not include cost variables and

the competitor’s airport presence in the profit equations (γi = 0, φj = 0, ∀i, j.). The second

version, called “Variable Competitive Effects,” includes cost variables and the competitor’s

airport presence. Within these two versions of the model, we present specifications that

differ by the restrictions on δi
j and by whether or not we estimate the variance-covariance

matrix of the firm-specific errors.

5.1 Fixed Competitive Effects

Table 3 presents estimates from three specifications of model (12) when γi = 0, φj = 0,

∀i, j. Here, the airport presence variables are market and carrier specific and act as exclusion

restrictions and thus help in the identification. Furthermore, in Table 3, we require indepen-

dence among the ǫim’s so any correlation among the profits is due to correlation among the

observables. We relax this assumption later.28

We report the cube that contains the confidence region that is defined as the set that

covers the underlying identified set with 95% probability.29

Column 1 of Table 3 presents the estimation results for a variant of the model estimated

by Berry (1992). This model imposes that δi
j = δ, ∀i, j in Model 12, in addition to the

two restrictions discussed above. This implies that the effect of firms on each other is the

same. In Column 1 of Table 3, the reported confidence interval is the “usual” 95% confidence

interval since the coefficients are point identified. The main limitation of this model is that

the effects of firms on each other are identical, which ensures that in each market there is

a unique equilibrium in the number of firms. The results from this model are presented in

28In previous versions of the paper we addressed the concern that many large cities have more than one
airport. For example, it is possible to fly from San Francisco to Washington on nine different routes. In a
previous version of the paper,we allowed the firms’ unobservables to be correlated across markets between
the same two cities. In the estimation, whenever a market was included in the subsample that we drew to
construct the parameter bounds, we also included any other market between the same two cities. This is
similar to adjusting the moment conditions to allow for spatial correlation. In our context, it was easy to
adjust for it since we knew which of the observations were correlated, i.e., ones that had airports in close
proximity.

29Not every parameter in the cube belongs to the confidence region. This region can contain holes but
here we report the smallest “cube” that contains the confidence region.
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column 1.

Column 2 allows for firms to have different competitive effects on their competitors and for

multiple equilibria in the number of firms. For example, the effect of American’s presence on

Southwest and Delta’s entry decision is given by δAA, while the effect of Southwest’s presence

on the decision of the other airlines is given by δWN . Notice that the dummies introduce

a measure of heterogeneity, as they capture how each firm affects the entry decision of the

other five firms.

Column 3 of Table 3 presents the results from a model that allows the competitive effects

to be the same for each airline, for example we allow Delta’s effect (Delta’s effect is coded as

the effect of a type “LAR” firm) on American (whose effect is also coded as the effect of a type

“LAR” firm) to be different than Delta’s effect on Southwest. Here, the competitive effects

of American, Delta, United, and the type MA are coded as the effect of a type “LAR” firm.

Therefore, δLAR
LAR measures the competitive effect of the entry of a large carrier, for example

American, on another large carrier, for example Delta. δWN
LAR measures the competitive effect

of Southwest on one of the four “LAR” firms. The other parameters are defined similarly.

Berry Specification The estimates are in Column 1 of Table 3. The parameter Average

Competitive Effect captures the effect of the number of firms on the probability of observ-

ing another firm entering a market. We estimate the effect of an additional firm to be

[−10.322,−8.818]. This effect is negative, as we would expect. The larger the number of

firms, the less likely it is that an additional firm enters into the market. As the number of

markets that an airline serves at an airport increases, the probability that the firm enters

into the market increases as well. This is seen from the positive effect of Airport Pres-

ence, which is [2.666, 3.098]. A higher Per Capita Income increases the probability of entry

([9.619, 12.168]), as do the distance between the two market endpoints ([0.008, 0.290]), the

distance from the center of the US ([0.227, 0.630]), and the distance from the closest al-

ternative airport ([0.734, 1.733]). We cannot find evidence of a clear effect of market size

(Population) and of the change in income growth rate. The Wright Amendment has a neg-

ative impact on entry, as its coefficient is estimated to be in [−7.468,−1.581]. The Dallas

fixed effect is also negative, indicating that there are fewer firms in markets out of the two

Dallas airports than in other similar markets.

Next, we present values of the distance function at the parameter values where this func-

tion is minimized. This function can be interpreted as a measure of “fit” among different

specifications that use the same exogenous variables.
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Table 3: Empirical Results 1

Berry (1992)
Heterogeneous

Interaction
Firm-to-Firm Specific

Interaction
Average Competitive

Effect
[-10.322,-8.818]

AA [-10.079, -9.288]
DL [-9.923, -9.482]
UA [-10.979, -9.722]
MA [-10.544, -9.933]
LCC [-12.294, -11.411]
WN [-10.741, -9.984]

LAR on LAR
LAR: AA, DL, UA, MA

[-8.624, -8.443]

LAR on LCC [-11.907, -11.396]
LAR on WN [-9.649, -9.285]
LCC on LAR [-8.319, -7.946]
WN on LAR [-7.481, -7.071]
LCC on WN [-8.889, -8.663]
WN on LCC [-10.022, -9.331]

Airport Presence [2.666, 3.098] [3.759, 4.408] [5.838, 6.097]
Wright [-7.468, -1.581] [-3.323, -2.515] [-1.718, -0.869]
Dallas [-7.111, -1.544] [-6.765, -5.976] [-7.732, -7.031]

Population [-0.594, 0.318] [-0.118, 0.228] [-0.427, -0.219]
Per Capita Income [9.619, 12.168] [10.618, 10.900] [10.417, 10.986]

Income Growth Rate [-0.006, 0.256] [0.095, 0.115] [0.075, 0.103]
Market Distance [0.008, 0.290] [0.098, 0.229] [-0.136, -0.023]
Close Airport [0.734, 1.733] [1.381, 1.609] [0.442, 1.073]

Distance from US
Geographical Center

[0.227, 0.630] [0.525, 0.606] [0.364, 0.490]

Constant [1.209, 2.405] [1.771, 1.876] [0.793, 0.878]

Function
Value

600.846 564.124 556.2837

Multiple in Identity (pct) 72.02 92.42 90.72

Multiple in Number (pct) 0 15.43 19.95

Predicted
Market Structure (%)

29.59 29.97 29.86

These set estimates are appropriately constructed level sets of the sample objective function that cover
the identified set (which might not be convex) with 95% (See Chernozhukov, Hong, and Tamer (2002) and
the Appendix for more details on constructing these confidence regions).
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Berry’s (1992) methodology ensures that the equilibrium is unique in the number of firms,

though there might be multiple equilibria in the identity of firms. To examine the existence

of multiple equilibria in the identity of firms, we simulate results for every market in the

following way. We draw 100 times from the distribution of the errors and calculate the

number of pure strategy equilibria observed at the point where the objective function is

minimized.30 We find that in 72.02% of the markets there exist multiple equilibria in the

identity of firms.

