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Abstract

This paper provides a simple analysis of the e®ects of network structure on the scheduling,
tra±c, and aircraft-size choices of a monopoly airline. The analysis shows that switching to
an HS network leads to increases in both °ight frequency and aircraft size, while stimulating
local tra±c in and out of the hub. In addition, HS networks are shown to be preferred by the
airline when travel demand is low, when °ights are expensive to operate, and when passengers
place a high value on °ight frequency but are not excessively inconvenienced by the extra
travel time required for a connecting trip. The welfare analysis shows that the °ight frequency,
tra±c volumes, and aircraft size chosen by the monopolist are all ine±ciently low under both
network types. Moreover, in the most plausible case, the monopolist's network choice exhibits
an ine±cient bias toward the HS network, apparently re°ecting an excessive desire to economize
on the number of °ights.
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1. Introduction

In the period immediately following U.S. airline deregulation, °ight frequency increased on

most routes. As shown by Morrison and Winston (1986, 1995), a route-weighted measure of

°ight frequency rose by 9.2 percent between 1977 and 1983, generating passenger bene¯ts in

excess of $10 billion per year. This outcome might be viewed as surprising given the features

of the previous regulated system. Since many observers believed that fare regulation led the

airlines to compete on °ight frequency and other elements of service quality, deregulation

might have been expected to cut frequencies, which were widely viewed as excessive (see, for

example, Douglas and Miller (1974)). Morrison and Winston explain the opposite outcome by

pointing to another byproduct of deregulation: the growth of hub-and-spoke (HS) networks.

While tra±c concentration in HS networks allows an airline to exploit \economies of tra±c

density," thereby reducing cost per passenger, Morrison and Winston argue that HS networks

also stimulate °ight frequency, a view that is common in the literature.

The growth of HS networks has generated a substantial body of theoretical research, which

predicts that, by exploiting economies of density, HS networks put downward pressure on fares.1

This key prediction has been con¯rmed in a number of empirical studies.2 However, only two

theoretical papers, Berechman and Shy (1998) and Brueckner and Zhang (2001), analyze the

connection between network structure and airline scheduling. As a result, the theoretical basis

for Morrison and Winston's network-based explanation for °ight-frequency growth remains

relatively undeveloped. To deepen our understanding of scheduling in networks, the present

paper o®ers a model that improves upon previous work. The model generalizes the framework

of Brueckner and Zhang (2001) (which in turn built upon Berechman and Shy (1998)) by

eliminating several restrictive assumptions. The result is a framework that captures nearly all

the key elements of the airline's optimization problem.
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In the model, a passenger has a preferred departure time and dislikes \schedule delay,"

which equals the di®erence between the actual and preferred departure times. Since schedule

delay falls on average as °ight frequency increases, the passenger's willingness-to-pay for air

travel rises with frequency, shifting the demand curve outward. Frequency is costly, however,

and the airline balances the demand-side gains from greater frequency against these higher

costs in ¯nding the optimum.3

Although the analysis handles demand somewhat di®erently than in Brueckner and Zhang

(2001) (hereafter BZ), the main departure from their model lies in the assumptions on airline

costs. The present model assumes that each °ight entails a ¯xed cost as well as a variable

cost per seat. As a result, cost per passenger falls with aircraft size, capturing the well-known

economies from operation of larger aircraft. By contrast, BZ assumed a ¯xed cost but no vari-

able cost, so that a °ight could costlessly accommodate additional passengers (in e®ect, aircraft

are so large they never become full). Because of these unrealistic assumptions, the relevance

of BZ's analysis could be questioned, suggesting the need for the present generalization.

To focus on the e®ect of network structure on scheduling, the model portrays the simplest

possible case, where a monopoly airline serves just three cities. In a point-to-point, or \fully-

connected" (FC) network, the airline operates three routes, connecting each pair of cities.

In a hub-and-spoke (HS) network, one city serves as the hub, and the airline operates only

two routes. Passengers in one of the city-pair markets must then make a connecting trip,

passing through the hub. The goal of the analysis is to compare the solutions to the airline's

optimization problem for the FC and HS cases. In addition to comparing °ight frequencies,

the analysis compares aircraft sizes, passenger volumes and fares between the two network

structures.

If passenger volumes in each of the three city-pair markets were ¯xed along with aircraft

sizes, then the e®ect of network structure on °ight frequency would be transparent. Because of

the need to send passengers in one of the three city-pair markets through the hub, the tra±c

volume on each of the two HS routes would exceed that on each of the three FC routes. With

¯xed aircraft sizes, more-frequent °ights would then be required to accommodate the greater

tra±c per route in the HS case. However, since the model portrays the airline as choosing
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aircraft sizes and passenger volumes along with °ight frequency, this simple argument does

not apply directly. However, the analysis shows that adjustments along these margins do not

overturn the above conclusion: °ight frequency is shown to be higher in the HS than in the

FC network.

In addition, the analysis shows that the airline operates larger aircraft in the HS case

while carrying more passengers in at least two of the three city-pair markets. In these two

markets, where \local" passengers travel nonstop between the hub and the two nonhub cities,

the higher tra±c volume is accompanied by higher, not lower, fares. The reason is that higher

°ight frequencies raise a passenger's willingness-to-pay, shifting the demand curve outward.

