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Abstract

The U.S. airline industry went through tremendous turmoil in the
early 2000’s. There were four major bankruptcies and two major merg-
ers, with all legacy carriers reporting a large profit reduction. This pa-
per presents a structural model of the airline industry, and estimates
the impact of demand and supply changes on profitability. We find
that, compared with the late 1990s, in 2006, a) air-travel demand was
more price sensitive; b) passengers displayed a strong preference for
direct flights, and the connection semi-elasticity was much higher; c)
the changes of marginal cost significantly favored direct flights. These
findings are present in all the specifications we estimated. Together
with the expansion of low cost carriers, they explained more than 80%
of the decrease in legacy carriers’ variable profits, with changes in de-
mand contributing to more than 50% of the reduction.

1 Introduction

The airline industry went through tremendous turmoil in the early 2000’s
with four major bankruptcies and two mergers. In August 2002, US Airways
filed for bankruptcy. A year later, United Airlines followed suit. It stayed
under Chapter 11 bankruptcy protection for more than three years, the
largest and longest airline bankruptcy in history. In September 2005, Delta
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Airlines and Northwest Airlines went bankrupt on the same day. By then,
four of the six legacy carriers were under bankruptcy reorganization.1 Only
American and Continental managed to escape bankruptcy, but all legacy
carriers reported a large reduction in profits. In the spring of 2008, four low
cost carriers declared bankruptcy and discontinued their passenger service
operations within a week.2

On the other hand, when measured by revenue passenger miles,3 the
industry’s output had recovered from the sharp downturn after 9/11 by
2004 and has been trending up since (see Figure 1). The load factor,4

another important measure of profitability, has increased steadily since 2001.
According to Figure 2, the average load factors for U.S. airlines rose from
71.2% in 1999 to 79.7% in 2006, and posted a record high of 80.3% in the
first half of 2007. If more passengers traveled and planes were fuller, what
caused the financial stress of most airlines?

Several recent developments provide potential explanations. One cate-
gory of explanations is related to changes in air-travel demand. Perhaps the
bursting of the dot-com bubble, or improvements in electronic communica-
tions, decreased the willingness-to-pay of business travelers. As the economy
cooled down, many companies imposed maximum reimbursement limits, and
even business travelers started to shop around for cheaper flights.

Another potential change in demand stems from the tightened security
regulations after 9/11. Passengers had to go through a strict security check,
and many items were no longer allowed in carry-on luggage. The extra
luggage handling, combined with stricter regulations, had lengthened the
average connection time. At the same time, with most flights full, it became
increasingly difficult for passengers to board a different plane in case of
missed connections or flight cancellations. Consequently, carriers found it
harder to charge high fares for connecting flights as passengers started to
search for alternatives.5

The third important development is the option of purchasing airline tick-

1The legacy carriers are: American Airlines, Continental Airlines, Delta Airlines,
Northwest Airlines, United Airlines, and U.S. Airways.

2These four low cost carriers are: Aloha Airlines, March 31st, 2008; ATA Airlines,
April 2nd, 2008; Skyway Airlines, April 5th, 2008, and Skybus, April 6th, 2008. Frontier
filed for reorganization under Chapter 11 on April 10th, 2008.

3Revenue passenger miles is the product of the number of revenue-paying passengers
aboard and the distance traveled measured in miles.

4Load factor is the ratio of revenue passenger miles to available seat miles of a flight.
5For example, in announcing a 26% capacity cut at the Cincinnati hub, Delta said

that connecting traffic was the least profitable for the carrier. (Source: Business Courier,
September 7, 2005.)
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ets on the internet. In 1997, all of Continental tickets were sold through the
airline’s reservation office or traditional travel agencies. By 2006, more than
40% of Continental’s domestic tickets were sold through the internet.6 The
proliferation of various online sites that provided information previously
limited to travel agents made consumers much more conscious of the fare
availability and fare premiums across carriers. There were even websites
like ‘farecast.com’ that predicted the fare trajectory for the near future. All
of these changes were likely to affect both passengers’ price sensitivity and
their preference for flights with different attributes (direct vs. connecting,
frequent vs. less frequent departures, etc.) For example, Brunger (2007) ar-
gued that the internet helped airlines to increase the average load factors by
shifting consumers from crowded weekend flights to Tuesday and Wednesday
flights that traditionally had fewer passengers.

On the supply side, a variety of changes affected the industry’s mar-
ket structure and profitability. The most cited transition was the expan-
sion of the low cost carriers (LCC), whose market share of domestic origin-
destination passengers increased steadily over the past decade, from 22.6%
in 1999 to 32.9% in 2006.7 As a result, the legacy carriers were forced to
lower their fares and offer competing service. Many legacy carriers shifted
their capacity to the more lucrative international markets, and reluctantly
surrendered some of the domestic markets to the low cost carriers.

The recent aviation technology progress, in particular the advent of re-
gional jets with different plane sizes, allowed carriers to better match the
aircraft with the market size, and hence enabled carriers to offer direct flights
to markets that used to rely on connecting services. In addition, with lower
labor costs than the traditional jets, regional jets became a popular choice
for carriers under financial pressure.8 On the other hand, the cost of jet
fuel, which accounts for 10-30% of the operation cost, more than doubled
over the past decade.9

In this paper, we estimate a structural model of the airline industry,
and disentangle how the various factors affect the profitability of the legacy
carriers. We find that, compared with the late 1990s, in 2006, a) air-travel
demand was more price sensitive; b) passengers displayed a strong preference
for direct flights, and the connection semi-elasticity was much higher; c) the
changes of marginal cost significantly favored direct flights. These findings

6See Bill Brunger (2007).
7Data source: http://www.darinlee.net/data/lccshare.html.
8See Mozdzanowska (2004).
9See Morrison & Winston (2005) for a discussion regarding the effect of fuel on carriers’

profits.

3



are present in all specifications we estimated. These factors, together with
the expansion of low cost carriers, explained more than 80% of the decrease
in legacy carriers’ variable profits, with changes in demand contributing to
more than 50% of the reduction.

The remainder of the paper is structured as follows. Section 2 reviews
the related literature. Section 3 presents the model. Section 4 describes the
data sources. Section 5 proposes the empirical strategy. Section 6 discusses
the results. Section 7 presents the conclusions.

2 Literature review

There have been many empirical papers that study the airline industry.
Among the most recent ones, Borenstein (2005) reported that airline prices
fell more than 20% adjusted for inflation from 1995 to 2004. He also found
that premiums at hub airports declined, and that there was substantially
less disparity between the cheaper and the more expensive airports than
there had been a decade ago. Goolsbee and Syverson (2005) examined how
incumbents responded to the threat of Southwest entry. Puller, Sengupta,
and Wiggins (2007) tested theories of price dispersion and scarcity pricing
in the airline industry. Ciliberto (2008) analyzed dynamic strategic deter-
rence in the airline industry. Dana and Orlov (2008) studied the impact of
the internet penetration on airlines’ capacity utilization. Forbes (2008) ex-
ploited a legislative change in takeoff and landing restrictions at LaGuardia
Airport in 2000. She discovered that prices fell by $1.42 on average for each
additional minute of flight delay.

There are only a few discrete choice applications in the airline literature.
Peters (2006) simulated post-merger prices for five airline mergers in the
late 1980s, and found evidence that supply-side effects, such as changes in
marginal costs and deviations from the assumed model of firm conduct,
were important factors in post-merger price increases. Berry, Carnall, and
Spiller (hereafter BCS) (2007) focused on the evolution of the airline industry
toward a hub-and-spoke system after the deregulation in 1970s. They found
evidence of economies of density on longer routes. Armantier and Richard
(2008) investigated the consumer welfare consequences of the code-share
agreement between Continental Airlines and Northwest airlines. The results
suggested that the code-share agreement increased the average surplus of
connecting passengers, decreased the average surplus of nonstop passengers,
and did not impact consumers significantly on average. We contribute to the
literature by examining the developments in demand and supply from the
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late 1990s to the late 2000s that affected profitability in the airline industry.

3 Model

We consider a model of airline oligopoly “supply and demand” in the spirit
of the recent literature on differentiated product markets following Berry,
Levinsohn and Pakes (BLP) (1995). Our model is particularly close to
BCS. The point of the present paper is not to provide any methodological
innovation, but to make use of the existing models to understand the recent
evolution of the industry.

For now, we think of U.S. airlines as offering a set of differentiated prod-
ucts in each of a large cross-section of “origin-and-destination” markets.
Airline products are differentiated by price, by direct versus connect, by air-
line brand and so forth. Ticket restrictions (such as advanced-purchase and
length-of-stay restrictions) are an important part of product differentiation
that are not observed in our data. Neither are certain important flight-level
details, such as the time of departure. Thus, there is a particularly impor-
tant role for product-unobservable characteristics that are correlated with
price.

3.1 Demand

The demand model is a simple random-coefficient discrete-choice model in
the spirit of McFadden (1981) and BLP. Like BCS, we use a “discrete types”
version of the random coefficient utility model. In the base specification, we
assume that consumers are one of two types, tourists or business travelers.10

For product j in market t, the utility of consumer i, who is of “type” r, is
given by

uijt = xjtβr − αrpjt + ξjt + νit(λ) + λ�ijt, (1)

where

• xjt is a vector of product characteristics,

• pjt is the product price,

• βr is the vector of “tastes for characteristics” for consumers of type r,

• αr is the marginal disutility of a price increase for consumers of type
r,

10 In principle, if the data are rich enough, one could think of estimating a large number
of types, R. See section 5.1 for more discussions.
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• ξjt is the unobserved (to researchers) product characteristic of product
j,

• νit is a “nested logit” random taste that is 1) constant across airline
products; 2) differentiates “air travel” from the “outside” good,

• λ is the nested logit parameter, and

• �ijt is an i.i.d. (across products and consumers) “logit error.”

The utility of the outside good is given by

uiot = �i0t (2)

where �i0t is another logit error. The error structure

νit(λ) + λ�ijt

is assumed to follow the distributional assumption necessary to generate the
classic “nested logit” purchase probability for consumers of type r, where
the two “nests” consist of 1) all the airline products, and 2) the outside
option of not flying. If λ = 1, then ν ≡ 0, and the purchase probability of
type r consumers takes the simple multinomial logit form. If λ = 0, then the
i.i.d. �’s have no effect and all type r consumers buy the “best” product with
probability one. When λ ∈ (0, 1), the product shares have the traditional
nested logit form.

Specifically, conditional on purchasing some airline product, the percent-
age of type r consumers who purchase product j in market t is given by

e(xjtβr−αrpjt+ξjt)/λ

Drt

where the denominator is

Drt =
JX

k=1

e(xktβr−αrpkt+ξkt)/λ (3)

Given this specification, the “within market” share of type r consumers
is then

srt (xt, pt, ξt, θd) ≡
Dλ
rt

1 +Dλ
rt

. (4)
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Let γt denote the percentage of type r consumers in the population. The
overall market share of product j in market t is

sjt(xt, pt, ξt, θd) ≡
X
r

γr
e(xjtβr−αrpjt+ξjt)/λ

Drt
srt (xt, pt, ξt, θd). (5)

Notice that the vector of demand parameters to be estimated, θd, in-
cludes the tastes for product characteristics, βr, the disutility of price, αr,
the nested logit parameter, λ (which governs substitution to the outside
good), and the consumer-type probabilities γr. With two types of con-
sumers, there is only one γ parameter, since the probability of the other
type is (1− γ).