Finally, we report the percentage of outcomes that are correctly predicted by our model.

Clearly, in each market we only observe one outcome in the data. The model, however,

predicts several equilibria in that market. If one of them is the one observed in the data,

then we conclude that our model did predict the outcome correctly. We find that our model

predicts 29.59% of the outcomes in the data. This is a measure of “fit” that can be used to

compare models.

Heterogeneous Competitive Effects The estimates are in Column 2 of Table 3. All

the δ’s are estimated to be negative, which is in line with the intuition that profits decline

when other firms enter a market. The row denoted AA reports the estimates for the effect of

American on the decision of the other airlines to enter into the market. We estimate the effect

of American on the other airlines, the confidence regions for δAA, to be [−10.079,−9.288].

Notice that its magnitude is in line with the homogeneous competitive effect estimated in

column 1. In particular, the confidence regions for these coefficients overlap. The same

can be said about the competitive effect of the other large carriers, Southwest included.

Instead, the entry decision of Low Cost Carriers (LCC) has a slightly stronger effects on

other airlines. The estimate of this effect is included in [−12.294,−11.411].

The coefficient estimates for the control variables are qualitatively similar in Columns 1

and 2. There is a marked difference, however, in the effects of Wright and of Dallas, which are

more precisely estimated; and the Income Growth Rate is now estimated to have a positive

effect on entry.

The presence of multiple equilibria implies that the differences in the competitive effects

are large enough to lead to multiple equilibria in the number of firms in 15.43 percent of the

markets.

With regard to the fit, the percentage of predicted equilibria is 29.97 percent of the markets

30We have experimented with evaluating these findings with other parameter values and found the pre-
dictions to be stable.
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in the sample, not different from the 29.59 percent computed in Column 1. However, the

minimum objective function drops from 600.846 in the “Berry specification” to 564.124 in

the “Heterogenous Interaction” model.

Firm-to-Firm Specific Competitive Effects The estimates are in Column 3 of Table

3. We find that the competitive effect of large firms on other large firms (“LAR on LAR”,

or δLAR
LAR) is [−8.624,−8.443], which is smaller than the competitive effect of large firms on

low cost firms (“LAR on LCC”). The competitive effects are not symmetric, in the sense

that δLCC
LAR is larger than δLAR

LCC . Finally, the competitive effects of Southwest and large firms

on each other are symmetric. Overall, these results suggest that the competitive effects are

firm-to-firm specific. In later specifications we do not allow for the competitive effects to

vary in this very general way to reduce the number of parameters to be estimated. However,

we find that allowing for variable competitive effects and for a flexible variance-covariance

structure leads to results that are equally rich in terms of firm-to-firm effects.

5.2 Variable Competitive Effects

In this Section, we study models where the competitive effect of a firm on the other carriers’

profits of serving that market varies with its airport presence. Following our discussion

in Section 4.2, the exclusion restrictions involve variables that measure the geographical

distance between a market’s endpoints and the closest hub of a carrier, which we maintain

it is correlated with the opportunity cost of providing a market on a non stop basis.

Table 4 presents the results for three specifications of this model. Column 1 of Table 4

reports the estimation results for the model (12) when the errors are assumed to be iid.

In Column 2 we estimate the model (12) but we relax the iid assumption on the firm-

specific errors, ǫim, which includes the other unobservables. We estimate the model with

heterogeneous variances and covariances. The variances we estimate are σ2
DL, σ2

UA, σ2
MA,

σ2
LCC , σ2

WN . We normalize the variance of AA to one. The covariances we estimate are

σLAR,LAR, σLAR,WN , σLAR,LCC , σWN,LCC. The covariance σLAR,LAR measures the covariance

of the firm specific unobservables of American, Delta, United, and the MA type. Similarly,

σLAR,WN measures the covariance of the firm specific unobservables of American, Delta,

United, and the MA with the unobservables of Southwest. This correlation structure of

the unobservable errors allows the unobservable profits of the firms to be correlated. For

example, in markets where large firms face high fuel costs, small firms also face high fuel

costs. Another possibility is that there are unobservable characteristics of a market that we
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are unable to observe and that affect large firms and Southwest differently, so that when

American enters, Southwest does not, and vice versa.

Column 3 estimates the model without the variables measuring airport presence. We

estimate the model of entry using only cost information. Thus, we estimate the Model

(12) under the assumptions β = 0, φj = 0, ∀j. Notice that this specification has fixed,

not variable, competitive effects. We present this specification to address the concern that

airport presence could be endogenous if airlines choose their network, instead of choosing

just whether to enter into a particular market for a given, exogenous, network. This concern

is particularly reasonable when we perform our policy simulation.

Variable Competitive Effects with Independent Unobservables Column 1 of Table

4 provides the results for the full Model (12) when the unobservables are assumed to be

iid. We compare these results to those presented in Column 2 of Table 3. To facilitate

the comparison, it is worth mentioning that in Table 3, the competitive effect of one firm,

for example American, on the others is captured by a constant term, δAA. In Table 4, the

same competitive effect is captured by a linear function of the American’s airport presence,

δAA + φAAZAA,m. Thus, the estimate of δAA should be smaller in Table 4 than in Table3,

the larger is the estimate of φAA.