Like a similar ¯nding in BZ, this result contradicts the standard view, which argues that lower

cost per passenger in an HS network should lead to lower fares for local passengers. This view,

however, overlooks the e®ect of higher frequency, which means that the HS network o®ers a

better quality product to local passengers. By contrast, the e®ects of the HS network on fares

and tra±c in the third city-pair market, where passengers must connect at the hub rather than

traveling nonstop, are ambiguous. The reason is that the longer HS travel time dilutes the

gain from higher °ight frequency, making the demand shift ambiguous for these passengers,

while the cost of serving them rises (they require seats on two °ights rather than one).

The paper also analyzes the airline's choice between the HS and FC networks, showing

how parameter changes alter the identity of the preferred network. For example, the analysis

shows that the HS network is preferred when the demand for air travel is low. Finally, the

paper presents a welfare analysis, contrasting the pro¯t-maximizing and socially optimal values

of °ight frequency and the other variables. While the monopolist's decisions regarding these

variables are generally ine±cient, the same conclusion applies to the choice of network type

(HS vs. FC), with the social planner sometimes preferring a di®erent type than the airline.

Overall, the results of the analysis appear to recapitulate many of the observed charac-

teristics of HS networks, suggesting that the model may capture some essential features of

the optimization problem confronting a network carrier. However, a drawback to the analy-

sis is that, for reasons of tractability, it focuses on the monopoly case. It is likely, however,

that many of the conclusions would carry over to an oligopoly version of the model. Such an
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extension could be a task for future research.

Section 2 of the paper presents the setup of the model, while section 3 analyzes the FC

network. Section 4 analyzes the HS network, and Section 5 compares °ight frequency and the

other choice variables between the two network types. Section 6 analyzes the airline's network

choice, and Section 7 presents the welfare analysis. Section 8 o®ers conclusions.

2. Model Setup

The monopoly airline serves three symmetrically located cities, A, B and H, as shown in

Figure 1. Demand for travel exists between each pair of cities, yielding three city-pair markets:

AH, BH and AB. While round-trip travel occurs in both directions in each market (i.e., A

to B and back, B to A and back), the analysis focuses on the demand for one-way travel in

a single direction in each market, recognizing that symmetric one-way trips also occur in the

other direction.

In an FC network, the airline operates °ights between each pair of cities, so that nonstop

travel occurs in each city-pair market. In an HS network, the airline operates °ights on only

two routes, those connecting cities A and B to the hub H. Although passengers in markets

AH and BH still enjoy nonstop service, AB passengers must make a connecting trip, changing

planes at the hub. Thus, °ights in the HS network carry both local tra±c (passengers in

markets AH or BH) and connecting tra±c (passengers in market AB).

Travel demand is identical in the three city-pair markets, and it is derived as follows.

Consumer utility is given by u = C + B ¡ time cost, where C is consumption and B is travel

bene¯t, which varies across consumers. Time cost consists of two components, the cost of

schedule delay and the cost of actual travel time. The latter cost equals G for nonstop travel

between any pair of cities. To derive the cost of schedule delay, suppose that airline °ights are

evenly spaced around the clock, with T denoting the number of available hours. Then, letting

f denote the number of °ights, the time interval between °ights is T=f , and average time to

the nearest °ight is a quarter of this value, T=4f. Suppose that consumers' preferred departure

times are uniformly distributed around the clock and that each hour of discrepancy between

the preferred and actual °ight time generates a schedule-delay cost of ±. Then, the average
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schedule-delay cost is ±T=4f . Assuming this average value is relevant for each consumer, utility

is then equal to C + B ¡G¡ ±T=4f .

This formulation involves the crucial simpli¯cation that each consumer cares about average

schedule delay even though desired departure times are heterogeneous. To justify this sim-

pli¯cation, one approach is to imagine that consumers commit to travel before knowing their

preferred departure times. If these times are randomly drawn from a uniform distribution, then

average schedule delay as computed above is relevant. Alternatively, consumers may know their

preferred departure times when commiting to travel as well as the frequency of available °ights,

but they may not know the exact departure times. Viewing these (evenly spaced) times as

randomly distributed around the clock, average schedule delay is again relevant.4

To derive the demand curve from this information, let Y denote the common level of

consumer income and p denote the airfare, so that C = Y ¡ p. In addition let the utility from

not traveling be normalized to zero for each passenger. Then a consumer will undertake travel

when

Y ¡ p + B ¡ G ¡ ±T=4f ¸ 0; (1)

or when travel bene¯t satis¯es B ¸ ¡(Y ¡ p¡ G¡ ±T=4f ). Then, suppose that B (which is

consumer-speci¯c) has a uniform distribution with support [B;B] and density ´ = 1=(B¡B),

implying that the total mass of consumers is unity. The number of consumers traveling then

equals

q =
Z B

¡(Y¡p¡G¡±T=4f)
´dB = (B + Y ¡ p ¡ G ¡ ±T=4f )´: (2)

The inverse demand curve, which comes from solving (2) for p, is given by

p = ® ¡ ¯q ¡ °=f; (3)

where ® = B + Y ¡ G, ¯ = 1=´, and ° = ±T=4. The key feature of (3) is that, by reducing

average schedule delay, an increase in °ight frequency induces more consumers to travel, leading

to an upward shift in the inverse demand function.
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While (3) applies to nonstop travel, connecting travel through the hub for AB passengers

involves an additional time cost of G as well as the cost of layover time. Letting the sum of

these costs be denoted ¹, the demand for connecting travel in market AB is given by (3) with

® replaced by ®¡ ¹. Unrealistically, the layover portion of ¹ is taken to be independent of f.