Following BLP, we form moments that are the expectations of the unob-
servable ξ interacted with exogenous instruments that are discussed below.
Further details of the estimation method are found in BLP and the related
literature, but we provide a brief review here.

We first invert the market share equations (5) to solve for the vector of
demand unobservables ξt, as a function of the parameters and the observed
data on market shares, prices and characteristics.

ξt = s−1(xt, pt, st, θd) (6)

As in BCS, the multiple-type nested logit model requires us to slightly mod-
ify the “contraction mapping” method used in BLP. In particular, the “step”
between each iteration is multiplied by λ, the nested logit parameter:

ξMjt = ξM−1jt + λ [ln sjt − ln sjt(xt, pt, ξt, θd)]

whereM denotes theMth iteration, sjt is the observed share, and sjt(xt, pt, ξt, θd)
is defined by equation (5).

The moment conditions used in estimation are based on restrictions of
the form

E(ξ(xt, pt, st, θd) |zt) = 0, (7)

where zt is a vector of instruments. A classic GMM estimation routine notes
that these moment conditions imply

E(h(zt)ξ(xt, pt, st, θd)) = 0, (8)

for any vector of functions h(·). Intuitively, a method of moments estimation
routine chooses θd to make sample analogs of the expectations in (8) as close
to zero as possible.
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The product-level unobservable ξjt accounts for a large number of prod-
uct characteristics, such as ticket restrictions and departure time, that are
absent from our data source. Therefore, it is especially important for us to
allow for a correlation between ξjt and price, and instrument prices. We
also allow for the possible endogeneity of “flight frequency” on a route. As
we cannot allow for the full endogeneity of all product characteristics, we
treat a number of product characteristics (such as “distance”, and “direct
vs. connect”) as exogenous.

Obviously, the instrument set must include exogenous variables that help
to predict endogenous characteristics (prices and flight frequencies). The
instruments also have to identify the parameters that govern substitution
patterns across products in a market. These parameters include the type
specific taste parameters, λ, and the shares of each type γr. Intuitively,
exogenous variation in choice sets across markets greatly helps to identify
substitution patterns.11 Our specific choice of demand instruments is con-
sidered in section 5.2, after we introduce the data in more detail.

3.2 Markups and Marginal Cost

We assume that prices are set according to a static Nash equilibrium with
multi-product firms. Again following BLP, we compute equilibrium markups
from knowledge of the demand data and parameters. Let bjt(st, xt, pt, θd)
denote these markups. Marginal cost of product j in market t is:12

mcjt = pjt − bjt(st, xt, pt, θd) (9)

We posit a somewhat simpler version of marginal costs as compared to
BCS. The marginal cost function is given by

mcjt = wjtψ + ωjt (10)

where
11Berry and Haile (2008) consider this argument more formally.
12The markup equation in matrix form is:

MC = P +

�
∂Q

∂P

�−1
Q

where Q = (q1t, ..., qJf ,t) = (s1t, ..., sJf ,t) ∗Mt,
�
∂Q
∂P

�
=

⎛⎜⎜⎝
∂q1t
∂p1t

...
∂qJf ,t

∂p1t

...
∂q1t
∂pJf ,t

∂qJf ,t

∂pJf ,t

⎞⎟⎟⎠ . Jf is

the number of products by firm f in market t, Mt is the market size, and sjt is defined
by equation (5).
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• wjt is a vector of observed cost-shifters,

• ωjt is an unobserved cost shock and

• ψ is a vector of cost parameters to be estimated.

Equation (9) and (10) imply that the cost-side unobservable is the dif-
ference between prices, the markups, and the deterministic part of marginal
cost:

ωjt = pjt − bjt(st, xt, pt, θd)− wjtψ (11)

As with demand, we form moments that are the expectations of the cost-side
unobservable ω interacted with cost-side instruments:

E(h(zt)ω(xt, pt, st, θ, ψ)) = 0, (12)

where zt is a vector of instruments. These instruments can include:

• exogenous elements of the marginal-cost shifters, w,

• exogenous demand-side instruments that help to predict the markup
term, bjt(·), that enters the pricing equation.

In addition to estimating the marginal cost parameter ψ, the supply side
restrictions in (12) also help to estimate the demand parameters, because
these parameters enter the markup term. Once again, we leave a detailed
discussion of the choice of instruments until after a more detailed discussion
of the data. Note, however, that nothing in the estimation method allows
us to estimate fixed costs.

4 Data

There are three main data sources for this study. The Airline Origin and
Destination Survey (DB1B), published by the U.S. Department of Trans-
portation (DOT), provides detailed information on the fare, itinerary (origin,
destination, and all connecting airports), the ticketing and operating carrier
for each segment, and the number of passengers traveled on the itinerary
at the given fare in a quarter.13 The flight frequency is constructed using
the scheduling data from Back Aviation Solutions, Inc. Flight delays are
extracted from the Airline On-Time Performance Data, also published by
DOT. In the following, we explain our market definition and sample selec-
tion. See the appendix for further details.
13The URL is (as of April, 2008): http://www.transtats.bts.gov/DataIndex.asp.
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4.1 Sample selection

The DB1B data is a 10% random sample of airline tickets from U.S. re-
porting carriers. Following Brueckner and Spiller (1994), and BCS, we kept
round-trip itineraries within U.S. continent with at most four segments. We
eliminated tickets cheaper than $25, with multiple ticketing carriers, or con-
taining the ground traffic as part of the itinerary.

A market is defined as a directional pair of an origin and a destination
airport. For example, Atlanta - Las Vegas is a different market from Las
Vegas - Atlanta. This allows for the characteristics of the origin city to affect
demand. As in BCS, market size is the geometric mean of the Metropolitan
Statistical Area population of the end-point cities.14

We focused on airports located in medium to large metropolitan areas
with at least 850,000 people in 2006. There were 3,998 such markets in 1999
and 4,300 markets in 2006. These markets accounted for around 80% of
total passengers, and roughly overlapped with the top 4000 most traveled
markets, which is the scope of focus in many empirical studies.15

There are two main reasons for excluding small markets. The first one is
computational: the estimation time increases substantially with the number
of markets and products. The small airports accounted for only one-fifth of
the passengers, but they constituted around three-quarters of the markets
and a third of products. The main reason for excluding small markets,
however, is the drastic difference between large and small markets. Even
within our selected sample, the number of passengers and revenues in the
largest markets are hundreds of times larger than the smallest markets. As
the demand pattern and the operation cost are likely to be different among
markets with diverse sizes, it is difficult for our stylized model to explain all
these differences.

Six groups of airports are geographically close.16 Carriers in nearby
airports might compete against each other as consumers can choose which
airport to fly from. In one of our specifications, we group these nearby
airports, and define a market based on the grouped airports.

In 2006, our sample contains 700,000 unique records, or 163 records per

14Data source (as of April 2008) for the MSA population:
http://www.census.gov/population/www/estimates/CBSA-est2006-annual.html.
15For example, the Government Accounting Office (GAO) focuses on the top 5,000 most

traveled markets in their annual report of the airline industry.
16The six groups of airports are: Dallas-Ft Worth Intl and Love Field in Dallas TX,

Dulles and National in D.C., Midway and O’Hare in Chicago IL, Kennedy, La Guardia,
and Newark in New York NY, Los Angeles, Burbank, and Long Beach in Los Angeles CA,
San Francisco, Oakland, and San Jose in San Francisco CA.
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market. In comparison, BCS reported 9 records per market using the 1985’s
DB1B data. Given that the product shares need to be inverted in every
market at each iteration, both the memory requirement and the estimation
time increase substantially with a large number of products. In addition,
conditioning on observed characteristics, many observations have very sim-
ilar fares (for example, a $325 ticket and a $328 ticket), and are not likely
to be viewed by consumers as distinctive products. Therefore, we aggregate
the records using a set of progressive bins conditioning on the itinerary and
the ticketing carrier.17 In summary, our product is a unique combination
of origin, connection, destination, the ticketing carrier, and the binned fare.
We have 226,532 products in 2006 and 214,809 products in 1999.

Back Aviation Solutions’ schedule data report the departure time and
arrival time for all domestic flights. To generate the number of departures
for direct flights, we aggregate over all carriers that operate for a ticketing
carrier in a given market. The number of departures for connecting flights
are route specific. We restrict the connecting time to 45 minutes and 4
hours. When there are multiple feasible connections, we only include the
connection with the shortest layover time. Using other departure measures,
including all feasible connections between 45 minutes to 4 hours, and the
minimum number of departures for the two connecting segments, does not
make much difference.

To evaluate changes in demand and supply between the late 1990s and
the late 2000s, we conducted the empirical analysis using two cross-section
data: the second quarter in 1999 and the second quarter in 2006. We chose
2006 to avoid the few years right after 9/11 when carriers were adjusting for
the changing security regulations.

4.2 Data summary

Table 1 reports the summary statistics of our sample. The top panel displays
the mean and standard deviation for all regressors used in the estimation.
There were several noticeable changes between 1999 and 2006. The average
fare, in 2006 dollars, decreased from $493 to $451, a reduction of 8.5%.
In 1999, 7.6% of the products were priced above $1,000; the fraction was
reduced to 4% in 2006. The average fare for connecting flights dropped by
12%, while the average fare for direct flights fell by only 4%. Figure 3 and
Figure 4 plot the fare density for direct and connecting flights, respectively.

17We use the following set of bins: $20 for all tickets under $700 (so tickets between $300
and $320 with the same itinerary and ticketing carrier are aggregated as one product),
$50 for tickets between $700 and $1,000, and $100 for tickets above $1,000.
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Compared to 1999, fares of connecting flights were lower at each quantile
of the distribution in 2006. For direct flights, the fraction of both high fare
products (≥$1,000) and low fare products (≤$200) shrank, while that of
medium fare ones increased.

The second pronounced development was the increasing number of direct
passengers. Figure 5 displays the percentage of all U.S. domestic passengers
who flew with direct flights from 1995 to 2006. It varied between 63% to
64.5% from 1995 to 2001, and steadily trended up since then. By 2006, more
than 67.3% of passengers traveled on direct flights. In our sample markets,
the number of direct passengers per market increased by 13% from 1999 to
2006, while that of connecting passengers diminished by 23%.

The trend away from connecting flights was universal — all legacy carriers
flew fewer connecting passengers in 2006. American and Delta experienced
the largest reduction, with the total number of connecting passengers de-
creased by 29% and 40% from 1999 to 2006, respectively. The number of
connecting passengers was lower in relative terms as well. According to Fig-
ure 6, the percentage of connecting passengers among all passengers in 2006
was lower than 1999 for all carriers except for Continental. After the 1999
code-share agreement with Northwest, Continental started to issue connect-
ing tickets with part of the route operated by Northwest, which led to a
slightly higher faction of connecting passengers in 2006.