We find that the fixed competitive effect, measured in the first six rows (AA to WN) of

Table 4 is smaller, in absolute value, than in Table 3. The only exception is the competitive

effect of low cost carriers (δLCC = [−10.504,−9.516]), which is the same in the two tables.

The variable competitive effect, measured by the rows InteractAA to InteractWN, is negative,

implying that the stronger the market presence of an airline, the less likely is the entry of

its competitors in markets where the airline is present. Notice that the only carrier whose

airport presence does not affect in a statistically meaningful way the profits of its competitors

is the LCC type. The cost variable has a negative sign: after controlling for anything else,

a higher cost is associated to lower profits and lower probability of entry. Finally, multiple

equilibria in the number of firms are endemic, as we find that there are in 92.36 percent of

the markets. The model predicts 31.13 percent of the market structures correctly.

Variable Competitive Effects with Correlated Unobservables Column 2 of Table 4

presents the results for this specification. We first discuss the economic magnitude (that is,

the marginal effects) of the parameters estimated in this Column. Then, we conclude by

discussing the results for the variances and the covariances.
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Table 4: Variable Competitive Effects

Independent Unobs Variance-Covariance Only Costs
AA [-5.308, -4.050] [-1.118,-0.757] [-2.866, -2.851]
DL [-3.028, -1.728] [-1.177,-0.986] [-4.346, -4.337]
UA [-5.332, -4.149] [-1.177,-0.986] [-2.782, -2.763]
MA [-7.348, -6.419] [-2.114,-1.897] [-3.272, -3.258]
LCC [-10.504, -9.516] [-2.806,-2.354] [-2.733, -2.675]
WN [-1.099, 2.126] [-1.697,-1.304] [-4.758, -4.748]

InteractAA [-7.238, -4.748] [-2.115,-1.551]
InteractDL [-9.231, -7.898] [-1.601,-1.317]
InteractUA [-10.670, -7.710] [-2.575,-1.580]
InteractMA [-11.537, -6.628] [-2.341,-1.638]
InteractLCC [-13.839, 21.120] [-6.532,-4.364]
InteractWN [-19.538, -14.254] [-2.131,-1.426]

Airport Presence [4.199, 4.583] [1.542,1.641]
Cost [-0.834, -0.067] [-0.115,0.124] [-0.320, -0.313]

CostWN [-2.332, -2.267]
Wright [-9.787,-6.434] [-0.942,-0.741] [-3.262, -3.251]
Dallas [-2.100, 1.291] [-1.064,-0.874] [-0.412, -0.403]

Population [-1.089, 0.038] [0.126,0.295] [1.151, 1.164]
Per Capita Income [6.014, 11.426] [0.260,0.456] [4.121, 4.131]

Income Growth Rate [-0.213, 0.227] [-0.011,0.003] [0.672, 0.673]
Market Distance [-0.682, -0.313] [-0.082,-0.050] [-0.006, -0.002]
Close Airport [0.380, 0.826] [0.118,0.214] [-1.053, -1.045]

Distance from US
Geographical Center

[0.798, 1.191] [0.255,0.275] [0.317, 0.321]

Constant [2.028, 2.712] [0.674,0.710] [-2.688, -2.683]

Variance DL [1.247,1.605]
Variance UA [0.838,1.594]
Variance MA [1.225,1.859]
Variance LCC [1.481,2.258]
Variance WN [1.053,1.566]

Covariance LAR,LAR [0.968,0.995]
Covariance LAR,LCC [0.937,0.963]
Covariance LAR,WN [0.962,0.976]
Covariance WN,LCC [0.895,0.995]

Function Value 659.780 647.30 124.2
Multiple in Identity % 92.36 91.09 89.71

Multiple in Number % 38 17.61 22.28

Predicted
Market Structure %

31.13 31.81 31.08
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Notice that the results are quite similar in Columns 1 and 2, except for the competitive

effects and two control variables, the Wright Amendment dummy and Per Capita Income.

The parameters measuring the competitive effects, δj and φj , are smaller than in Column 1,

but still statistically significant. The coefficients of the Wright Amendment and Per Capita

Income are smaller, indicating that in Column 1 they were picking up some variation in the

data that is now measured by the covariances.

Table 5 presents the marginal effects of the variables. The results are organized in three

panels. The top and middle panel show the marginal effects associated with a change of 1%

at the mean value of each corresponding variable. The bottom panel shows the effect that

the entry of a carrier, for example American, has on the probability that we observe one of

its competitors in the market.

Before presenting our results we clarify up front an important point. Normally, the

marginal effects are a measure of how changes in the variables of the model affect the proba-

bility of observing the discrete event that is being studied. Here, there are six discrete events

that our model must predict, as many as the carriers that can enter into a market, and there

are eight market structures in which we can observe any given carrier. For example, we can

observe American as a monopoly, as a duopoly with Delta, United, and so on. If there were

no multiple equilibria, this would not create any difficulty: We could simply sum over the

probability of all the market structures where American is in the market, and that would

give us the total probability of observing American in the market. However, we do have

multiple equilibria, and we only observe lower and upper bounds on the probabilities of each

market structure. Summing over the upper bounds of the probabilities of the market struc-

tures where American is in the market is not the appropriate solution, because the maximum

probability of observing one market structure, for example an American monopoly, neces-

sarily excludes that we see another market structure, for example a duopoly with American

and Delta, with its maximum probability.

There is one important exception to the point just made. The probability of observing

the market structure with no firms is uniquely identified because the outcome where no

firm enters is uniquely determined in the data. This is because the competitive effects are

negative. Thus, in our discussion we will pay particular attention to this outcome, where no

firm enters into a market.

In the top and middle panel we report the largest change in the average upper bounds of

the probabilities of observing a given carrier in any possible market structure. We compute
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these average upper bounds by taking the means of the upper bounds for one market structure

across markets at the observed values of the exogenous variables. To compute the change

in the upper bounds, we first take the observed values of the exogenous variables and add,

one at a time, a 1% change of its mean value. Then, we recompute the upper bounds of

each market structure in each market and take the average of these upper bounds across

markets after dividing the change by the 1% change in the mean value. Finally, we take the

differences of all the upper bounds for all 64 market structures and we report the largest

change among them.