Linear demand curves are commonly used to simplify the analysis of a variety of economic

models, and the preceding discussion shows that a linear function emerges in the present

framework only after a number of strong assumptions are imposed. However, given that a

general analysis of the e®ect of network structure on airline scheduling is not feasible, such

assumptions are needed to make any headway on the problem.5

The assumptions on airline costs are easily stated. Let s denote the number of seats per

°ight, which is a choice variable for the airline. Then, the operating cost per °ight is given by

c(s) ´ µ + ¿s; (4)

with µ equal to ¯xed cost and ¿ equal to marginal cost per seat. Given (4), cost per seat equals

µ=s + ¿, a decreasing function of s. Although this cost formulation is not entirely realistic, it

captures the economies from operating larger aircraft in the simplest possible fashion.

A ¯nal assumption is that all aircraft seats are ¯lled, with the load factor equal to 100

percent. Under this assumption, f , q, and s are related by the equation

s = q=f: (5)

In other words, on a given route, seats per °ight must equal total passengers divided by the

number of °ights. The analysis would, of course, be una®ected if the load factor were ¯xed at

a value realistically less than 100 percent.

In contrast to this approach, a more realistic model would allow the load factor to be

endogenous. One way of achieving this endogeneity would be to assume a ¯xed aircraft size,

with passengers per °ight (q=f ) constrained to be less than or equal the ¯xed s. However, by

suppressing the aircraft-size decision, this approach would remove an important focus of the
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analysis. Apparently, a formulation with stochastic demand would be required to construct

a proper model where both s and the load factor are endogenous. Then, °ights would have

empty seats when demand realizations are low.6

3. Analysis of the FC Network

To analyze the FC network, the ¯rst step is to note that total cost per route is equal to

fc(s), which in turn equals f [µ + ¿ (q=f )] using (4) and (5). Simplifying, cost can be written

µf + ¿q, or ¯xed cost per °ight times f plus variable cost times total passengers. Recalling

that the airline operates three nonstop routes in the FC case and using (3), pro¯t then equals

¼ = 3[q(®¡ ¯q ¡ °=f) ¡ µf ¡ ¿q]: (6)

In maximizing (6), f is treated as a continuous variable, an approach that only makes sense if

the number of °ights is large. The ¯rst-order conditions for choice of q and f are then

® ¡ 2¯q ¡ °=f ¡ ¿ = 0 (7)

q°=f 2 ¡ µ = 0: (8)

The ¯rst condition says that the number of passengers is set optimally when marginal revenue

as a function of q equals the marginal cost of a seat, ¿. The second condition says that f

is set optimally, holding total tra±c ¯xed, when ¯xed cost per °ight (µ) equals the revenue

gain from an extra °ight, which is given by passengers q times the fare increase per passenger

(°=f 2) made possible by greater frequency. Note that, with q and f determined by (7) and

(8), the optimal s can be recovered from (5).

Eliminating q in (7) using (8) and rearranging, the following condition determining f

emerges:

2¯µf3=° = (®¡ ¿)f ¡ °: (9)

This condition is shown in Figure 2, where the S-shaped curve is the graph of the cubic

expression on the LHS and the line represents the RHS. Note that since ®¡¿ must be positive
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for (7) to hold, the line is necessarily upward sloping. The Figure shows the economically

relevant case where (9) has three distinct solutions. Other possibilities include the case of no

positive real solutions (where the line lies below the curve everywhere in the ¯rst quadrant),

and the case of two repeated positive solutions (where the line is tangent to the curve in the

¯rst quadrant). Note that the latter case can be disrupted, yielding the second case, by a slight

parameter change.

A crucial question is which of the two positive solutions is relevant, and this question can

be answered by recasting the optimization problem as a two-stage problem, where q is chosen

¯rst conditional on f , with f then chosen in a second stage. Solving (7) for q yields7

q =
® ¡ ¿ ¡ °=f

2¯
: (10)

Substituting in (6) and simplifying, pro¯t as a function of f can be written

¼ =
3

4¯
(®¡ ¿ ¡ °=f)2 ¡ 3µf: (11)

The following result can then be established:

Lemma. The second positive solution in Figure 1 represents the optimum. The second-
order condition for the airline's optimization problem holds only at this solution.

Proof: The second derivative of (11) has the same sign as ¡2[(®¡ ¿ )f ¡ °] + °. Using (9) to

eliminate the terms in brackets, this expression has the sign of ¡4¯µf 3=°+ ° at the optimum.

Noting that the cubic curve in (9) must be steeper than the line at the second solution, it

follows that 6¯µf 3=° > (®¡ ¿ )f holds (both slope expressions have been multiplied by f ).

Substituting for the RHS expression using (9), the last inequality reduces to¡4¯µf 3=°+° < 0,

indicating satisfaction of the second-order condition. At the ¯rst intersection, the above slope

condition is reversed, reversing the last inequality and violating the second-order condition.

Although the Lemma is crucial in the later comparison of the FC and HS solutions, it also

immediately generates a number of intuitively appealing comparative-static results. Most of

8



these results can be derived by inspection of Figure 1. For example, when the demand intercept

® increases, the slope of the line in the Figure increases, and the second intersection moves to

the right, raising f . With both ® and f rising, the numerator of (10) then increases, raising

q. Thus, a parallel outward shift in the demand curve raises both tra±c and °ight frequency,

a natural conclusion. A full statement of the comparative-static results is as follows:

Proposition 1. Flight frequency f rises when demand increases (when ® rises or ¯
falls), when ¯xed or variable cost falls (when µ or ¿ falls), and when the disutility from
schedule delay rises (when ° rises). Tra±c q moves in step with °ight frequency, except
that it responds ambiguously to an increase in °.