The declining number of connecting passengers during the sample period
appeared to be closely related to the recent ‘dehubbing’ phenomenon in the
airline industry. For example, Delta closed its hub in Dallas Ft. Worth In-
ternational airport in January 2005, and cut 26% of flights at the Cincinnati
hub in September 2005. US Airways downgraded Pittsburgh from a hub to a
focus city in 2004. By October 2007, it had reduced the daily departures out
of Pittsburgh from over 500 in 2000 to fewer than 70, and canceled service
to more than 90 destination cities. With the exception of a few airports,
most hubs serviced fewer connecting passengers in the recent years.

As a result of the increasing number of direct flights, the number of des-
tination cities, which is the number of cities to which a carrier flies nonstop
flights from the origin airport, increased from 17 to 19. The average num-
ber of daily departures dropped from 5.3 to 4.8, due to the legacy carriers’
recent capacity reduction. The average plane size reduced from 135 seats
to 123 seats, which reflected the increasing penetration of regional jets. All
together, the six legacy carriers offered 77-78% of the products, accounted
for 66% of passengers in 1999 and 61% of the passengers in 2006.

The bottom panel of Table 1 documents the market average summary
statistics. Both the number of products and the number of carriers per
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market declined slightly after the two major mergers.18 During the sample
period, 39% of the markets experienced LCC entry.

5 Empirical model

5.1 Model specification

As illustrated in the previous sections, two of the most salient changes in the
airline industry during the past decade were the decrease in fares (in real
dollars) and the increase in the ratio of direct over connecting passengers.
Therefore, we allowed three type-specific parameters: a constant, the fare
coefficient, and the coefficient of the number of connections. The type-
specific constant turned out to be important in improving the fit of the
model, as it allowed the model to fit the aggregate shares for both expensive
and inexpensive tickets.19

We spent a considerable amount of time experimenting with three or
more types of passengers, without much success. The demand parameters
common to all types were fairly robust, but the type-specific parameters,
the λ and the γ parameters appeared to be sensitive to small changes in
the model’s specifications or the choice of instruments. Sometimes multiple
parameter vectors delivered a similar fit for the data. Our conclusion is that
the limited variation in the instruments prevents precise estimates for an
overly flexible model.

We also tried to model carriers’ choices of flight frequencies together with
the pricing decisions, but faced three major challenges. First, some carriers
mixed different aircraft on the same route. For example, large jets were
typically reserved for dense traffic during peak time, while smaller regional
jets or turbo planes were often the choice for off-peak flights. Second, it
was difficult to measure flight frequencies for indirect flights, which affected
our ability to estimate marginal revenues created by an additional departure.
Lastly, to model how carriers trade off larger planes with fewer flights versus
smaller planes with more frequent flights, we would need information on the
age and type of the aircraft used, the flight schedule, and the number of
passengers on each flight. In lack of such detailed data, we treated flight
frequencies as endogenous without explicitly modeling how departures were

18American merged with Trans World in 2001, and American West merged with U.S.
Airways in 2005.
19We also estimated the model with type-specific parameters for flight frequencies and

the tour dummy. The parameters were similar across types, and there was not much
improvement in the model’s fit.
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determined. The exercise of modeling departures directly is left for future
research.

5.2 Instruments

As is typical of most demand studies with endogenous prices, we need instru-
ments to identify the fare coefficients. One common strategy is to exploit the
rival product attributes and the competitiveness of the market environment.
All else being equal, products with closer substitutes have lower prices. A
standard instrument is the number of products. In our data, the number of
products in a market varies from 3 to 223, with an average of 53. However,
we were concerned about the endogeneity of this variable because of the
way it is constructed. A product is a group of tickets whose fares fall in
a fixed bin. By construction, a market with a wider price dispersion has a
larger number of products. Similar concerns extend to using rival product
attributes as instruments.20 We used the route level characteristics instead.
Our instruments along this line include the percentage of rival routes that
offer direct flights, the average distance of rival routes, the number of rival
routes, the number of all carriers, etc.

A second identification strategy searches for variables that affect costs
but not demand. One candidate is whether the destination is a hub. It
affects the marginal cost of a flight, because larger and more fuel efficient
planes can be used on routes with denser traffic, but is excluded from de-
mand. The number of cities to which a carrier flies nonstop flights from
the destination airport serves a similar role. We also included a dummy for
transferring at the hub, using similar arguments that costs were lower if a
flight connected at a hub.

The third group of instruments included the 25th and the 75th quantile
of fitted fares.21 As documented by Borenstein and Rose (1994, 2007), there
was a wide fare dispersion across passengers on the same route. The 25th
and the 75th fitted fare quantiles are nonlinear functions of the first-stage
regressors, and allow us to better capture the exogenous price dispersion.

To construct instruments for flight frequencies, we first regressed seg-
ment departures on characteristics of the end cities (including whether they

20For example, with a wide price dispersion and a large number of products, the sum
of rival product attributes will be high as well.
21 In the first stage fare regression, the regressors included carrier dummies, segment

and route level characteristics (distance, difference in January temperatures between the
end cities, whether in tourist places, etc), market size (measured by population), number
of competitors, and the carrier’s shares of cities connected via nonstop flights at both the
origin and the destination airport.
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are located in tourist places, the average January temperature difference
between these airports, population, distance, etc.), and then included the
fitted segment departures as instrument.

The last group of instruments were the exogenous variables that directly
entered the share equation (5) and the marginal cost equation (9). Finally,
we included the interaction terms of the above variables provided they were
not highly colinear.

5.3 Identification

The identification of most parameters is straightforward. Here we focus on
λ and the type-specific parameters. λ is identified from changes in the ag-
gregate market share when the number of products varies. In the extreme
case of λ = 0, all products are perfect substitutes. The aggregate share re-
mains fixed as the number of products changes, as long as the ‘best product’
does not change. On the other hand, if λ = 1, the nested logit demand is
reduced to a simple logit, and the aggregate market share is close to K

K+1 if
there are K products with similar product attributes. Identification of the
type-specific parameters follows from the random coefficient literature, as
our model is a special case where the random coefficients take two values.
Briefly, these type specific parameters are identified from the substitution
patterns among similar products when the mix of products varies across
markets.

5.4 Model limitations

One implicit assumption of our empirical model is that the hub structure and
the carriers’ entry decisions in each market are exogenously given. Ideally,
we would like to model a three-stage game: a) first, carriers form their
hubs; b) given the hub structure, each carrier chooses the set of markets
to serve; and c) given these entry decisions, carriers compete in prices and
flight departures. However, solving this game with a dozen of carriers and
thousands of markets is beyond our capability.

Instead, we focused on the last stage of the game and modeled a) con-
sumers’ choices between different products, and b) carriers’ price decisions.
We were concerned about the endogeneity of prices and departures induced
by temporal demand shocks, and assumed that the instruments we used (the
hub structure and the number of carriers, etc.) were pre-determined and un-
correlated with these temporal demand shocks. This is admittedly a strong
assumption, but is analogous to the standard assumption in the discrete-
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choice demand literature, that variation in the set of available products and
the number of firms across markets is exogenous.

As we did not observe the day-to-day variation in fares and flight avail-
ability, we did not allow consumers to choose strategically the date of pur-
chase. We also ruled out the dynamic considerations in firms’ pricing deci-
sions. Modeling the dynamic aspect is a difficult but promising topic. See
Ciliberto (2008) for an interesting study on the strategic deterrence in the
airline industry.

Lastly, we did not observe the fixed costs of operating a flight, which
limited our ability to estimate the changes in the net profit. Our profit
estimates were based on the variable profits.

6 Result

The parameters from the base case specification was presented first, followed
by results from eight other specifications. The profit estimates were dis-
cussed next. Finally, we reported results from the counter-factual exercises
designed to isolate the effects of changes in demand, supply and competition
on legacy carriers’ profits.

6.1 Parameters

6.1.1 Demand parameters

Demand is affected by the following product attributes: fares, the number
of total connections round trip, the number of destinations,22 the average
daily departures, the total distance (in thousand miles) round trip, distance
squared, a tour dummy for airports in Florida and Las Vegas, the num-
ber of slot-controlled airports that the flight passes through,23 and carrier
dummies.24

22A product’s number of destinations is the total number of cities to which its ticketing
carrier serves direct flights from the origin airport.
23Four airports were under the slot control during the sample period: the LaGuardia

airport and the Kenney airport in New York, the National airport in D.C., and the O’Hare
airport in Chicago.
24 In 1999, we included carrier dummies for American (the default group), American

West, Continental, Delta, Northwest, Trans World, United, U.S. Airways, Southwest, and
a dummy for all other carriers. In 2006, we added a dummy for Jetblue (which started
operation in 2000), and excluded dummies for American West (merged with U.S. Airways
in 2005) and Trans World (merged with American in 2001).
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We expect consumers’ utility to decrease with connections. The number
of destination cities captures the value of the frequent flier programs. The
larger the number of cities for which consumers can redeem frequent miles,
the higher the value of these loyalty programs. In addition, a carrier that
flies to a large number of destination cities is likely to have more convenient
gate access and offer better service.

The air-travel demand is usually U-shaped in distance. Short-haul flights
compete with cars and trains, which become a worse substitute as distance
increases, so demand initially grows with distance. As distance increases
further, travel becomes less pleasant, and demand starts to decrease. We
include both distance and distance squared to capture the curvature of de-
mand.

The tour dummy helps to fit the relatively high product shares in Florida
and Las Vegas that cannot be explained by the observed product attributes.
The slot variable captures the potential negative effect of congestion in these
slot-controlled airports on air-travel demand.

The first two columns in Table 2 present the parameters for the base case
specification. Most parameters were precisely estimated. Consistent with
the story of the dot-com bubble burst and the introduction of online ticketing
sites, demand was more price sensitive in 2006. The tourists’ price coefficient
increased (in absolute value) from 0.78 to 1.05, and the business travelers’
price coefficient rose from 0.07 to 0.10. In both cases, the differences are
statistically significant. The price elasticity was 31% larger for the tourist
travellers and 43% larger for the business travellers. In the meantime, the
estimated percentage of business travellers rose from 41% to 49%, which
moderated the increase in demand’s overall price sensitivity. With both
groups, the average price elasticity at the product level increased from 1.96
to 2.10. The aggregate price elasticity, which is the percent change in total
demand when all products’ prices increase by 1%, was 1.55 in 1999, and rose
to 1.67 in 2006. Gillen et al. (2003) conducted a survey that collected 85
demand elasticity estimates from cross-sectional studies.25 The elasticities
ranged from 0.181 to 2.01, with a median of 1.33. Our estimates seemed
quite reasonable.

Both the tourists and the business passengers exhibited a stronger pref-
erence for direct flights in 2006. The connection semi-elasticity, or the per-
centage change in demand when a direct flight becomes a connecting flight,

25Out of these 85 estimates, 80 were taken from Oum et al. (1986) and represented U.S.
city -pair routes. All 85 studies were conducted between 1981 and 1986 and are slightly
dated.

17



increased from 0.75 to 0.80 for tourists and from 0.55 to 0.75 for the business
travellers. Combining both groups, the average connection semi-elasticity
increased by 17%, up from 66% to 77%. In other words, the number of pas-
sengers on a direct flight would reduce by almost four-fifths when a layover
is added to the route.

These two results — a higher price sensitivity and a higher aversion toward
connecting flights — were the most pronounced findings of demand changes,
and were present in all specifications that we estimated. Both findings are
supported by the trends (fare reductions and reducing number of connecting
passengers) documented in the data section. While a fare reduction could
also be rationalized by increasing competition or decreasing costs, the fact
that fares dropped in markets with and without LCC entry, and that fares
reduced more for connecting flights that became more costly to operate,
provided ample evidence for a demand change during our sample period.