In the top panel, a 1% increase in the variable Per Capita Income is associated with

a maximum effect of 6.88 percent in the probability of observing American Airlines. The

interpretation of the effect of an increase in Per Capita Income on the probability of observing

other carriers is similar. We find a drop of 2.32 percent in the percentage of markets not

served by any airline (“No Firms”). The interpretation of the results for the other exogenous

market specific variables in the top panel is analogous. Overall, we find that all effects are

reasonably large, with the exception of those for Market Distance and Income Growth Rate

(not reported).

The middle panel reports the effect of a one percent increase in the variables measuring

heterogeneity on the probability of observing an airline, or no airlines (“No Firms”), in the

market. Generally, the effects are much larger in this middle panel than in the top panel,

suggesting that observable heterogeneity is a key determinant of entry. For example, a 1%

increase in American’s airport presence increases the probability of observing American by

as much as 37.76 percent.

The numbers in the bottom panel of Table 5 are derived in a slightly different fashion

from the ones in the top and middle panel. For example, the upper bound is 30.39% for

the market structure where Delta is a monopolist. The upper bound for a duopoly with

American and Delta is 32.31%. Then, the effect of Delta entering into the market alone

on the probability of observing American and Delta can be positive and as high as 1.92%.

However, Delta can also be present in a market with American and other firms. We take the

maximum of the changes in the upper bounds of outcomes where Delta is in, and report it

in the table.

We find that American’s entry can decrease the probability of observing Delta in the

market by as much as 7.69 percent. The effect of American’s entry varies a lot by the

identity of the opponent, as we observe that it is as low as -5.07% on United and as high as
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-28.29% on Low Cost Carriers. Overall, there is a large deal of heterogeneity in the effect

that firms have on each other.

Table 5: Marginal Effects

AA DL UA MA LCC WN No Firms

Per Capita Income 6.88 7.99 6.79 6.23 7.99 6.04 -2.32
Distance from Center 5.66 6.24 5.80 5.45 6.24 5.45 -1.82

Population 4.76 6.07 4.35 4.25 6.07 3.54 -1.62
Market Distance 0.97 1.22 0.65 1.14 0.63 0.68 0.48
Close Airport 4.26 5.79 4.26 3.74 5.79 3.66 -1.45

Airport Presence AA 37.76 34.01 25.73 37.76 29.49 29.03 -4.67
Airport Presence DL 19.43 24.34 14.00 24.17 24.34 17.37 -3.54
Airport Presence UA 30.84 34.93 34.93 30.84 24.91 25.18 -0.40
Airport Presence MA 7.63 19.56 6.68 25.76 15.42 8.43 0
Airport Presence LCC 1.87 24.28 3.74 11.21 24.28 1.87 0
Airport Presence WN 24.27 27.81 20.12 28.66 22.56 28.66 -2.93

AA ... -7.69 -5.07 -23.71 -28.29 -11.47
DL 1.91 ... -2.65 -16.14 -21.23 -6.61
UA -8.03 -13.31 ... -28.13 -32.27 -16.18
MA -12.20 -12.31 -13.65 ... -28.93 -17.09
LCC -16.03 -16.66 -17.04 -28.19 ... -20.41
WN -9.62 -12.45 -11.36 -26.75 -30.81 ...

The numbers that we report are marginal effects. They are appropriately selected percentage changes in
the original probability of a particular outcome. In the top and middle panel we report the largest change in
the average upper bounds of the probabilities of observing a given carrier in any possible market structure.
For example, the market structure where Delta is a monopoly has an upper bound of 30.39%. We find
that this upper bound drops to 30.37% when the Per Capita Income increases by 1% of its mean (that is,
by 0.0032). Then, the change in the upper bound is equal to -6.23%. We repeat this for all the market
structures and we take the largest of these changes. In the bottom panel, we report the the maximum of the
changes in the upper bounds of outcomes where a firm is in, when another firm enters into the market, and
report it in the table.

With regard to the estimated variances, they are all quite close to 1, which is the value at

which we normalized the variance of the unobservables of American. Only the variance for

the unobservables of LCCs can be twice as large as the one of American. This might be a

result of our aggregation process, where possibly very different low cost carriers are lumped

in a single type. It might also be indicating that the profits made by low cost carriers are
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significantly smaller than the one made by the larger carriers.

With regard to the estimated correlations, they are all high. We interpret this as evidence

that there are unobservable determinants of profits that are highly correlated across firms.

These might be demand unobservables or common market shocks that the market and airport

unobservables do not pick up. We leave the study of the nature of these unobservable

variables that are correlated across firms to future research.

Only Costs Column 3 of Table 4 reports the results when we exclude airport presence and

only include the costs as firm-specific determinants of profitability. These results should be

compared with those in Column 2 of Table 3. In both of these Columns the competitive

effects are negative but they are larger in Table 3. The differences in the magnitudes are

explained by the differences in the estimates of the constant terms and of the variable Per

Capita Income. Notice, however, that the fits, measured by the percentage of predicted

market structures are very close. We will use the results for this specification to check the

robustness of our findings in the Policy Experiment section.

6 Policy Experiment: The Repeal of the Wright Amend-

ment

We develop a policy experiment to examine how our model predicts that the market struc-

tures change in markets out of Dallas Love after the repeal of the Wright Amendment. To

this end, it is crucial to study the individual firms’ strategic response to the repeal of the

amendment.

In practice, we first take all the 113 markets out of Dallas-Love and simulate the predicted

outcomes when the Wright Amendment is still in place. We then repeal the law (we set the

variable Wright equal to zero) and recompute the new predicted outcomes. Following the

same approach as when we computed the marginal effects, we report the maximum change

in the average upper bounds of the probabilities of observing a given carrier in any possible

market structure before and after the Wrigth Amendment is repealed. Our estimates provide

a within model prediction of the effect of the repeal that should be interpreted in the short

term.