Proof: The e®ects on f of changes in ®, ¯, µ and ¿ on f follow from inspection of Figure 1,

and the impacts on q then follow from inspection of (10). The e®ects of ° come from total

di®erentiation of (9) and (10).8

As a corollary to Propostion 1, the e®ects of parameter changes on aircraft size can also

be derived. Recalling that s = q=f , it follows from (8) that s = µf=° . Using this relationship

along with the f e®ects from Proposition 1, it follows that s increases when demand rises (when

® rises or ¯ falls) and when variable cost falls (when ¿ falls), both natural results. However,

since f moves in the same direction as ° and in the opposite direction to µ, the e®ects of both

these parameters on aircraft size are ambiguous.

4. Analysis of the HS Network

In the HS case, °ight frequency on each of the two routes is denoted fh. \Local" tra±c

(passenger volume in each of markets AH and BH) is denoted qh, while connecting tra±c

(passenger volume in market AB) is denoted Q. Note that since the HS network creates an

asymmetry between the AB market and the other two markets, qh and Q will not be equal.

As in past analyses of pricing in HS networks, the fare for connecting travel by AB passen-

gers is set independently of fares for local passengers. In other words, the cost of a connecting

trip is not simply the sum of the fares from A to H and from H to B. From (3), these lo-

cal fares are given by ph = ® ¡ ¯qh ¡ °=fh. Analogously, the connecting fare is equal to

P = ®¡ ¹ ¡ ¯Q¡ °fh, where the demand intercept from (3) has been reduced by the extra
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travel cost term ¹. It is important to note that while ph and P are set independently using

the two demand curves, the fares must satisfy an arbitrage condition. This condition says that

an AB passenger must not be able to travel more cheaply by purchasing two local tickets, and

it is written P < 2ph. Because the condition is automatically satis¯ed under the maintained

assumptions, as shown below, it need not be imposed explicitly as a constraint in the airline's

optimization problem.

Since connecting passengers must travel on both HS routes, passenger volume on each is

equal to qh + Q, yielding an aircraft size of sh = (qh + Q)=fh. Total airline costs are then

2fh(µ + ¿ (qh +Q)=fh) = 2µfh + 2¿ (qh + Q). With the airline earning revenue from two local

markets as well as the connecting market, HS pro¯t is then

¼h = 2qh(®¡ ¯qh ¡ °=fh) + Q(®¡ ¹ ¡ ¯Q¡ °=fh) ¡ 2µfh ¡ 2¿ (qh + Q): (12)

The ¯rst-order conditions for choice of qh, Q, and fh are

® ¡ 2¯qh ¡ °=fh ¡ ¿ = 0 (13)

® ¡ ¹ ¡ 2¯Q ¡ °=fh ¡ 2¿ = 0 (14)

°(2qh +Q)=f 2
h ¡ 2µ = 0: (15)

While the interpretation of (13) and (14) is the same as in the FC case, note that the marginal

cost of a connecting passenger in (14) (which is equated to MR) is now 2¿ since that passenger

travels on two °ights. Also, to interpret (15), note that an increase in fh on both routes costs

2µ while allowing a fare increase of °=f 2
h for 2qh+Q passengers, with the loss and gain equated

at the optimum.

Using (13) and (14) to solve for qh and Q yields

qh =
® ¡ ¿ ¡ °=fh

2¯
(16)

Q =
® ¡ ¹ ¡ 2¿ ¡ °=fh

2¯
: (17)
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Note that (16) and (17) imply qh > Q, so that local tra±c exceeds connecting tra±c. This

result is a consequence of the higher costs of transporting a connecting passenger combined

with the demand reduction due to longer travel time.

Substituting (16) and (17) into (15) and rearranging yields the condition that determines

fh:

2¯µf 3=° = (3®=2¡ ¹=2¡ 2¿ )fh ¡ 3°=2: (18)

This condition has the same form as (9), except that the line on the RHS has a di®erent slope

and intercept. The condition generates a diagram like Figure 1, and as before, it can be shown

that the second-order condition is violated at the ¯rst intersection in the positive quadrant,

making the second intersection relevant. A key question, of course, concerns the location of

this intersection relative to the one in Figure 2. The answer tells which network type has

greater °ight frequency. The next section considers this question, but before turning to that

analysis, the comparative-static properties of the solution are worth noting:

Proposition 2. The qualitative e®ects of the parameters ®, ¯ , µ, ¿, and ° on °ight
frequency and tra±c levels in the HS network are the same as in the FC case. In
addition, fh, qh and Q all decline when travel time for connecting passengers rises
(when ¹ increases).

Proof: These results are established in analogous fashion to those in Proposition 1, relying on

the analog to Figure 2 as well as (16) and (17).

It can also be shown that the e®ects of parameter changes on aircraft size are qualitatively

the same as in the FC case (the computations, however, are more complex). Finally, it is easily

shown that the fare arbitrage condition mentioned above is satis¯ed.9

5. Comparing the FC and HS solutions

The main goal of the paper is to compare the FC and HS solutions, with a special focus

on the di®erence in °ight frequencies. As explained above, the fh solution is generated by a

diagram analogous to Figure 2, where the cubic curve is the same but the line has a di®erent

position. Comparing (9) and (18), it is clear that, while the intercept of the HS line is more

negative than in the FC case, the relationship between the slopes is ambiguous. Although a
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comparison between f and fh might look infeasible under these circumstances, the following

result can be established.