As we did not model carriers’ choice of hub airports or their entry de-
cisions, we could not examine how changes in demand affected the hub
structure. However, it seems quite possible that reduced demand for con-
necting flights is directly related to several recent hub downsizings. Explain-
ing changes in the airlines’ network structure is a promising topic for future
research.

Consumers also displayed a stronger preference for frequent flights. The
willingness to pay for an additional daily flight almost doubled: in 1999, the
tourist type was willing to pay $5 for an additional flight; the business type,
$61. In 2006, their willingness to pay increased to $10 and $105, respectively.

Many previous studies pointed out the existence of a hub premium: car-
riers were able to charge higher fares for hub-originating flights, either be-
cause they offered more convenient gate access, or the frequent flier program
was more valuable at hub airports. Borenstein (2005) and Boreistein and
Rose (2007) pointed out that the hub premium declined over the past sev-
eral years.26 Our parameter estimates were consistent with their findings.
The coefficient of the number of destinations — which we used to capture
a carrier’s presence at the airport — dropped from 0.38 to 0.27. The result
was very similar with the hub dummy. Either the loyalty programs became
less valuable, or the difference in service between hub airports (or airports
with a large carrier presence) and non-hub airports (or airports with a small
carrier presence) had narrowed.

All other demand parameters had the expected signs. For example,

26Boreistein (2005) found that fare premium at the 10 most expensive U.S. airports (all
but one served as a hub) fell from 33% in 1995 to 24% in 2004.
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demand increased in distance up to 1,600 miles (one-way) and then decreased
in distance. Tourist places attracted more consumers, and flights through
slot controlled airports had fewer passengers.

The business type accounted for 41% and 49% of total passengers in
1999 and 2006, respectively (see the third panel in Table 6). According to
the 2001-2002 National Household Travel Survey, roughly 39% to 47% of
air travel was taken for business purposes, depending on whether personal
business trips were treated as business trips.27 Our model’s predictions
match closely with the survey.

Interestingly, λ decreased from 0.77 in 1999 to 0.72 in 2006, which sug-
gests that products became closer substitutes. It is probably because most
carriers had cut down their services, which reduced the differentiation among
products offered by different carriers.

Overall, the carrier dummies were broadly consistent with the news re-
ports. In 1999, American (the omitted carrier) and United had the highest
parameter values. They were also the most popular and successful carriers
in the late 1990s. During the sharp downturn following 9/11, the legacy car-
riers, especially American and Delta, began to shift capacities to the more
lucrative international markets. These structural changes were reflected in
their negative carrier dummies in 2006. JetBlue had a large positive coef-
ficient, which is consistent with its popularity due to high on-time perfor-
mance, new planes, free TV programs, etc. In fact, by 2006, it had been
voted the number one U.S. domestic airline by Conde Nast Traveler five
years in a row.28

6.1.2 Marginal cost parameters

Column 3 and 4 in Table 2 report the marginal cost parameters, which
includes a constant, the distance in thousand miles, and the number of
connections. Two offsetting factors affect the marginal cost of connecting
flights. On one hand, by channeling passengers from different origins and
to different destinations through the connecting airport, carriers can gen-
erate denser traffic, increase the load factor, and defray costs with more
passengers. On the other hand, a large fraction of the fuel is consumed at

27The National Household Travel Survey was conducted on 26,000 households. Accord-
ing to the survey, 56% of the trips longer than 50 miles were taken for pleasure, 16%
for business, 13% each for commuting and for personal business(trips taken for family,
personal, religious or medical reasons), and 3% for other reasons. Air travel accounted for
7% of pleasure trips, 18% of business trips, 5% of personal business trips, and none of the
commuting trips.
28Data source: http://en.wikipedia.org/wiki/JetBlue_Airways#Awards.
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the landings and takeoffs. With two extra landings and takeoffs, the fuel
component of a connecting flight’s marginal cost is much higher than that
of a direct flight. The connection coefficient reflects the net effect of these
two countervailing factors.

As different aircraft were used for short-medium haul routes and long
haul routes, we allowed two sets of cost parameters: one for markets shorter
than 1500 miles, and the other for markets longer than 1500 miles. We also
included a hub dummy (equal to 1 if the flight departs from, transfers at,
or lands at a hub airport), a slot dummy (equal to 1 if the flight passes
through a slot-controlled airport), and carrier dummies. The same scale
economy argument for connecting flights also applies to flights at the hub
airports that tend to have denser traffic. Costs are higher at slot controlled
airports due to the higher landing fees, etc.

The most noticeable difference between 1999 and 2006 was the connec-
tion coefficient, which changed signs during the sample period. In 1999,
there was evidence of scale economies for connecting flights. Conditioning
on distance, congestion, and the hub status, the marginal cost of serving
a connecting passenger on a long route was $18 less than that of a direct
passenger, or roughly 12% of the average marginal cost. Unlike BCS that re-
ported the existence of scale economies only on longer routes, our estimated
marginal cost of connecting flights was lower on both long and short-medium
routes in 1999.

The cost advantage of connecting flights disappeared in 2006. Condi-
tioning on other cost shifters, the marginal cost of a connecting flight was
$12 more expensive than that of a direct flight. This is likely driven by the
increasing fuel cost in the sample period. Since the fraction of fuel consumed
at the takeoffs and landings could be as high as 40%, rising fuel cost offset
the benefit of denser traffic created by connecting flights.29

All other parameters (except for the carrier dummies) were similar be-
tween the two periods, with the expected signs. Marginal cost increased
with distance, and was higher for routes that passed through slot-controlled
airports. Flights through hubs had a lower marginal cost.

The distance coefficient was smaller in 2006, which seemed somewhat
puzzling given the higher fuel cost. The change probably reflected a combi-
nation of several factors, including reduced services, improved fuel efficien-
cies, etc.

29One might argue that the penetration of regional jets in the later period had an
impact on marginal cost. However, adding the fraction of departures operated by regional
jets to the regressors had no effect on other cost parameters, including the connection’s
coefficient.
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As expected, the low cost carriers had lower marginal costs. Both Jet-
Blue and SouthWest had lower marginal costs than the legacy carriers. In-
terestingly, American West also had a smaller marginal cost than the legacy
carriers. According to U.S. DOT Form 41, its total operating cost per avail-
able seat mile (CASM) was comparable to SouthWest.30 We do not fully
understand Continental’s coefficient in 2006, which suggested that Conti-
nental’s marginal cost was comparable to that of SouthWest. It could be
that these dummy variables reflected various carrier specific factors that
were not captured by the model.

As in most empirical studies, marginal cost is not directly observed. The
parameters are identified from a ‘residual’ regression where we ‘regress’ the
difference between the price and markup on cost instruments. To examine
the sensitivity of the marginal cost parameters to the over-identifying re-
strictions, we regressed the predicted marginal cost (the difference between
prices and the estimated markup) on the variables that affected marginal
cost directly. The coefficients from this OLS regression were very similar
to the structural estimates, which suggested the robustness of the marginal
cost instruments.

Finally, we compared our cost estimates with the carriers’ reported op-
erating costs per available seat mile. The average was 11.4 cents (in $2006)
in 1999 and increased by 10% to 12.5 cents in 2006. Our estimated mar-
ginal cost per mile was around 6 cents, about half of the average reported
operating costs, which seemed plausible.

6.1.3 Other specifications

In the base specification, we estimated demand parameters (especially the
price sensitivity) using both the share equation (5) and the pricing equa-
tion (9). As we were concerned about specification errors associated with
our stylized pricing equation, we estimated the model again using only the
share equation. The estimates are presented in the second column of Table
3A and Table 4A. As in BLP, we found that business travelers’ 2006 price
coefficient could not be reliably estimated without the markup equation.31

However, most other demand parameters were similar to the base case. The
aggregate price elasticity in 1999 was 1.69, similar to other specifications. It
is particularly reassuring that the pattern of a stronger preference for direct
flights remained: the connection semi-elasticity was 0.68 in 1999 and 0.76
in 2006.
30Data source: MIT Airline Data Project.
31The 2006 price coefficient was pushed to the pre-imposed boundary of zero.
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Flight delays could potentially explain the changes in the preference for
connecting flights, since the possibility of missing a connection is directly
affected by delays. In the third specification, we added the delay variable,
which is the percentage of flights arriving more than 30 minutes later than
the scheduled arrival time, including canceled or diverted flights. The delay
had the wrong sign in 1999 — demand was higher for flights with more de-
lays. This is probably because delays are endogenous: crowded airports and
popular flights were more likely to experience delays. The other coefficients,
especially the connection’s coefficients, barely changed. We experimented
with various other measures of delays and flight time, including the percent-
age of delays longer than 15 minutes, the total taxi-in and taxi-out time,
the total flight time, etc. None of these measures explained the increased
disutility of connecting flights.

According to the official statistics, the percentage of flights with more
than 30-minute delays was 14% in 1999 and 13% in 2006. However, the
longest delays — those resulting from missed connections and canceled flights
did not officially get counted. Bratu and Barnhart (2005) studied the Au-
gust 2000 passenger itineraries on Continental Airlines, and discovered that
when missed connections and flight cancellations were factored in, the av-
erage passenger delay was two-thirds longer than the official statistics. The
problem of delays was much worse in 2006 as it was harder to find seats on
later flights given the higher load factors. We expect that a better measured
delay variable that reflects the actual connecting time would help to explain
the increased disutilities of connections.

Six groups of airports are geographically close.32 Combining these air-
ports affected 38% of the markets, and raised the average number of products
per market from 53 to 66. Perhaps not surprisingly, the λ coefficient was
smaller, since consumers faced more similar choices in the grouped markets.
Most other parameters were similar to the base case.

Our products were generated by a given set of fare bins. To examine the
robustness of the parameter estimates to changes in the bin size, column five
and six in Table 3 and 4 report results with a finer set of bins and a rougher
set of bins, respectively.33 Similar to column four with grouped airports,
product level demand was more elastic with a larger number of products,
while other parameters remained very similar to the base case.

Some of the airports might have higher fares or demand, either because

32See footnote 16 for a list of these airports.
33Column five used $10 for fares under $300, $20 for fares between $300 and $700, $50

for fares between $700 and $1000, and $100 for fares above $1000. Column six used $50
for fares under $1000, and $100 for fares above.
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of historical reasons, or because of convenient geographic locations that were
not captured by the model. In column seven, we added airport dummies
to the largest 25 airports. Most parameters were similar to the base case,
except that demand was less price sensitive, which lead to a lower estimate
of the marginal cost in both years.