We present the policy simulations when we use two different specifications. The specifi-

cations are a select choice of those in Table 4.

Column 1 of Table 6 reports the policy results when we use the specification in Column
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Table 6: Predicted Probabilities for Policy Analysis: Markets out of Dallas-Love

Airline Variance-Covariance Cost
Specification (Col 2 of Table 4) (Col 3 of Table 4)

No Firms [-18.86,-20.13,-21.28] -.282
AA [3.78,5.24,5.44] 0.162
DL [4.67,4.83,5.11] 0.179
UA [6.60,7.63,10.57] 0.136
MA [11.36,12.27,14.05] 0.170
LCC [13.19,14.01,15.02] 0.184
WN [14.36,15.73,16.75] 0.184

2 of Table 4. We report confidence intervals on the effect along with the minimized value

of the objective function. The first result of interest is in the first row, which reports the

probability of observing markets not served by any carrier. We find that the percentage of

markets that would not be served would drop by 20.13 percent after the repeal of the Wright

Amendment, suggesting that its repeal would increase the number of markets served out of

Dallas Love. Of those new markets, as many as 16.75 percent could be served by Southwest.

American and Delta, which have strong airport presences at Dallas/Fort Worth would serve

a percentage of these markets that is, respectively, at most equal 5.44 and 5.11 percent.

These marked changes in market structures suggest that one reason why the Wright

Amendment had not been repealed until 2006 was to protect American monopolies in markets

out of Dallas/Fort Worth. Repealing the Wright Amendment would lead to a remarkable

increase in service in new markets out of Dallas Love, and thus reduce the incentive for

American to prevent entry of new competitors in markets out of Dallas/Fort Worth. As

we said, these are dramatic increases, and raise some concern that our methodology might

overestimate the effects of the repeal of the Wright Amendment. First, we tried to get

some anecdotal information on how Southwest plans to react to the repeal of the Wright

Amendment. We checked Southwest’s webpage, and found out that since the partial repeal

of the Wright Amendment in October 2006, Southwest has started offering one-stop, same

plane or connecting service itineraries to and from Dallas Love Field to 43 cities beyond the

Wright Amendment area. This pattern of entry in new markets confirms that the repeal of

the Wright Amendment is bound to have dramatic effects on airline service out of the Dallas
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Love airport.

As a second check, we compare our results with those that we would derive from a specifi-

cation where the airport presence variables are not included. The policy change might be so

major that firms change their network structure when the Wright Amendment is repealed.

Column 3 of Table 6 reports the policy results (only the minimized function values) when we

use the specification presented in Column 3 of Table 4. This last specification shows results

that are close to the ones in Column 1 of Table 6.

7 Conclusions

This paper is a first step in the development of methods that study inference in entry

models without making equilibrium selection assumptions. To that extent, these methods

can be used to study the effect of multiple equilibria on parameters of interest. However, the

methodology used in this paper has important limitations. The model imposes distributional

assumptions on the joint distribution of the unobservables and on the shape of the variable

profit function. Though it is conceptually possible to study the identification problem in

our model without making strong parametric assumptions, it is not clear at this point that

the ensuing results are practically attractive. We leave the important work of relaxing

further the parametric assumptions to future research. The econometric analysis allows

for flexible correlation among firm unobservables and for spatial correlation among market

unobservables. In addition, it is possible to test whether a certain selection mechanism is

consistent with the data and model by verifying whether estimates obtained under a given

mechanism lie in our sets. To do that, one needs to deal with model misspecification, a topic

that we leave for future research.
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8 Appendix

8.1 Simulation Procedure

We simulate the functions H1(X, θ) and H2(X, θ) for a given X and θ as follows.

Set Ĥ1(X, θ) = Ĥ2(X, θ) = 0. Moreover, for every market, generate and store R draws
from the distribution F with identity variance covariance matrix. The number of simulation
is assumed to go to infinity with sample size. More on this below. For each simulation
r = (1, . . . , R):

• Step 1:
Transform the given matrix of epsilon draws into a draw with covariance matrix spec-
ified in θ. This is stored in ǫ

r.31

• Step 2:
Using the profits functions from (1), calculate

π(yj,X, θ, ǫr) = [π1(y−1,X, θ, ǫr
1), ..., πK(y−K,X, θ, ǫr

k)]

for all j = 1, ..., 2K.

• Step 3:
This step finds the equilibria of the game:

1. For all j ∈ {1, ..., 2K} such that π(yj,X, θ, ǫr) ≥ 0, set Ĥj
2 = Ĥj

2 + 1.

2. If there is a j ∈ {1, ..., 2K} such that π(yj ,X, θ, ǫr) ≥ 0 uniquely, i.e., there is no

j′ 6= j such that π(yj′ ,X, θ, ǫr) ≥ 0, then Ĥj
1 = Ĥj

1 + 1 .

This will provide us with the simulated versions

1

R
Ĥ2(X, θ) and

1

R
Ĥ1(X, θ)

8.2 Consistency, Practical Estimation and Confidence Regions

In this section, we describe consistency and set estimation.

First Stage Estimation of Choice Probabilities: Our minimum distance estimator
calls for estimating the choice probability vector P(x) = P(y|X = x) used in (6) in a first
step. We can use a nonparametric conditional expectation estimator to obtain this estima-
tor, Pn(x). The CHT theory that is developed for obtaining confidence regions for sets rely

31There are many ways to do this, one of which is to obtain the Cholesky decomposition of the given
covariance matrix and use it to transform independent draws into dependent draws.