Proposition 3. Flight frequency is higher in the HS network than in the FC network,
with fh > f .

Proof: Insert the HS line from the RHS of (18) into Figure 2, and suppose that, at the fh

solution, the height up to that line is less than or equal to the height up to the FC line. Using

(9) and (18), this inequality can be written (3®=2¡ ¹=2¡ 2¿ )fh ¡ 3°=2 · (®¡ ¿ )fh ¡ ° , or

®¡¹¡2¿¡°=fh · 0. Since the last inequality implies Q · 0 from (17), a contradiction, the

FC line must instead lie below the HS line at fh. Since the FC line thus lies below the cubic

curve at fh, and since the FC line is °atter than that curve, the f value where it intersects the

curve must be smaller than fh.

By showing that fh > f , the model thus validates Morrison and Winston's contention that

the growth of HS networks following deregulation spurred an increase in °ight frequencies.

More generally, the model con¯rms the link between network structure and °ight frequency,

which is asserted throughout much of the airline literature.

The source of the result in Proposition 3 can be seen by comparing the ¯rst-order conditions

for °ight frequency in the FC and HS cases. Rewriting (15) to make it comparable to (8), the

equation becomes °[qh + Q=2]=f 2
h ¡ µ = 0. Comparing this equation to (8), it is clear that

fh > f holds provided that qh + Q=2 > q. To see the underlying intuition, observe that an

increase in °ight frequency on each route raises passengers' willingness-to-pay, allowing the

fare to be increased. While the higher fare is paid by q passengers on each FC route, the

increase is e®ectively paid by qh +Q=2 passengers on each HS route (the higher fare is earned

across two routes for connecting passengers, so that Q must be divided by 2 to put the gain on

a route basis). Under the assumption that more passengers are a®ected (qh + Q=2 > q), the

gain from a dollar fare increase is thus greater in the HS case. As a result, the \productivity"

of a higher frequency in raising the fare (°=f 2
h) must be driven lower in the HS case to equate

the overall gain °(qh +Q=2)=f 2
h to the marginal °ight cost µ. This can only happen if fh > f,

so that the productivity expressions satisfy °=f 2
h < °=f 2.
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The assumption qh + Q=2 > q is in fact validated by the analysis. Indeed, Proposition 3

can be use to compare the magnitudes of variables other than °ight frequency between the FC

and HS cases. First, using (10) and (16), the fact that fh > f holds immediately yields qh > q,

implying that passenger volumes in city-pair markets AH and BH are greater under the HS

network than under the FC network. Note that this result validates the previous inequality.

Intuitively, since higher frequencies shift the demand curve outward, more tra±c is generated

in these markets. By contrast, the comparison between q and Q is ambiguous, implying that

tra±c in market AB could be higher or lower under the HS network than in the FC case. The

reason is that the numerator term ®¡ ¹¡ 2¿ in (17) is less than the analogous term ®¡ ¿ in

(10), o®setting the di®erence in the °ight-frequency terms. Intuitively, while higher frequencies

again raise the demand for AB travel in the HS case, the longer connecting travel time reduces

it, making the net demand shift ambiguous. This ambiguity, combined with a doubling in the

cost of transporting an AB passenger, accounts for the ambiguous relationship between q and

Q.

To compare aircraft sizes for the two network types, recall that s = µf=° in the FC case,

and let (15) be rewritten to read

sh =
qh + Q
fh

=
qh + Q
qh + Q=2

µfh
°
: (19)

Since fh > f and the ¯rst ratio term on the RHS of (19) exceeds unity, it follows that sh > s,

so that the HS network has larger aircraft than the FC network. This implication of the model

appears to be realistic.

A ¯nal comparison focuses on the level of fares. To compare fares in markets AH and BH

across the network types, (3) can be used to rewrite (7) and (13), the ¯rst-order conditions

for q and qh, as p ¡ ¿ ¡ ¯q = 0 and ph ¡ ¿ ¡ ¯qh = 0. With qh > q, the result ph > p

follows immediately, so that the fare in markets AH and BH is higher under the HS network.

This conclusion shows that the upward shift in the demand curve due to higher frequency

dominates the downward movement along the curve from higher tra±c, leaving the fare higher

than in the FC case. As mentioned above, this result stands in stark contrast to received
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wisdom regarding HS networks, which argues that their lower cost per passenger should lead

to lower fares. Because of larger aircraft size, cost per passenger is indeed lower under the HS

network in the present model. But because higher °ight frequency raises willingness-to-pay,

fares for local passengers end up higher in the HS case. A ¯nal point is that, matching the

ambiguous comparison between q and Q, the fare in market AB could be higher or lower in

the HS network. This discussion has established the following results:

Proposition 4. Tra±c in city-pair markets AH and BH is higher in the HS network
than in the FC network (qh > q), and the fare is higher as well (ph > p). The
comparison of AB tra±c levels between the network types is ambiguous (Q > (<)q), as
is the fare comparison. Aircraft sizes are larger under the HS network (sh > s).

6. The Choice of Network Type

After solving the FC and HS optimization problems, the airline must make a global choice

of network type, and this section analyzes the factors a®ecting that choice. The ¯rst step is to

derive a second-stage pro¯t expression analogous to (11) for the HS case. Recall that (11) was

derived by choosing q optimally conditional on f , and then substituting the solution to yield

pro¯t purely as a function of °ight frequency. When this same procedure is carried out for the

HS case using the tra±c solutions in (16) and (17), the HS pro¯t expression reduces to

¼h =
3

4¯
(®¡ 4¿=3 ¡ °=fh)2 + © ¡ 2µfh; (20)

where © ´ ¿ 2=6¯ + ¹(¡2®+ ¹+ 4¿ + 2°=fh)=4¯.