One might argue that the discovery of a stronger preference for direct
flights was driven by changes in the supply side, rather than changes in
taste. During our sample period, low cost carriers expanded steadily, and
offered a much higher fraction of point-to-point service. The more negative
connection coefficient in 2006 could be driven by the decreasing shares of the
legacy carriers who happened to offer more connecting flights. To address
this concern, we estimated the model using only markets that did not expe-
rience LCC entry between 1999 and 2006. The results were presented in the
first two columns of Table 5. As we did not model carriers’ entry decisions,
this sample potentially suffered from an endogenous selection problem, so
we did not want to interpret the coefficients literally. Again, the parameter
estimates were very close to the base case, which showed that consumers
had a stronger preference for direct flights even in markets that were not
affected by LCC entry.34

As mentioned in the introduction section, the advent of new regional jets
allowed carriers to tailor the aircraft size to the size of the market and pro-
vide point-to-point service to markets traditionally dependent on connecting
service. Another competing explanation is that consumers’ preference has
not changed, but there are more direct flights available. To tease out the
regional-jet effect, we restricted the sample to long-haul markets with a great
circle distance longer than 1500 miles, since few regional jets were used for
direct flights in these markets. We lost about 70% of the markets, and our
instruments had much less variation compared to the full sample. Distance
squared was colinear with the distance variable (the correlation coefficient
was 0.996) and was omitted from the regressors.35 Demand was much more
elastic than the base case, but the pattern of a stronger preference for direct
flights remained: the connection semi-elasticity was 0.63 in 1999 and 0.80
in 2006.

We estimated many other specifications that are not reported here. For
example, we estimated a model restricting the cost parameters to be the
same across all markets for all seven specifications.36 We also experimented

34The carrier dummies were not reported here, as there are too many parameters. Re-
sults are available upon request.
35There is only one set of cost parameters, since all markets are longer than 1500 miles.
36Results are available upon request. The cost parameters were more robust when we
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with type-specific tour and flight frequency parameters. Our major find-
ings — more price sensitive demand, a much stronger preference for direct
flights, and changes in marginal cost favoring direct flights — were extremely
robust and appeared in almost every set of parameter estimates. We are
convinced that these findings revealed inherent data patterns and were not
fabricated results of our modeling assumptions. The intuition for these re-
sults is straight forward: a negative supply shock should induce a small
quantity and a high price. In our data, fewer passengers flew connecting
flights even though fares were lower uniformly in 2006 — at each quantile of
the fare distribution and in markets with or without entry of LCCs.

6.1.4 Marginal effects

To better understand the magnitude of the parameters, Table 6 tabulates
changes in demand when product attribute changes. The effect of carrier
airport presence on demand appears to be mild. Doubling the number of
destinations for all products raises the aggregate demand by 11% in 1999
and 9% in 2006. On the other hand, adding one daily departure to all flights
drives up the aggregate demand by 6% in 1999, and 16% in 2006. Changes
in distance barely affect demand; in contrast, both the tour dummy and
the slot variable have a significant impact. Adding the tour dummy to all
products boosts the number of passengers by 32% in 1999 and 39% in 2006,
while congestion in slot controlled airports reduces demand by 22%. These
marginal effects do not vary much across specifications.

6.1.5 Elasticities, marginal cost, and markups

In Table 7 and 8, we summarize the elasticities, the percentage of each type
of passengers, marginal cost and markups for different specifications. The
aggregate price elasticity ranged from -1.35 to -1.69 in 1999, and -1.58 to
-2.01 in 2006. The increase in price elasticity over the sample period varied
from 6.5% to 24%, with an average of 13%. The connection semi-elasticity
was much more stable across specifications, with an average increase of 16%.
Changes in the marginal cost significantly favored direct flights: the increase
in connecting flights’ marginal cost was much bigger than that of direct
flights. In fact, in four out of six specifications, direct flights’ marginal
cost was lower in 2006. Rising costs, combined with lower fares, led to

restricted them to be the same across the long-haul and the short-medium haul markets,
but we prefer our reported specifications as there are probably significant cost differences
between these markets (for example, the type of aircraft).
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a sizeable reduction of the markups of connecting flights, ranging from 5
percentage points to 12 percentage points. The markup for the top 10%
most expensive products dropped even further, from 90% to less than 70%.
The reduction in the profitability of these high-end products, together with
the shrinking profit of connecting flights, was an important explanation of
the legacy carriers’ financial stress in the recent years.

6.2 Profit and revenue estimates

The average number of products offered by a carrier in a given market was
slightly different between 1999 and 2006. To avoid the complication of the
changing number of products (which might reflect the changing dispersion
of prices rather than the changing number of distinct products), we analyze
a carrier’s average profit and revenue per market, instead of the average
profit from a product. We also focus on the legacy carriers throughout this
analysis. We first report the profit estimates and the counter factual results
using the base case parameters, then describe the general patterns over all
counter-factual exercises.

Table 9 displays the legacy carriers’ average profit and revenue per mar-
ket. We discuss connecting flights and direct flights separately, as these
products exhibit distinct patterns. For connecting flights, 2006 witnessed
fewer passengers, lower revenues and lower profits. The reduction was fairly
uniform and happened to every part of the fare distribution. Compared
with 1999, the average demand shrank by 14%, and the average fare was
12% lower. As a result, the average revenue was reduced by 25%, and profit
fell even further, by 32%. Profit for the top 10% most expensive products
decreased by 56%, which was driven by a bigger reduction in fares among
these high-end products.

The picture for direct flights was much more complicated. The average
number of direct passengers per carrier per market increased by 8%, but the
average revenue was down by 6%, and the average profit was 16% lower. A
closer look at the changes across different quantiles of the fare distribution
revealed that all of the profit reduction occurred among the 10% most ex-
pensive products. In 1999, these 10% products generated $477k in profits
per market, and accounted for 32% of total profits from all direct flights.
By 2006, profits from the top 10% products declined to merely $150k, and
constituted only 12% of total profits. As our parameter estimates suggested,
demand in 2006 was more price sensitive. Even though consumers showed a
stronger preference for direct flights, they had in general stayed away from
the high-end products and switched to flights with low or medium fares.
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Profits and revenues for the bottom 90% direct flights were about 8-10%
higher in 2006 than in 1999. However, the higher profitability from the
low- and medium-fare flights was overwhelmed by the drastic profit declines
among the most expensive flights. Profits from all direct flights fell by 16%.

When we combine both direct and connecting flight, the legacy carriers
transported 4% more passengers, but generated 9% less revenues and 19%
less profits in 2006 than in 1999.

6.3 Counter-factual analysis

To examine how the legacy carriers’ profits were affected by a) the change
of consumer tastes; b) the change of marginal cost; and c) LCC’s expansion,
we calculated the counter-factual profits and revenues for the following five
different scenarios:

• using 2006’s observed product attributes and marginal cost parame-
ters, but 1999’s taste parameters;

• using 2006’s observed product attributes and marginal cost parame-
ters, but 1999’s taste parameters and ξj that ‘replicates’ its distribu-
tion in 1999;

• using 2006’s observed product attributes and taste parameters, but
1999’s marginal cost parameters;

• using 2006’s observed product attributes, taste and marginal cost pa-
rameters, but excluding LCCs from the markets they entered between
1999 and 2006;

• using 2006’s observed product attributes, but 1999’s taste and mar-
ginal cost parameters, ξj that replicates its distribution in 1999, and
excluding LCCs from the markets they entered during the sample pe-
riod.

In each exercise, we solve for a new vector of the optimal prices that sat-
isfy the first order conditions incorporating changes specified above.37 The
first exercise quantifies the effect of the changes of consumer preference, in-
cluding the increased price sensitivity and the higher aversion to connecting
flights.
37 In solving for the optimal prices, we restricted the first order condition to be smaller

than 10−9. The convergence was slow for the third and fourth counter-factual exercise, so
we set the tolerance level to 10−8. There was not much difference in the profit estimates
using different tolerance level.
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As discussed in section 3.1, ξj , the utility from the unobserved prod-
uct attributes (like the refund restrictions, advance purchase requirements,
etc.), plays an important role in determining demand. If these product at-
tributes were similar between 1999 and 2006, then the difference between
ξ1999j and ξ2006j reflected changes in consumers’ taste for these attributes,
and constituted an important component of the preference changes. On the
other hand, if the unobserved product attributes altered, then the difference
was a combination of changes in taste and changes in product characteris-
tics. In the second exercise, we incorporated changes in ξj by replicating its
1999 distribution conditioning on fares separately for direct and connecting
flights. For example, given all direct flights priced at $350, we replaced the
first quantile of ξ06j with the first quantile of ξ99j , etc. Then we solved for
the counter-factual prices using 1999 taste parameters and the constructed
vector of ξj .

The third exercise isolated the effect of changes in the marginal cost,
the fourth one examined the competition from LCCs, while the last exercise
combined all factors discussed above.

Table 10 summarized the counter factual results for connecting flights.
Overall, the model did a decent job explaining the profit change for con-
necting flights. Replacing the 2006’s demand parameters with the 1999’s
explained 58% and 61% of the profit and revenue reduction, respectively.
Results were similar when we incorporated ξj ’s 1999 distribution.

Using the 2006’s taste parameters but the 1999’s cost parameters ac-
counted for about 9% of the profit and revenue decrease between 1999 and
2006. The marginal cost was higher in 2006, which led to higher fares, a
lower demand, and a lower profit.

Around 40% of the markets experienced LCC entry during the sample
period.38 Compared with the change of tastes, competition from LCCs had a
modest impact on connecting flights’ profit. Removing LCCs explained 15%
of a legacy carrier’s profit drop in markets affected, or 8% when averaged
over all markets. There are a couple of explanations for this finding. First,
many new products introduced by the low cost carriers were direct flights.
As discussed below, LCC entry explained a much larger fraction of the direct
flights’ profit reduction. Second, the legacy carriers had gradually developed
strategies (for example, lowering fares, adding departures) to compete with
low cost carriers.
38Some of these markets already had low cost carriers in 1999 (like Air Tran, Frontier,

or Southwest). A market experienced LCC entry if a new low cost carrier established a
service in that market between 1999 and 2006.
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When we incorporated all factors, the model was able to replicate 72% of
the profit decrease during the sample period. The model performed well even
when we look at high-fare and low-fare products separately. It explained
81% of the profit change for the bottom 90% products, and 60% of the
profit change for the top 10% most expensive products.

In comparison, the model roughly replicated direct flights’ average profit,
but could not fit very well the profit increase for low- and medium-fare
products and the profit decrease for the high-fare products (see Table 11).
Using the 1999 demand parameters, the predicted profit was comparable to
the observed 1999 profit for the bottom 90% products, but was only 28% of
the observed 1999 profit for the top 10% products. When we combined the
1999 demand parameters with the ξj ’s 1999 distribution, the predicted profit
from all direct flights was close to the observed level in 1999.39 However,
even though we were able to match the average, our prediction was higher
than the observed profit for the bottom 90%, and lower for the top 10%
products. It became clear to us that the model did not have the ability
to fit the various parts of the data’s distribution, and could only explain
changes in the mean.

As the marginal cost was higher in 1999, using 2006’s demand parame-
ters and 1999’s cost parameters reduced profits by 4%. Low cost carriers’
expansion had a bigger impact on direct flights than on connecting flights.
Removing LCCs explained 25% of the legacy carriers’ profit reduction in
markets that experienced LCC entry, and 12% when averaged over all mar-
kets. Combining all factors explained 94% of the observed change in direct
flights’ profits.

We repeated the above counter-factual exercise for all other specifications
and summarized the results in Table 12. For connecting flights, changes in
demand accounted for around 50% of the profit reduction, changes in cost,
10-30%, and entry of LCCs, 8%. For direct flights, demand was by far the
most important factor. LCC’s expansion contributed to 8-18% of the profit
drop. The change of marginal cost had mixed signs: it led to higher profits
in four specifications, and lower profits in two specifications.