38



on having a finite number of moment inequalities, hence we assume that the data has finitely
many support points (discrete support), or that

X ∈ Sx = {x1, . . . , xJ} (13)

Here, we bin the continuous observations (like Per Capita Income) into 10 decile groups.
To estimate the choice probabilities, one can use a nonparametric frequency or cell based
estimator. The slight negative of this estimator is that with a large number of support points
crossed with market structures, one runs into having too few data points in some cells. This is

a typical finite sample problem32. We use here a multinomial logit estimator to get, P
(y′)
n (x),

and assume that these consistently estimate the conditional choice probabilities. It is easy
to see that in this case

supx|P (y′)
n (x) − P (y′)(x)| = maxx{P (y′)

n (x1) − P (y′)(x1), . . . , P
(y′)
n (xJ ) − P (y′)(xJ )} = op(1)

The objective function we use again is

Q(θ) =

∫ [
‖ (P (x) − H1(x, θ))− ‖ +

∥∥(P (x) − H2(x, θ))+

∥∥]
dFx

=

J∑

j=1

pj

[
‖ (P (xj) − H1(xj , θ))− ‖ +

∥∥(P (xj) − H2(xj , θ))+
∥∥]

where (A)− = [a11[a1 ≤ 0], . . . , a2k1[a2k ≤ 0]] and similarly for (A)+ for a 2k vector A, ‖.‖
is the Euclidian norm, and pj is the probability conditional on X = xj . It is easy to see
that Q(θ) ≥ 0 for all θ ∈ Θ and that Q(θ) = 0 if and only if θ ∈ ΘI , the identified set in
definition 1 above. The sample analog of the above objective function is:

Qn(θ) =
1

N

n∑

i=1

[∥∥∥∥
(
Pn(xi) − Ĥ1(xi, θ)

)

−

∥∥∥∥ +

∥∥∥∥
(
Pn(xi) − Ĥ2(xi, θ)

)

+

∥∥∥∥

]
(14)

where ||.|| is the Euclidian distance and again Pn(x) is the vector of 2k choice probabilities
estimated from the data (using a multinomial logit here). The confidence regions are appro-
priately constructed level sets of the objective function. To apply theorem 3 above, we need
to check the uniformity results in the statement of the theorem.

Theorem 4 Let assumption 1 hold. Let n, R → ∞ (# of markets goes to infinity), and
n/R → 0. Let x ∈ Sx = {x1, . . . , xd}. Suppose that Pn(xi) →a.s. P (xi) for all x ∈ Sx. Let
νn → ∞, νn

n
→ 0. Suppose also that

√
n(Pn(xi) − P (xi)) →d N(0, σ2

i ) for all i = 1, . . . , d.
Then:

supθ∈Θ|Q′
n(θ) − Q(θ)| = op(1)

32This is usually handled by using a “stochastic” window, similar to a kernel, that joins multiple cells
into one. This window shrinks as sample size increases. Hence, these methods in finite samples, depend on
choosing smoothing parameters and hence are cumbersome to use. In a previous version of the paper, we
used these nonparametric methods, but the current version contains a richer set of regressors which makes
the use of these methods cumbersome.
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proof: First, for simplicity let us assume that x takes one value, i.e., d = 1. Then we have,

Qn(θ) = (Pn − Ĥ1(θ))
2
− + (Pn − Ĥ2(θ))

2
+

The calculations below are derived from the observation that

|a2
+ − b2

+| ≤ (a+ + b+)|(a − b)|

|a2
− − b2

−| ≤ |a− + b−||a − b|

|Qn(θ) − Q(θ)| = |(Pn − Ĥ1(θ))
2
− + (Pn − Ĥ2(θ))

2
+ − (P − H1(θ))2− − (P − H2(θ))2+|

≤
(
(Pn − Ĥ2(θ))+ + (P − H2(θ))+

)
(|Pn − P | + |Ĥ2(θ) − H2(θ)|)

+
∣∣∣(Pn − Ĥ1(θ))− + (P − H1(θ))−

∣∣∣ (|Pn − P | + |Ĥ1(θ) − H1(θ)|)

≤ K1|Ĥ1(θ) − H1(θ)| + K2|Ĥ2(θ) − H2(θ)| + op(1)

Hence,

supθ|Qn(θ) − Q(θ)| =(i) op(1)

where (i) follows from the class of indicator functions being Glivenko-Cantelli. Q.E.D.

A key statistic for building confidence regions is

Cn = sup
θ∈ΘI

nQn(θ)

This is because our confidence regions are level sets, Cn(c) of the objective function Qn(.) as
follows:

Cn(c) = {θ ∈ Θ : nQn(θ) ≤ c} (15)

Hence, a set Θ̂I = Cn(c) covers ΘI at level α:

P (ΘI ⊆ Θ̂I) = P

(
sup
θ∈ΘI

nQn(θ) ≤ c

)
= P (Cn ≤ c)

if c is chosen as the level-α quantile of Cn. As usual we use large n asymptotics to approximate
this cutoff level. To do that we need to derive this asymptotic distribution of Cn. First, define
the boundary of the set as

∂ΘI = {θi ∈ ΘI : H1(xj ; θI) = P (xj) or H2(xj ; θI) = P (xj), for some j ≤ J}

and let nj = 1
n

∑
i 1[xi = xj]. Define, Ŵj :=

√
n(Pn(xj) − P (xj)) for j = 1, . . . , J . Assume

also that a central limit theorem and a law of large number apply such that
(
Ŵ1, . . . , ŴJ

)
→d (W1, . . . , WJ) ∼ N (0, Ω) and

nj/n →p pj for each j ≤ J
(16)
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To deal with the presence of the simulated quantities, we assume that the number of sim-
ulations, R, goes to infinity at a rate R = O(n2+α) where α > 0. This will guarantee that
the simulations will not have an effect on the asymptotic distribution and hence can be
ignored. Given the above, assumption 1 and assuming also that the parameter space is a
compact subset of a finite dimensional Euclidian space, one can show using similar steps as
for example page 16 of CHT (2002 Working Paper version) that

Cn →d C (17)

where

C = sup
θ∈∂ΘI

J∑

j=1

(Wj)
2
+1 [Pj = H1(xj)] + (Wj)

2
−1 [Pj = H2(xj)] (18)

It is hard to simulate the α-quantile of the above statistic since it is not pivotal. We follow
CHT and subsample the distribution of Cn above to obtain an asymptotic approximation to
its α quantile. We use a modified procedure to account for misspecification of the model
(where the minimum of the function Q in the population might not be equal or even close
to zero). We instead report the following:

Θ̂I =
{

θ ∈ Θ : n
(
Qn(θ) − min

t
Qn(t)

)
≤ c

}
(19)

First, we construct all subsets Bn of size b << n. We take b to be equal to n/4.33 We start
with an initial value c(0) for the cutoff (see below for a way to choose this c(0)). We then
compute

Ĉi,b,n,c0 = sup
t∈Cn(c(0))

b(Qb(t) − qb) = sup
t∈Cn(c(0))

b
(
Qb(t) − min

t
Qb(t)

)
(20)

for each i-th subset, i ≤ Bn where Cn(c(0)) = {θ ∈ Θ : n (Qn(θ) − mint Qn(t)) ≤ c0}. This
involves minimizing the objective function at each subsample. Here, we use Nelder Mead
with a starting value equal to the argmin obtained using the full dataset.