After choosing f and fh optimally and substituting the solutions into (11) and (20), the

airline chooses the network type that yields the larger pro¯t value.10 The goal is to analyze

the e®ect of parameter changes on the outcome of this choice, and the strategy for doing so is

as follows. First, consider a parameter combination that makes the airline indi®erent between

the network types, with ¼h = ¼ holding. Then increase the value of a particular parameter

¸, and using the envelope theorem, compute the derivative of the HS-FC pro¯t di®erential,

¢ = ¼h ¡ ¼, with respect to that parameter. If the derivative ¢¸ is positive, then high (low)
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values of the parameter favor the HS (FC) network, with the opposite conclusion holding if

the derivative is negative. Using these principles, the ensuing results can be established:

Proposition 5. The comparative statics of network choice are as follows:

(i) ¢¹ < 0. Thus, the FC network is favored when the travel cost parameter ¹ is large,
with the HS network favored for low ¹ values.

(ii) If total °ights are greater under the FC network (3f > 2fh), then ¢µ > 0. The
HS network is then favored when the ¯xed cost µ is large, with the FC network favored
for low µ values. If the HS network has more total °ights, then ¢µ < 0 and these
conclusions are reversed.

(iii) If 3f > 2fh, then ¢¯ > 0. The HS network is then favored when the demand slope
¯ is large, with the FC network favored for low ¯ values. If the HS network has more
total °ights, then ¢¯ < 0 and these conclusions are reversed.

(iv) If 3f > 2fh and © > 0, then ¢® < 0. The HS network is then favored when the
demand intercept ® is small, with the FC network favored for large ® values.

(v) If 3f > 2fh and © > 0, then ¢° > 0. The HS network is then favored when the
disutility of schedule delay ° is large, with the FC network favored for small ° values.

Proof: See the appendix.

Before discussing these results, the conditions in Proposition 5 deserve comment. Although

the airline operates fewer routes under the HS network (2 vs. 3), °ight frequency on those routes

has been shown to be higher than under the FC network. As a result, the comparison of °ight

totals between the network types is ambiguous. However, because the intent of an HS network

is to economize on °ight operations by serving fewer routes, one would expect total °ights to

be smaller than in the FC case despite greater frequency, leading to 3f > 2fh. However, the

Proposition also recognizes the possibility that the reverse inequality might hold. In either

case, the analysis presumes that the relevant inequality is satis¯ed globally, for all parameter

combinations. The other condition in the Proposition (© > 0), which is required for technical

reasons in establishing parts (iv) and (v), is satis¯ed provided that ¹ is su±ciently small. This

conclusion follows because the above © expression equals ¿ 2=6¯ > 0 when ¹ = 0, making it

positive by continuity when ¹ is small.

When both of these conditions hold (3f > 2fh and © > 0), the Proposition implies that

the HS network is favored when the additional travel time it requires is low (when ¹ is small),
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when demand is low (when ® is small or ¯ large), when the ¯xed cost of a °ight is high (when

µ is large), and when the disutility from schedule delay is high (when ° is large). While the

e®ects of ¹ and µ are intuitively transparent, an increase in ° favors the HS network because

its higher °ight frequency becomes more valuable to passengers as the disutility of schedule

delay rises. To understand the demand e®ect, observe that in concentrating tra±c on fewer

routes, the HS network reduces cost per passenger by allowing the operation of larger aircraft.

This tra±c-collection role, however, becomes less crucial as demand rises, making point-to-

point service more economical. Thus, for an airline that restricts its service to high demand

routes, an FC network is likely to be pro¯t maximizing (Southwest Airlines, which operates a

point-to-point network serving relatively large markets, o®ers an example). Finally, note that

the e®ect of the variable cost parameter ¿ on network choice is ambiguous.

7. Welfare Analysis

The apparent accuracy of the model's predictions suggests that it may capture important

elements of the real-world optimization problem solved by the airlines. As a result, it may be

useful to explore the model's welfare implications. In contrast to the monopolist, the goal of

the social planner is to maximize consumer bene¯ts minus airline costs. As usual, it can be

shown that bene¯ts in the present problem are measured by the area under the demand curve.

In the FC case, this area equals q(®¡ ¯q=2 ¡ °=f ), which di®ers from revenue in (6) only in

the replacement of ¯ by ¯=2. With a similar observation applying to the HS case, it follows

that the only di®erence between the pro¯t- and welfare-maximization problems is that ¯ is

replaced by ¯=2 in the latter problem. This di®erence means that the ¯rst-order conditions

for choice of tra±c ((7), (13) and (14)) now require equality between demand (rather than

marginal revenue) and variable cost ¿. Note, however, that the ¯rst-order conditions for choice

of °ight frequency ((8) and (15)) are the same as in the monopoly problem. Therefore, for

a given tra±c level, the monopolist and the planner would make the same frequency choices.

However, tra±c levels, and hence frequencies, di®er between the two regimes.