39 It turns out that ξj was an important factor in determining demand for the high-end
products. The ξj ’s dispersion among the high-end direct flights was much wider in 1999
than in 2006. Replicating ξj ’s distribution in 1999 helped us to generate demand for the
high-fare flights.
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7 Conclusions

We found that compared to the late 1990s, in 2006, air-travel demand was
more price sensitive. Passengers displayed a much stronger preference for
direct flights. In addition, the change of marginal cost significantly favored
direct flights. These three factors, together with the expansion of LCCs,
explained more than 80% of the observed reduction in legacy carriers’ profits.
Despite the press’ emphasis on the increasing fuel cost and competition from
LCCs, the change in demand was the most important explanation for the
legacy carriers’ profit losses.

We conclude with two caveats. First, our estimates were changes in vari-
able profits, not changes in net profits, as we did not observe fixed costs.
Second, we found that the impact of LCC entry in the 2000s was modest
compared to the changes in consumers’ preference. If the expansion of LCCs
contributed to the change of the taste parameters via affecting consumers’
search behavior, then their general equilibrium effect could be much larger.
Lastly, reduced demand for connecting flights probably contributes to the
recent ‘dehubbing’ phenomenon in the airline industry. Modeling the ef-
fect of LCC entry and demand changes on the airline industry’s network
structure is an interesting question for future research.

8 Appendix: constructing departures and flight
delays

In this section, we explain how we constructed flight frequencies and the
delay variable. The scheduling data from Back Aviation Solutions reported
the scheduled departure time and arrival time for all flights operated by U.S.
carriers that file with Official Airline Guides. We cross-examined this data
with T100, and found that the departures matched closely (the correlation
between Back departures and T100 departures exceeded 99.9%).40 In addi-
tion, the Back data contained the scheduling information for some regional
carriers that did not directly report to T100.41

Obtaining the number of departures for direct flights was straight for-
ward: we counted the total number of direct flights by all carriers that

40The difference between these two data sets is consistent with the average comple-
tion ratio, since the Back data report scheduled departures, while T100 reports actual
performed departures.
41For example, Comair filed form 298c prior to 2000 and Piedmont filed 298c until 2001.

Both carriers showed up in the Back scheduling data.
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operated for a ticketing carrier in a given market. The DB1B data reported
the ticketing carrier and the operating carriers for all itineraries, so we in-
directly observed the list of operating carriers that provided service for a
ticketing carrier in a given airport pair. Constructing the number of de-
partures for connecting flights was slightly more involved. We restricted
the connecting time to 45 minutes and 4 hours. When there were multiple
feasible connections, we only included the connection with the shortest lay-
over time.42 The complication arises when a ticketing carrier issued tickets
operated by more than one operating carrier. We constructed the number
of connecting departures using flights by all carriers that operated for the
ticketing carrier in a given market.

DOT publishes the flight-level on-time arrival data for non-stop domestic
flights.43 We first obtained the on-time performance for each operating car-
rier for each airport pair, and then aggregated the delay variable (weighted
by departures) by ticketing carriers and airport pairs. For connecting flights,
the delay variable was the average over the two segments.

42Suppose some carrier offers the following flight schedule among airports A, B, C: 1)
flight 1001 departs from A at 8am, arrives at B at 2pm; 2) flight 1002 departs from A at
10am and arrives at B at 4pm; 3) flight 1003 departs from B at 5:30pm and arrives at
C at 7:30pm. Even though both flight 1001 and 1002 can be connected with flight 1003,
we only count the connection with the shortest layover time. In this example, the carrier
operates one connecting departure in market A-C.
43 In 1999, only the major carriers — American, Continental, Delta, Northwest, Trans

World, United, and US Air, plus Alaska, American West, and Southwest reported the
delay statistics. In 2006, both major carriers and the largest regional carriers reported the
delay statistics to DOT.
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Variable Mean Std. Mean Std.
Fare (2006 $100) 4.93 3.17 4.51 2.59
Product Share 1.42E-04 6.37E-04 1.42E-04 5.26E-04
Direct Flight 0.37 0.48 0.43 0.49
No. Daily Departures 5.25 3.41 4.83 2.85
No. Destinations (100 cities) 0.17 0.28 0.19 0.31
Hub 0.16 0.37 0.16 0.36
HubMC 0.85 0.36 0.72 0.45
Distance (1000 miles) 2.73 1.40 2.78 1.42
Distance2 (1000 miles) 9.42 8.44 9.72 8.66
Tourist Place (FL/LAS) 0.13 0.33 0.13 0.34
Slot-Control 0.36 0.76 0.36 0.75
SlotMC 0.21 0.41 0.21 0.40
Plane Size (100) 1.35 0.33 1.23 0.34
Delay>=30 Minutes 0.14 0.07 0.13 0.07
American 0.16 0.37 0.18 0.39
Continental 0.10 0.29 0.08 0.28
Delta 0.19 0.39 0.15 0.36
American West 0.05 0.22
NorthWest 0.09 0.28 0.08 0.28
Trans World 0.09 0.28
United 0.13 0.34 0.14 0.34
US Air 0.10 0.30 0.15 0.36
JetBlue 0.01 0.12
SouthWest 0.04 0.20 0.09 0.29
Other Carrier 0.05 0.22 0.11 0.31
No. Observations 214809 226532

Market Average
No. Products 53.73 38.52 52.68 36.67
No. Carriers 3.51 2.00 3.30 1.88
No. Direct Passengers (1000) 20.13 40.45 22.75 43.66

No. Connecting Passengers (1000) 3.52 4.10 2.71 3.13
No. Markets w/ LCC Entry 1569
No. Observations 3998 4300

1999 2006
Table 1: Summary Statistics for the Data Set

Note: Hub=1 if the origin airport is a hub; HubMC=1 if either the origin, the connecting airport, or 
the destination is a hub. Tourist Place=1 if the origin airport is in Las Vegas or Florida. Slot-
Control is the number of slot-controlled airports the route of product j passes through. SlotMC=1 if 
Slot-Control>0. Delay is the percentage of flights arriving more than 30 minutes later than the 
scheduled arrival time.



Demand Variables 1999 2006 Cost Variables 1999 2006

Fare 1 -0.78* -1.05* Constant 1 1.07* 1.16*
(0.01) (0.01) (0.03) (0.03)

Connection 1 -0.53* -0.59* Distance 1 0.26* 0.19*
(0.01) (0.02) (0.00) (0.00)

Constant 1 -5.79* -5.68* Connection 1 -0.06* 0.07*
(0.13) (0.12) (0.02) (0.02)

Fare 2 -0.07* -0.10* Constant 2 1.61* 1.59*
(0.00) (0.00) (0.04) (0.04)

Connection 2 -0.31* -0.51* Distance 2 0.09* 0.04*
(0.01) (0.01) (0.01) (0.01)

Constant 2 -8.56* -8.60* Connection 2 -0.09* 0.06*
(0.27) (0.19) (0.02) (0.03)

No. Destination 0.38* 0.27* HubMC -0.02† -0.05*
(0.01) (0.01) (0.01) (0.01)

No. Departures 0.04* 0.11* SlotMC 0.08* 0.03*
(0.00) (0.00) (0.01) (0.01)

Distance 0.30* 0.53*
(0.02) (0.01)

Distance2 -0.05* -0.08*
(0.00) (0.00)

Tour 0.30* 0.36*
(0.01) (0.01)

Slot-Control -0.19* -0.18*
(0.00) (0.00)

lambda 0.77* 0.72*
(0.00) (0.00)

gamma 0.69* 0.63*
(0.08) (0.07)

Demand Carrier Dummy Cost Carrier Dummy
Other Carriers -0.18* 0.06* Other Carriers -0.03† -0.22*

(0.01) (0.01) (0.01) (0.01)
American West -0.19* American West -0.22*

(0.01) (0.01)
Continental -0.22* 0.07* Continental -0.03* -0.19*

(0.01) (0.01) (0.01) (0.01)
Delta -0.13* -0.21* Delta -0.10* -0.15*

(0.01) (0.01) (0.01) (0.01)
NorthWest -0.15* 0.07* NorthWest -0.02† -0.04*

(0.01) (0.01) (0.01) (0.01)
Trans World -0.17* Trans World 0.02

(0.01) (0.01)
United 0.16* 0.08* United -0.05* -0.06*

(0.01) (0.01) (0.01) (0.01)
US Air -0.19* 0.06* US Air -0.08* -0.11*

(0.01) (0.01) (0.01) (0.01)
JetBlue 0.39* JetBlue -0.32*

(0.03) (0.03)
SouthWest -0.05* 0.08* SouthWest -0.12* -0.19*

(0.02) (0.01) (0.01) (0.02)
Function Value 49.37 58.07
Observations 214.8k 226.5k

Table 2: Base Case Parameter Estimates -- 1999 & 2006

Note: See Table 1 for the variable definitions. * and † denote significance at the 5% and 10% confidence level, 
respectively. Standard errors are in parentheses.



Demand Variables
Base
Case

No
MC Delay

Combine
Airports

Small
Bin

Large
Bin

Airport 
Dummy

Fare 1 -0.78* -1.14* -0.78* -0.80* -0.80* -0.69* -0.74*
(0.01) (0.16) (0.01) (0.01) (0.01) (0.01) (0.01)

Connection 1 -0.53* -0.47* -0.53* -0.53* -0.45* -0.63* -0.55*
(0.01) (0.03) (0.01) (0.01) (0.01) (0.01) (0.01)

Constant 1 -5.79* -4.66* -5.84* -5.47* -6.05* -5.77* -6.33*
(0.13) (1.01) (0.13) (0.11) (0.12) (0.13) (0.10)

Fare 2 -0.07* -0.09* -0.07* -0.06* -0.07* -0.07* -0.07*
(0.00) (0.02) (0.00) (0.00) (0.00) (0.00) (0.00)

Connection 2 -0.31* -0.37* -0.31* -0.31* -0.28* -0.40* -0.36*
(0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01)

Constant 2 -8.56* -8.35* -8.59* -8.48* -8.64* -8.07* -8.64*
(0.27) (0.94) (0.27) (0.26) (0.25) (0.29) (0.20)

No. Destination 0.38* 0.32* 0.34* 0.34* 0.36* 0.40* 0.48*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01)

No. Departures 0.04* 0.05* 0.04* 0.06* 0.03* 0.05* 0.05*
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Distance 0.30* 0.35* 0.27* 0.33* 0.35* 0.26* 0.29*
(0.02) (0.02) (0.02) (0.01) (0.02) (0.02) (0.02)

Distance2 -0.05* -0.05* -0.05* -0.05* -0.05* -0.05* -0.05*
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Tour 0.30* 0.32* 0.30* 0.34* 0.27* 0.31* 0.29*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Slot-Control -0.19* -0.18* -0.21* -0.11* -0.19* -0.20* -0.13*
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Delay 0.76*
(0.05)

lambda 0.77* 0.72* 0.77* 0.69* 0.76* 0.79* 0.83*
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

gamma 0.69* 0.52 0.70* 0.72* 0.70* 0.70* 0.68*
(0.08) (0.44) (0.08) (0.07) (0.08) (0.09) (0.06)

Demand Carrier Dummy
Other Carriers -0.18* -0.14* -0.08* -0.02† -0.19* -0.18* -0.10*

(0.01) (0.02) (0.02) (0.01) (0.01) (0.02) (0.01)
American West -0.19* -0.19* -0.17* -0.11* -0.22* -0.14* -0.13*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01)
Continental -0.22* -0.20* -0.20* -0.17* -0.23* -0.21* -0.14*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Delta -0.13* -0.13* -0.10* -0.10* -0.10* -0.20* -0.11*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
NorthWest -0.15* -0.13* -0.11* -0.10* -0.14* -0.17* -0.13*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Trans World -0.17* -0.16* -0.15* -0.13* -0.19* -0.13* -0.12*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
United 0.16* 0.16* 0.18* 0.18* 0.17* 0.13* 0.10*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
US Air -0.19* -0.18* -0.19* -0.16* -0.19* -0.19* -0.16*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
SouthWest -0.05* -0.04* -0.01 0.01 -0.04* -0.06* 0.05*

(0.02) (0.02) (0.02) (0.02) (0.01) (0.02) (0.02)

Table 3A: Demand Parameter Estimates from Different Specifications -- 1999

Note: See Table 3B for explanations of the specification in each column, no. of observations, and function 
values.