Initial Choice of c(0):

The initial choice of the cutoff that we use here is always 25% above the minimum sample
objective function value. Starting with this initial choice, we iterate the objective function
twice and use that final cutoff level as the quantile that defines our confidence region. We find
that iterating further does not change the cutoff by much. We then compute the α-quantile
of the numbers Ĉi,b,n,c(2) which provides appropriate coverage properties (asymptotically).
Hence, our confidence regions reported in the tables are Cn(c(2)). One can also use c(0) = 0
as the starting cutoff. This was shown in CHT, for this class of models, to deliver a set with
the appropriate confidence property.

Summary of Procedure to Obtain Confidence Regions:

1- We minimize the objective function Qn(.) using a genetic algorithm that we describe

33There is not general theory of picking a subsample size. See Politis, Romano, and Wolf (1999) for more
on this point. However, trying different b′s in this paper led to similar results.
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below. In the process, we collect values for the objective function at many (≈ 10, 000)
randomly chosen parameters using this MCMC-like procedure.
2- For every subsample, we minimize the subsampled objective function (the one constructed
with the subsample as opposed to the full dataset)over the initial estimate of the set we

constructed in step (1) above. We then obtain the empirical α-quantile of the set {Ĉi,b,n,c0 :
i ≤ Bn}. That gets us a new cutoff ĉ(1). Note that here, we need to evaluate qb at each
subsample which requires an optimization step. We do this using Nelder Mead starting at
the overall minimum found in step 1 above.
3- We iterate steps 1 and 2 above two times to obtain ĉ(2).
4- We replace c with ĉ(2) in (19) to obtain the confidence region we report. It is then easy
to prove (similar to Lemma 3.1 of CHT) the following lemma.

Lemma 5 Suppose that (??) holds where C is as in (18). Then for any ĉ →p c(α) :=
inf{c ≥ 0 : P{C ≤ c} ≥ α} for α ∈ (0, 1), such that ĉ ≥ 0 with probability 1, we have that as
n → ∞, P{ΘI ⊆ Cn(ĉ)} = P{Cn ≤ ĉ} = P{C ≤ c(α)} + o(1) = α + o(1) if c(α) > 0, and
P{ΘI ⊆ Cn(ĉ)} = P{Cn ≤ ĉ} ≥ P{C = 0} + o(1) ≥ α + o(1) if c(α) = 0.

It is also worth noting that the confidence region in this model, Θ̂I is a consistent estimator
of ΘI .

Computational Issues:

The optimization was done using some version of simulated annealing and Nelder Mead.
For each specification, we started our search from at least 5 starting values and used both
the simulated annealing and its adaptive version.34 This is helpful since genetic algorithms,
although slow, scan the surface of the function and thus allow us to obtain the level sets
needed to construct our set estimates. From the overall minimum, we run annealing for a
while longer (usually a day or two for every specification) to evaluate the functions at many
different parameter values close to the minimum we found. This will give us a snapshot of
the surface of the function.

One issue when solving for equilibria of a given game, is that sometimes the game only
admits equilibria in mixed strategies. We ignore this problem when looking for the minimum.
But, as a robustness check, we then compute at the optimal parameter value, the percentage
of markets with only mixed strategy equilibria. This turned out to be at most 2% over all
the specification we ran.

To construct the confidence intervals we subsample the data sets with subsample sizes
equal to 10% of the data. The results did not change much when using subsamples of smaller
sizes. We also simulate from the error term in every subsample which guarantees that the
simulation error is taken care of. Moreover, note that subtracting the minimum of the
function as in (20) above is essential to guarantee that the confidence regions are nonempty.
This is important since, we assume throughout that the model is well specified and that the
set ΘI is non-empty.

34For the simulated annealing, we used Bill Goffe’s algorithm (Goffe, Ferrier, and Rogers (1994)). For the
adaptive version we used L. Ingber’s methods available at www.ingber.com

42



8.3 Data Construction

We use three datasets from the Origin and Destination Survey (DB1B), which is a 10 percent
sample of airline tickets from reporting carriers. The observations are from the first quarter
of 1993 to the third quarter of 2004. These data are collected by the U.S. Department of
Transportation.35

The first dataset is the DB1B Coupon Origin and Destination Dataset, which provides
coupon-specific information for each domestic itinerary of the Origin and Destination Survey,
such as the operating carrier, origin and destination airports, number of passengers, fare
class, coupon type, trip break indicator, and distance. We merge this dataset by operating
carrier with the T-100 Domestic Segment Dataset. The T-100 Domestic Segment Dataset
contains domestic market data by air carriers, origin and destination airports for passengers
enplaned. The T-100 is not a sample: It reports all flights occurred in the United States in
a given month of the year.

¿From the merged dataset we drop those tickets involving flights that are not provided
on a regular basis or for which there is no record in the T-100 segment. We drop all tickets
that involve a flight that is not provided at least once a week.

Then, we merge by ticket id numbers the reduced DB1B Coupon Origin and Destination
Dataset with the DB1B Market and Ticket Origin and Destination Datasets. The DB1B
Market Origin and Destination Dataset contains directional market characteristics of each
domestic itinerary of the Origin and Destination Survey, such as the reporting carrier, origin
and destination airport, prorated market fare, number of market coupons, market miles
flown, and carrier change indicators. The DB1B Ticket contains summary characteristics
of each domestic itinerary on the Origin and Destination Survey, including the reporting
carrier, itinerary fare, number of passengers, originating airport, roundtrip indicator, and
miles flown. The unit of observation in this dataset is a ticket.