To derive these di®erences, observe that with ¯ replaced by ¯=2 in the welfare-maximization

problem, the cubic curve in Figure 2 rotates downward in the ¯rst quadrant. As a result, the
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second intersection moves to the right, so that the socially optimal °ight frequency in the FC

network is higher than the frequency chosen by the monopolist. Using the HS version of Figure

2, the same conclusion applies in the HS case. Moreover, since the denominators in the tra±c

expressions (10), (16) and (17) are replaced by ¯, while the increase in °ight frequency raises

the numerators, it follows that the socially optimal tra±c levels are also higher than those

chosen by the monopolist. Finally, the increase in frequency implies an increase in aircraft

sizes, using (19) and the analogous expression for the FC case. This discussion has established

the following results:

Proposition 6. Under each network type, the social optimum has greater °ight fre-
quency, higher tra±c, and larger aircraft than the monopoly solution.

The results can best be understood by recognizing that the quantity (i.e., tra±c) choices of

a monopolist are, as usual, too small. Once tra±c has been raised by the planner, however, the

bene¯t of an increase in °ight frequency grows because more passengers are a®ected, making

higher frequencies optimal. With aircraft size and frequency linked by the same conditions

as in the monopolist's problem ((19) and its FC analog), higher frequencies then imply larger

aircraft at the social optimum.11

It should be noted that the underprovision of frequency is a result that is closely linked to

the assumed monopoly market structure. As is well known (see Panzar (1979) and Schipper et

al. (1998a,b)), schedule competition may lead to the opposite outcome, with °ight frequencies

being excessive. Analysis of such an outcome in the present setting must await an oligopoly

version of the model.

A ¯nal exercise is to compare the network choices of the monopolist and social planner.

To carry out this exercise, let Wh and W denote the HS and FC welfare functions, and let

¡ ´Wh¡W denote the welfare di®erential between the network types, analogous to the pro¯t

di®erential ¢ = ¼h ¡ ¼. Then, the key observation, which follows from the above discussion,

is that ¡ is equal to ¢ evaluated at ¯=2 rather than ¯. This fact in turn implies that, if ¡ is

evaluated at a ¯ value twice as large as that used in ¢, then the magnitudes of the expressions

are the same. Given this information, consider Figure 3, which shows graphs of ¢ and ¡ as
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functions of ¯. The graphs assume that 3f > 2fh holds globally, so that (given Proposition 5)

¢ is upward-sloping where it crosses the horizontal axis, a property shared by ¡.12 Letting

¯¤ denote the ¯ value where ¢ intersects the horizontal axis, it follows that ¡'s intersection

occurs at 2¯¤.

Referring to Figure 3, it is clear that for ¯ values below ¯¤, the monopolist and the

planner both prefer the FC network, while for values above 2¯¤, both agents prefer the HS

network. However, between ¯¤ and 2¯¤, the monopolist prefers the HS network while the

planner favors the FC network. Thus, over this range of ¯ values, the monopolist's choice

exhibits an ine±cient bias toward the HS network. Note, however, that the other parameters

of the problem aside from ¯ are held ¯xed in Figure 3. But changing their values just leads to

a new version of the Figure, with the positions of both the ¢ and ¡ curves shifted but the slope

pattern unchanged. In this new Figure, the monopolist's choice again exhibits an ine±cient

bias toward the HS network over a particular range of ¯ values. It is clear that, as the other

parameters vary, this exercise traces out a region of the entire parameter space over which an

ine±cient HS bias exists.

In the less plausible case where 3f < 2fh, the ¢ and ¡ curves are downward sloping.

Redrawing Figure 3 for this case, it is easy to see the reverse conclusion applies, with the

monopolist's ine±cient bias now favoring the FC network. This discussion has established the

following results:

Proposition 7. When 3f > 2fh, the monopolist's network choice exhibits an ine±-
cient bias toward the HS network. When 3f < 2fh, his choice exhibits an ine±cient
bias toward the FC network.

The intuitive explanation for these results is not completely transparent, but it appears that

the monopolist excessively favors the network type in which fewer °ights are operated.13

Although the absence of airline competition in the model makes a strong conclusion unwar-

ranted, Proposition 7 suggests that the current structure of airline networks may exhibit too

much \hubbing." In other words, a greater reliance on point-to-point service may be preferable

from society's point of view.

18



8. Conclusion

This paper has provided a simple analysis of the e®ects of network structure on the schedul-

ing, tra±c, and aircraft-size choices of a monopoly airline. The results are realistic, suggesting

that the model captures some essential features of the actual optimization problem solved by

a network carrier. The analysis shows that switching from an FC to an HS network leads to

increases in both °ight frequency and aircraft size, while stimulating local tra±c in and out

of the hub. In addition, HS networks are shown to be preferred by the airline when travel

demand is low, when °ights are expensive to operate, and when passengers place a high value

on °ight frequency but are not excessively inconvenienced by the extra travel time required

for a connecting trip. The welfare analysis shows that the °ight frequency, tra±c volumes,

and aircraft size chosen by the monopolist are all ine±ciently low under both network types.

Moreover, in the most plausible case, the monopolist's network choice exhibits an ine±cient

bias toward the HS network, apparently re°ecting an excessive desire to economize on the

number of °ights.

Although the model captures in a simple way nearly all the key elements of an airline

optimization problem, one important factor is missing: competition from other carriers. To

incorporate such an extension, a second airline could be added to the model, operating parallel

routes in the FC case and operating a competiting hub at city H in the HS case. Such a

model would need to analyze schedule competition between the carriers, and this analysis

could draw on previous treatments of this kind of interaction (see Panzar (1979) and Schipper

et al. (1998a, b)).