Cost Variables
Base
Case

No
MC Delay

Combine
Airports

Small
Bin

Large
Bin

Airport 
Dummy

Constant 1 1.07* 1.07* 1.29* 0.85* 0.88* 0.81*
(0.03) (0.03) (0.03) (0.03) (0.05) (0.04)

Distance 1 0.26* 0.26* 0.28* 0.26* 0.26* 0.23*
(0.00) (0.01) (0.01) (0.00) (0.01) (0.00)

Connection 1 -0.06* -0.06* -0.02 0.01 -0.08* -0.08*
(0.02) (0.02) (0.02) (0.01) (0.02) (0.02)

Constant 2 1.61* 1.61* 1.92* 1.38* 1.38* 1.30*
(0.04) (0.04) (0.04) (0.04) (0.06) (0.05)

Distance 2 0.09* 0.09* 0.10* 0.09* 0.10* 0.07*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Connection 2 -0.09* -0.10* -0.07* -0.02 -0.10* -0.10*
(0.02) (0.02) (0.02) (0.02) (0.03) (0.02)

HubMC -0.02† -0.02 -0.08* -0.03* 0.00 0.00
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

SlotMC 0.08* 0.08* 0.11* 0.08* 0.09* 0.06*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Cost Carrier Dummy
Other Carriers -0.03† -0.02† -0.04* -0.03* -0.04* -0.02

(0.01) (0.01) (0.02) (0.01) (0.02) (0.01)
American West -0.22* -0.22* -0.26* -0.20* -0.22* -0.20*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Continental -0.03* -0.03* -0.02* -0.02* -0.03* -0.03*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Delta -0.10* -0.10* -0.12* -0.09* -0.10* -0.09*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
NorthWest -0.02† -0.02† -0.04* -0.01 -0.01 -0.01

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Trans World 0.02 0.02 0.01 0.03* 0.00 0.02*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
United -0.05* -0.05* -0.07* -0.05* -0.03* -0.04*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
US Air -0.08* -0.08* -0.11* -0.08* -0.06* -0.07*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
SouthWest -0.12* -0.12* -0.19* -0.12* -0.10* -0.10*

(0.01) (0.01) (0.02) (0.01) (0.02) (0.01)

Function Value 49.37 46.54 49.44 40.22 51.15 42.90 44.89
Observations 214.8k 214.8k 214.8k 214.8k 238.5k 147.3k 214.8k

Table 3B: Cost Parameter Estimates from Different Specifications -- 1999

Note: See Table 1 for the variable definitions. Column one is the base case. Column two does not use 
the markup condition. Column three adds delays to demand. Column four groups nearby airports. 
Column five and six use a finer and a rougher set of fare bins, respectively. Column seven includes 25 
airport dummies. * (†) denotes significance at the 5% (10%) confidence level. Standard errors are in 
parentheses.



Demand Variables
Base
Case

No
MC Delay

Combine
Airports

Small
Bin

Large
Bin

Airport 
Dummy

Fare 1 -1.05* -1.49* -1.06* -1.13* -1.09* -0.96* -1.04*
(0.01) (0.15) (0.01) (0.01) (0.01) (0.02) (0.01)

Connection 1 -0.59* -0.33* -0.56* -0.46* -0.48* -0.72* -0.62*
(0.02) (0.04) (0.01) (0.01) (0.01) (0.02) (0.02)

Constant 1 -5.68* -4.50* -5.61* -4.85* -5.87* -5.44* -6.06*
(0.12) (1.04) (0.12) (0.14) (0.11) (0.17) (0.11)

Fare 2 -0.10* 0.00 -0.10* -0.10* -0.10* -0.09* -0.10*
(0.00) (0.02) (0.00) (0.00) (0.00) (0.00) (0.00)

Connection 2 -0.51* -0.60* -0.53* -0.67* -0.50* -0.52* -0.55*
(0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01)

Constant 2 -8.60* -9.16* -8.55* -8.39* -8.64* -8.40* -8.85*
(0.19) (0.82) (0.19) (0.19) (0.18) (0.28) (0.16)

No. Destination 0.27* 0.20* 0.29* 0.26* 0.27* 0.25* 0.43*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

No. Departures 0.11* 0.10* 0.11* 0.13* 0.09* 0.12* 0.12*
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Distance 0.53* 0.55* 0.53* 0.41* 0.52* 0.55* 0.58*
(0.01) (0.02) (0.01) (0.01) (0.01) (0.02) (0.01)

Distance2 -0.08* -0.08* -0.08* -0.05* -0.08* -0.09* -0.09*
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Tour 0.36* 0.37* 0.35* 0.41* 0.34* 0.37* 0.34*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Slot-Control -0.18* -0.18* -0.17* -0.10* -0.18* -0.19* -0.13*
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Delay -0.82*
(0.04)

lambda 0.72* 0.67* 0.72* 0.63* 0.72* 0.72* 0.77*
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

gamma 0.63* 0.49 0.63* 0.60* 0.63* 0.65* 0.61*
(0.07) (0.43) (0.07) (0.08) (0.07) (0.10) (0.06)

Demand Carrier Dummy
Other Carriers 0.06* 0.13* 0.04* 0.14* 0.03* 0.07* 0.11*

(0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01)
Continental 0.07* 0.13* 0.09* 0.14* 0.09* 0.06* 0.11*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Delta -0.21* -0.24* -0.23* -0.21* -0.19* -0.29* -0.22*

(0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01)
NorthWest 0.07* 0.08* 0.04* 0.11* 0.06* 0.07* 0.08*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
United 0.08* 0.14* 0.09* 0.14* 0.09* 0.06* 0.03*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
US Air 0.06* 0.11* 0.02* 0.13* 0.07* 0.02† 0.06*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
JetBlue 0.39* 0.55* 0.38* 0.56* 0.24* 0.53* 0.46*

(0.03) (0.03) (0.03) (0.03) (0.02) (0.04) (0.03)
SouthWest 0.08* 0.19* 0.08* 0.11* 0.10* 0.06* 0.14*

(0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01)
Note: see Table 4B for explanations of the specification in each column.

Table 4A: Demand Parameter Estimates from Different Specifications -- 2006



Cost Variables
Base
Case

No
MC Delay

Combine
Airports

Small
Bin

Large
Bin

Airport 
Dummy

Constant 1 1.16* 1.16* 1.30* 1.02* 1.22* 1.07*
(0.03) (0.03) (0.03) (0.02) (0.04) (0.03)

Distance 1 0.19* 0.19* 0.22* 0.19* 0.21* 0.17*
(0.00) (0.00) (0.00) (0.00) (0.01) (0.00)

Connection 1 0.07* 0.10* 0.25* 0.14* -0.03 0.05*
(0.02) (0.02) (0.02) (0.02) (0.03) (0.02)

Constant 2 1.59* 1.58* 1.73* 1.40* 1.73* 1.44*
(0.04) (0.04) (0.04) (0.03) (0.05) (0.04)

Distance 2 0.04* 0.04* 0.06* 0.04* 0.06* 0.04*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Connection 2 0.06* 0.10* 0.27* 0.16* -0.07* 0.05†
(0.03) (0.02) (0.02) (0.02) (0.03) (0.03)

HubMC -0.05* -0.05* -0.07* -0.06* -0.06* -0.05*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

SlotMC 0.03* 0.03* 0.06* 0.03* 0.03* 0.02*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Cost Carrier Dummy
Other Carriers -0.22* -0.22* -0.22* -0.22* -0.27* -0.22*

(0.01) (0.01) (0.01) (0.01) (0.02) (0.01)
Continental -0.19* -0.18* -0.11* -0.18* -0.22* -0.20*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Delta -0.15* -0.15* -0.15* -0.13* -0.19* -0.15*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
NorthWest -0.04* -0.04* -0.06* -0.03* -0.04* -0.05*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
United -0.06* -0.06* 0.00 -0.04* -0.09* -0.07*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
US Air -0.11* -0.10* -0.03* -0.10* -0.13* -0.12*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
JetBlue -0.32* -0.30* -0.16* -0.32* -0.36* -0.39*

(0.03) (0.03) (0.03) (0.02) (0.04) (0.03)
SouthWest -0.19* -0.18* -0.19* -0.21* -0.18* -0.19*

(0.02) (0.02) (0.02) (0.01) (0.02) (0.01)
Function Value 58.07 49.59 57.38 40.48 60.84 43.86 52.20
Observations 226.5k 226.5k 226.5k 226.5k 257k 146k 226.5k

Table 4B: Cost Parameter Estimates from Different Specifications -- 2006

Note: See Table 1 for the variable definitions. Column one is the base case. Column two does not use 
the markup condition. Column three adds delays to demand. Column four groups nearby airports. 
Column five and six use a finer and a rougher set of fare bins, respectively. Column seven includes 25 
airport dummies. * (†) denotes significance at the 5% (10%) confidence level. Standard errors are in 
parentheses.