One important issue is how to treat regional airlines that operate through code-sharing
with national airlines. We assume that the decision to serve a spoke is made by the regional
carrier, which then signs code-share agreements with the national airlines. As long as the
regional airline is independently owned and issues tickets, we treat it separately from the
national airline.

We define a market as the trip between two airports, irrespective of intermediate transfer
points. Because of data limitations, Berry (1992) defined a market as the market for air
passenger travel between two cities, which rules out that demand is different for airports in
the same city or metro area. Following Borenstein (1989), we assume that flights to different
airports in the same metropolitan area are in separate markets.

We drop: 1) Tickets with more than 6 coupons; 2) Tickets involving US-nonreporting
carrier flying within North America (small airlines serving big airlines) and foreign carrier
flying between two US points; 3) Tickets that are part of international travel; 4) Tickets
involving non-contiguous domestic travel (Hawaii, Alaska, and Territories); 5) Tickets whose
fare credibility is questioned by the DOT; 6) Tickets that are neither one-way nor round-trip
travel; 7) Tickets including travel on more than one airline on a directional trip (known as
interline tickets); 8) Tickets with fares less than 20 dollars; 9) Tickets in the top one percentile

35These data are publicly available at http://transtats.bts.gov/homepage.asp.
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of the year-quarter fare distribution. Finally, Berry (1992) defines a firm as serving a market
if it transported at least 90 passengers in one quarter. This corresponds to a once a week
flight by a medium size jet. Since we already control for firms that fly less than once a
week and since markets can be served by small regional jets, we change the threshold to
20 passengers. We then aggregate the ticket data by ticketing carrier and thus the unit of
observation is market-carrier-year-quarter specific.

In this paper we are only interested in knowing whether a carrier served a market. There-
fore the aggregation is straightforward: For each carrier, we construct a categorical variable
that is equal to 1 if the carrier serves the market, and 0 otherwise. After constructing the
categorical variables, the relevant unit of observation is market-year-quarter specific.

To select the markets, we merge this dataset with demographic information on population
from the U.S. Census Bureau for all the Metropolitan Statistical Areas of the United States.
We then construct a ranking of airports by the MSA’s market size.

As mentioned in the text, we include markets that are temporarily not served by any
carrier. To identify markets that are almost never served by any carrier from markets that
are only temporarily not served by any carrier we proceed as follows. We consider the full
1993-2006 dataset of market-carrier-year-quarter observations. For each market, we compute
the number of quarters that a market has been served by at least one carrier. Then, we drop
from the dataset those markets that have not been served in at least 30 percent of the 47
quarters in the full dataset. We keep markets out and to Dallas Love airport which are at
least 500 miles distant from the Dallas airport. This last condition is to investigate the effect
of the Wright Amendment on carriers’ entry decision.

We drop markets where one of the two endpoints is one of these hubs: Minneapolis, De-
troit, Memphis, Cleveland, Newark, Houston International, Charlotte, Philadelphia, Pitts-
burgh, Phoenix, Las Vegas.

8.4 Medium Airlines and Low Cost Carrier Types

We lump some of the carriers in our dataset in two types. There are two reasons why do this.
First, many low cost carriers are present in only a few markets, and lumping them allows us
to use a meaningful grouping capturing the impact of a small low cost carrier presence in
the market. Second, the number of possible market structures that can be an equilibrium
grows exponentially with the number of firms. For any K firms, there are 2K possible market
structures. In the most general specification of the model, one in which the payoffs for each
firm depends on whether 18 other firms enter a market, one needs to compute the choice
probabilities for a vector of size 218. This is clearly prohibitive.

8.5 Carrier Airport Presence in more detail

The construction of the variable Carrier Airport Presence is straightforward. For example,
when we consider Delta, we proceed as follows. If Delta serves 60 markets out of Atlanta and
there are 84 markets that are served out of Atlanta, then for each market that we consider
out of Atlanta (e.g. Atlanta-Chicago O’Hare), Delta serves 59/83 ≃ 71 percent of the other
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markets out of Atlanta. We repeat the same computation for the other endpoint, and then
take the average.

The construction of the variable requires some additional steps when we consider types of
firms. When we consider the Medium Airlines (MA), we first compute the airport presence
for USAir, Continental, and America West, and then we take the maximum of the three.
When we consider the Low Cost Carriers (LCC), we first compute the airport presence of
each of the low cost carriers, and then again we take their maximum.

8.6 Details on the Wright Amendment

The Wright Amendment restricted flight to states neighboring Texas by only allowing only
flights with only a small commuter plane with up to a total capacity of 56 passengers. To
understand how the amendment affected competition in markets out of Dallas Love, it is
essential to know that one characteristic that distinguishes Southwest Airlines from other
national carriers is Southwest’s reliance on only one aircraft type, the Boeing 737. Southwest
flies a single type of aircraft to simplify operations in terms of maintenance (older planes
can be used for replacement parts), staffing, and training. Boeing 737s have a capacity of
no less than 100 passengers.

The two main arguments in support of the Wright Amendment were that the amendment
only applied to Love Field, not to Southwest; and that Southwest could fly nationwide from
Dallas/Fort Worth, which is done by other low-cost carriers.36

Southwest, however, claimed that providing service at Dallas/Fort Worth would split their
operation unnecessarily between the two airports, breaking their network and driving their
costs up.

Southwest lobbied for the repeal of the Wright Amendment, claiming that it was “protec-
tionist, anti-competitive, and anti-consumer”.37 Finally, in October 2006, a bill was enacted
that determined the full repeal of the Wright Amendment in 2014.

36See www.keepdfwstrong.com, for example.
37From the statement regarding repeal of the Wright Amendment from South-

west Airlines’ CEO Gary Kelly, available from Southwest’s website. See http :
//www.southwest.com/travel center/wright timeline.html.
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