19



Appendix

This appendix provides a proof of Proposition 5. To prove part (i), di®erentiation of ¢

using (11) and (20) along with the envelope theorem yields ¢¹ = ¡(®¡ ¹¡ 2¿ ¡ °=fh)=2¯,

which is negative from (17) given Q > 0. To establish part (ii), di®erentiation of ¢ yields

¢µ = 3f ¡ 2fh, establishing the result. To prove part (iii), di®erentiation yields

¢¯ = ¡(¼h + 3µfh)=¯ + (¼ + 2µf )=¯ = (3f ¡ 2fh)µ=¯; (a1)

where the indi®erence condition ¼h = ¼ is used, establishing the result.

To prove part (iv), di®erentiation shows that ¢® has the sign of

3
4¯

[(®¡ 4¿=3¡ °=fh) ¡ (®¡ ¿ ¡ °=f)]¡ ¹=2¯: (a2)

To sign this expression, observe that if 3f > 2fh, then the ¯rst two terms in (20) must be

smaller than the ¯rst term in (11) if ¼h = ¼ is to hold. But if © is positive, then the ¯rst

term in (20) by itself must be smaller than the ¯rst term in (11), making (a2) negative and

establishing part (iv).

To prove part (v), di®erentiation shows that ¢° has the sign of

3
4¯

·
®¡ ¿ ¡ °=f

f
¡ ®¡ 4¿=3¡ °=fh

fh

¸
+ ¹=2¯fh: (a3)

With the numerator of the ¯rst term in brackets larger than the numerator of the second term

by the above argument and fh > f , the bracketed term is positive, making (a3) positive and

establishing part (v).
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Footnotes

¤I thank Eric Pels, Anming Zhang and Yimin Zhang for helpful comments. Any shortcomings
in the paper, however, are my responsibility.

1Contributions to this literature include Spiller (1989), Bittlingmayer (1990), Brueckner and
Spiller (1991), Berechman, Poddar and Shy (1994), Zhang and Wei (1993), Hendricks, Pic-
cone and Tan (1995, 1997), Oum, Zhang and Zhang (1995), Nero (1996), Zhang (1996),
Park (1997), Berechman and Shy (1998), Nero and Black (1998), Schipper, Nijkamp and
Rietveld (1998a,b), and Pels, Nijkamp and Rietveld (1997, 2000) and Brueckner (2001). For
an analysis of hub-and-spoke networks from an operations-research perspective, see Lederer
(1993a,b).

2See Caves, Christensen and Tretheway (1984), Brueckner, Dyer and Spiller (1992), and
Brueckner and Spiller (1994).

3For an early analysis of scheduling that incorporates these principles, see Panzar (1979).
Schipper et al. (1998a,b) o®er a more-recent contribution.

4BZ took the opposite approach to handling heterogeneity in preferred departure times. In
their model, consumers whose preferred departure times are closest to the actual °ight time
enjoy the highest utilities, while consumers for whom schedule delay is su±ciently large
choose not to travel. While all passengers end up traveling when the fare is low, this latter
e®ect is the only avenue by which price a®ects demand in BZ's model (the source of price
sensitivity in the present framework is explained next).

5A slight generalization of the above setup could be achieved by allowing income and the
utility from not traveling (u0) to be consumer speci¯c, and by assuming that Y + B ¡ u0
is uniformly distributed in the population.

6An alternative approach would view s as passengers (rather than seats) per °ight. Then, (4)
would be viewed as a reduced-form equation that subsumes the airline's choices regarding
aircraft size and load factor, yielding a cost per passenger that falls with the number of
passengers per °ight. Once again, however, this approach prevents a focus on the key
aircraft-size decision.

7Since the second derivative of ¼ with respect to q equals ¡2¯ < 0, the second-order condition
for choice of q conditional on f is satis¯ed.
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8Di®erentiation of (9) yields @f=@° = (2¯µf 3=°2 ¡ 1)=ª = (® ¡ ¿ )f=°ª > 0, where ª =
6¯µf 2=°¡(®¡¿ ) > 0 and where the second equality uses (10). However, since the derivative
of f=° with respect to ° is ambiguous, so is the change in q from (10).

9The condition requires that 2ph, which equals 2(¿ + ¯qh) from above, must be less than
the AB fare, which equals ®¡ ¹¡ ¯Q¡ °=fh. Noting from (14) that the latter expression
must equal 2¿ + ¯Q, and rearranging, the arbitrage condition reduces to 2qh > Q, which is
satis¯ed.

10Note that the cost of operating the hub itself is assumed to be zero.

11BZ's analysis generate the opposite frequency comparison, with the socially optimal fre-
quency lower than that chosen by the monopolist. The di®ering conclusions are due to the
fact that travel demand is e®ectively ¯xed in BZ's welfare analysis, with all consumers as-
sumed to travel under both the pro¯t- and welfare-maximizing solutions (see footnote 4).
Under these circumstances, an increase in frequency allows fares to be increased with no
reduction in tra±c. Since this fare increase generates more monopoly revenue but consti-
tutes a pure transfer from consumers to the monopolist (with no welfare signi¯cance), the
incentives in BZ's problem model favor excessive frequency. Building on this result, Wojahn
(2001) shows that hub congestion, by limiting °ight frequency, may be welfare improving.

12Although ¢'s slope as drawn as positive overall, the slope could turn negative at points away
from the axis intersection. However, the curve cannot intersect the axis again since its slope
would be negative at such a point, in violation of Proposition 5.

13BZ found that the monopolist's network choice shows an ine±cient bias toward the HS
network. Since the total number of °ights is unambiguously lower in the HS network in their
model, this result is consistent with Proposition 7.
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