Demand Variables 1999 2006 1999 2006
Fare 1 -0.85* -1.20* -0.88* -1.60*

(0.01) (0.02) (0.02) (0.06)

Connection 1 -0.48* -0.53* -0.53* -0.54*
(0.01) (0.03) (0.03) (0.04)

Constant 1 -5.68* -5.38* -3.44* -1.74*
(0.22) (0.26) (0.62) (0.56)

Fare 2 -0.07* -0.11* -0.06* -0.12*
(0.00) (0.00) (0.00) (0.00)

Connection 2 -0.36* -0.48* 0.00 -0.55*
(0.01) (0.02) (0.09) (0.03)

Constant 2 -8.55* -8.75* -8.88* -7.36*
(0.51) (0.41) (3.37) (0.65)

No. Destination 0.38* 0.26* 0.39* 0.27*
(0.02) (0.01) (0.04) (0.02)

No. Departures 0.05* 0.12* 0.02* 0.07*
(0.00) (0.00) (0.01) (0.00)

Distance 0.31* 0.51* -0.16* -0.14*
(0.02) (0.02) (0.01) (0.01)

Distance2 -0.05* -0.08*
(0.00) (0.00)

Tour 0.18* 0.18* 0.51* 0.63*
(0.01) (0.01) (0.02) (0.01)

Slot-Control -0.15* -0.18* -0.16* -0.17*
(0.00) (0.00) (0.01) (0.01)

lambda 0.75* 0.72* 0.75* 0.67*
(0.00) (0.00) (0.01) (0.01)

gamma 0.71* 0.63* 0.85† 0.57*
(0.15) (0.15) (0.51) (0.28)

Cost Variables
Constant 1 1.09* 1.24*

(0.04) (0.03)
Distance 1 0.29* 0.23*

(0.01) (0.01)
Connection 1 0.04* 0.09*

(0.02) (0.03)
Constant 2 1.66* 1.68* 3.13* 2.22*

(0.06) (0.06) (0.09) (0.07)
Distance 2 0.10* 0.05* 0.04* 0.06*

(0.01) (0.01) (0.01) (0.01)
Connection 2 0.04 0.09* -0.12* 0.10*

(0.02) (0.04) (0.05) (0.04)
HubMC -0.08* -0.07* -0.01 -0.13*

(0.01) (0.01) (0.04) (0.02)
SlotMC 0.10* 0.05* 0.10* 0.04*

(0.01) (0.01) (0.01) (0.01)

Table 5: Robustness Check

Markets w/o LCC Entry Markets Longer than 1.5k Miles

Note: column one and two only use markets that did not experience LCC entry between 1999 and 2006. 
Column three and four use markets longer than 1500 miles that are less likely to be affected by the regional 
jets.



1999 2006
No. Destination Doubles 11% 9%
Add One Daily Departure 6% 16%
Distance up 10% -1% -1%
Tour Dummy Changes from 0 to 1 32% 39%
Slot Changes from 0 to 1 -22% -22%

Carrier Dummy Changes from 0 to 1
Other Carrier -20% 8%
American West -20%
Continental -24% 9%
Delta -15% -24%
NorthWest -17% 9%
Trans World -19%
United 22% 11%
US Air -20% 7%
JetBlue 58%
SouthWest -5% 10%

Table 6: Percentage Changes in Demand When Product Attributes Change

Note: the top panel displays the percentage change in market demand when the relevant 
product attribute is changed as specified. For example, in 2006, adding one departure to all 
products increases the market demand by 16% on average. The bottom panel reports changes 
in demand for the relevant carrier. For example, in 2006, changing Continental's carrier 
dummy from 0 to 1 increases its average market demand by 9%.



Price Elasticity
Base
Case

No
MC Delay

Combine
Airports

Small
Bin

Large
Bin

Airport 
Dummy

Type One -5.01 -7.81 -5.01 -5.64 -4.90 -4.77 -4.40
Type Two -0.44 -0.65 -0.44 -0.46 -0.42 -0.48 -0.43
Both Types -1.96 -2.16 -1.96 -2.35 -1.95 -1.63 -1.62
Aggregate Price Elasticity -1.55 -1.69 -1.55 -1.68 -1.53 -1.38 -1.37

Connection Semi-Elasticity
Type One 0.75 0.73 0.75 0.78 0.69 0.79 0.74
Type Two 0.55 0.64 0.55 0.59 0.51 0.63 0.58
All 0.66 0.68 0.66 0.71 0.61 0.71 0.66

Percentage of Passengers
Type One 0.59 0.47 0.59 0.64 0.57 0.58 0.54
Type Two 0.41 0.53 0.41 0.36 0.43 0.42 0.46

Price Elasticity
Base
Case

No
MC Delay

Combine
Airports

Small
Bin

Large
Bin

Airport 
Dummy

Type One -6.55 -6.57 -8.09 -6.41 -6.66 -6.10
Type Two -0.63 -0.63 -0.70 -0.61 -0.63 -0.60
Both Types -2.10 -2.15 -2.94 -2.15 -1.97 -1.89
Aggregate Price Elasticity -1.67 -1.70 -2.01 -1.63 -1.66 -1.58

Connection Semi-Elasticity
Type One 0.80 0.63 0.79 0.77 0.74 0.86 0.80
Type Two 0.75 0.83 0.76 0.88 0.75 0.76 0.76
All 0.77 0.76 0.77 0.83 0.74 0.80 0.77

Percentage of Passengers
Type One 0.51 0.47 0.52 0.59 0.48 0.55 0.48
Type Two 0.49 0.53 0.48 0.41 0.52 0.45 0.52

Table 7A: Elasticity Estimates from Different Specifications -- 1999

Table 7B: Elasticity Estimates from Different Specifications -- 2006

Note: the aggregate price elasticity measures the percentage change in total demand when all products' prices 
increase by 1%. Connection semi-elasticity measures the percentage change in product j's demand when it 
switches from a direct flight to a connecting flight, fixing other products' attributes. 



Marginal Cost ($)
Base
Case Delay

Combine
Airports

Small
Bin

Large
Bin

Airport 
Dummy

Connecting Flights 160 160 190 153 141 125
Direct Flights 149 149 170 126 132 120
All Products 156 156 183 142 138 123

% Markup
Connecting Flights 0.60 0.60 0.53 0.60 0.69 0.69
Direct Flights 0.66 0.66 0.61 0.68 0.78 0.74
All Products 0.63 0.63 0.56 0.63 0.72 0.71

Marginal Cost ($)
Base
Case Delay

Combine
Airports

Small
Bin

Large
Bin

Airport 
Dummy

Connecting Flights 167 173 229 165 157 149
Direct Flights 138 137 158 120 147 124
All Products 155 158 199 145 153 139

% Markup
Connecting Flights 0.56 0.54 0.41 0.54 0.60 0.60
Direct Flights 0.66 0.66 0.60 0.66 0.69 0.69
All Products 0.60 0.59 0.49 0.60 0.64 0.64

Table 8A: Marginal Cost and Markup from Different Specifications -- 1999

Table 8B: Marginal Cost and Markup from Different Specifications -- 2006



All Fares
Bottom 

90% Fares
Top 10% 

Fares All Fares
Bottom 

90% Fares
Top 10% 

Fares
All flights 17.80 11.77 6.03 26.38 19.79 6.60
Direct 14.95 10.17 4.77 21.90 16.62 5.29
Connecting 2.86 2.14 0.72 4.48 3.64 0.84

All flights 14.46 12.19 2.27 23.92 20.72 3.19
Direct 12.53 11.03 1.50 20.53 18.31 2.23
Connecting 1.94 1.62 0.32 3.38 2.93 0.45

All Fares
Bottom 

90% Fares
Top 10% 

Fares All Fares
Bottom 

90% Fares
Top 10% 

Fares

2.86 2.14 0.72 4.48 3.64 0.84

1.94 1.62 0.32 3.38 2.93 0.45

2.47 1.97 0.50 4.05 3.43 0.63

2.45 1.91 0.54 3.95 3.27 0.68

2.02 1.64 0.38 3.51 2.99 0.52

2.01 1.62 0.39 3.51 2.97 0.54

2.59 2.04 0.56 4.15 3.45 0.69
Note: we use 2006 product attributes for all counter-factual exercises. In each row, we solve for a new vector of the 
optimal prices that satisfy the first order conditions incorporating the parameter changes as specified.

Table 10: Carrier Profit and Revenue Per Market for Different Counter-Factual Scenarios: 
Connecting Flights

1999 Base Case

Table 9: Carrier Profit and Revenue Per Market

1999

2006

Year

Profit ($100k) Revenue ($100k)

Profit ($100k) Revenue ($100k)

Different Scenarios

2006 Base Case

All Factors

1999 Demand 
Parameters
1999 Demand 
Parameters and ξ

1999 MC Parameters

No LCC Expansion



Different Scenarios All Fares
Bottom 

90% Fares
Top 10% 

Fares All Fares
Bottom 

90% Fares
Top 10% 

Fares

1999 Base Case 14.95 10.17 4.77 21.90 16.62 5.29

2006 Base Case 12.53 11.03 1.50 20.53 18.31 2.23

1999 Demand 
Parameters 10.97 9.62 1.35 18.08 16.28 1.80
1999 Demand 
Parameters and ξ 15.06 11.72 3.34 22.11 17.67 4.44

1999 MC Parameters 11.99 10.41 1.58 19.85 17.48 2.36

No LCC Expansion 12.81 11.20 1.61 20.85 18.49 2.36

All Factors 14.80 11.46 3.34 22.03 17.55 4.48

Revenue ($100k)

Table 11: Carrier Profit and Revenue Per Market for Different Counter-Factual Scenarios: 
Direct Flights

Profit ($100k)

Note: we use 2006 product attributes for all counter-factual exercises. In each row, we solve for a new vector of 
the optimal prices that satisfy the first order conditions incorporating the parameter changes as specified.



Different Scenario
Base
Case Delay

Combine
Airports

Small
Bin

Large
Bin

Airport 
Dummy

1999 Demand Parameters and ξ 0.56 0.46 0.49 0.56 0.53 0.54
1999 MC Parameters 0.09 0.14 0.33 0.14 0.11 0.20
No LCC Expansion 0.08 0.08 0.08 0.08 0.08 0.06
All Factors 0.72 0.66 0.87 0.76 0.70 0.77

Different Scenario
Base
Case Delay

Combine
Airports

Small
Bin

Large
Bin

Airport 
Dummy

1999 Demand Parameters and ξ 1.05 1.02 0.85 1.29 0.70 0.87
1999 MC Parameters -0.22 -0.23 -0.20 -0.16 0.18 0.07
No LCC Expansion 0.12 0.11 0.18 0.14 0.08 0.08
All Factors 0.94 0.90 0.77 1.26 0.90 0.98

Table 12A: Percentage of Profit Changes Explained by Different Counter-Factual Scenarios -- 
Connecting Flights

Table 12B: Percentage of Profit Changes Explained by Different Counter-Factual Scenarios -- 
Direct Flights

Note: we use 2006 product attributes for all counter-factual exercises. In each row, we solve for a new vector of 
the optimal prices that satisfy the first order conditions incorporating the parameter changes as specified.



Figure 1: U.S. Domestic Revenue Passenger Miles (Bill.)
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Source: MIT Airline Data Project. 

 
 
 
 

Figure 2: U.S. Airlines' System Load Factors 
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 Source: MIT Airline Data Project. 

 
 



0
.0

00
5

.0
01

.0
01

5
.0

02
ke

rn
el

 d
en

si
ty

0 500 1000 1500 2000
x

Fare 2006 ($) Fare 1999 ($)

Figure 3: Direct Flights' Fare Dispersion 1999 -- 2006

 
Source: US DOT DB1B via BTS. Calculation based on the sample markets. 
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Figure 4: Connecting Flights' Fare Dispersion 1999 -- 2006

 
Source: US DOT DB1B via BTS. Calculation based on the sample markets. 



Figure 5: Percentage of Direct Passengers in U.S.

60%

61%

62%

63%

64%

65%

66%

67%

68%

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

 
 Source: US DOT DB1B via BTS. Author’s calculation. 
 
 
 
 

Figure 6: Percentage of Connecting Passengers by 
Carrier -- 1999 and 2006
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Source: US DOT DB1B via BTS. Calculation based on the sample markets. 

 




