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In this paper, we proposed a novel approach for nonlinear state estimation, named
π-IUKF (Invariant Unscented Kalman Filter), which is based on both invariant filter es-
timation and UKF theoretical principles. Several research works on nonlinear invariant
observers have been led and provide a geometrical-based constructive method for design-
ing filters dedicated to nonlinear state estimation problems while preserving the physical
properties and systems symmetries. The general invariant observer guarantees a straight-
forward form of the nonlinear estimation error dynamics whose properties are remarkable.
The developed π-IUKF estimator suggests a systematic approach to determine all the
symmetry-preserving correction terms, associated with a nonlinear state-space representa-
tion used for prediction, without requiring any linearization of the differential equations.
The exploitation of the UKF principles within the invariant framework has required the
definition of a compatibility condition on the observation equations. As a first result,
the estimated covariance matrices of the π-IUKF converge to constant values due to the
symmetry-preserving property provided by the nonlinear invariant estimation theory. The
designed π-IUKF method has been successfully applied to some relevant practical prob-
lems such as the estimation of Attitude and Heading for aerial vehicles using low-cost AH
reference systems (i.e., inertial/magnetic sensors characterized by low performances).

Nomenclature

ei Orthonormal basis vector, i ∈ [[ 1; 3 ]]
ω Instantaneous angular velocity vector, rad/s
ω0 Reference angular velocity vector in R3, rad/s
a0, b0 Positive scalars
q0 Unit quaternion
φ Bank angle
θ Pitch angle
ψ Heading angle
u Longitudinal speed component (body frame)
v Lateral speed component (body frame)
w Vertical speed component (body frame)
A Constant gravity vector in the North-East-Down (NED) coordinate system i.e., A = ge3,m/s

2

a Specific acceleration vector, m/s2

V Velocity vector of the center of gravity (Earth frame), m/s
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I. Introduction

The attitude estimation problem for nonlinear dynamic system is an important research topic and is
a major concern in the aerospace engineering community.1 The Extended Kalman Filter (EKF), and its
numerous variants e.g., the multiplicative EKF, is the most widely used signal processing methodology.
Its principle relies on a first-order linearization of the nonlinear model equations so that the traditional
linear Kalman Filter (KF) can be applied. However, it has two well known drawbacks:2 (1) the first-order
linearization can introduce large errors in the mean and covariance of the state vector and (2) the calculation
of Jacobian matrices is nontrivial for many applications. To overcome this problem, the Unscented KF3

(UKF) is an efficient derivative free estimation algorithm for determining approximate solutions to discrete-
time nonlinear optimal filtering problems. It has been successfully applied to various practical problems and
it has been shown that it outperforms the EKF in many cases.4–6

Recently, several research works on nonlinear invariant observers have been led and provide a geometrical-
based constructive method for designing filters dedicated to the state estimation problem of dynamical
systems while preserving the physical properties and systems symmetries. Such an approach can be very
tedious and non-systematic for complex dynamical systems. That’s why, a more general EKF-based method
dedicated to gains calculation (and which exploits a re-linearization of the invariant state estimation error
dynamics) has been recently developed in.7–9 Unfortunately, the Invariant EKF (IEKF) is based on a kind
of second-order approximations of the invariant estimation error. Once again, this technique can be very
complex to implement due to this re-linearization.
The contribution of this paper is to propose a novel and original approach for nonlinear state estimation,
named π-IUKF (Invariant Unscented Kalman Filter), which is based on both invariant filter estimation and
UKF theoretical principles. The developed π-IUKF estimator suggests a systematic approach to determine
all the symmetry-preserving correction terms, associated with a given nonlinear state-space representation
used for state prediction, without requiring any linearization of the dynamical systems equations. It is named
“π-IUKF” because a compatibility condition, which makes use of a specific nonlinear function denoted “π”,
on the observation equations has been defined and integrated to the standard UKF algorithm.
The paper is organized as follows: in section II, kinematics and nonlinear evolution equations are presented
and the π-Invariant Unscented Kalman Filter is detailed in section III. To conclude, section IV shows some
results obtained in simulation and validate the whole approach.

II. Dynamical system modeling

In order to tackle a wide range of applications, various implementations of flight dynamics models, in
terms of assumptions and numerical techniques, therefore exist. Mini-Unmanned Aerial Vehicles (mini-
UAVs) are commonly represented using a 6 Degrees of Freedom (DoF) quaternion-based kinematic model
(3 DoF correspond to the translational motion (u, v, w) and the 3 remaining DoF to the rotational motion
(φ, θ, ψ)). This choice is due to:

1. the high dynamical behavior of mini-UAVs which causes problems when using the typical Euler angles
representation;

2. the difficulty for such systems to derive a reliable and representative aerodynamic modeling from scratch
(see Fig.1) (which could be included within a full nonlinear flight dynamics model) since mini-UAVs
must remain low-cost experimental means (no CFD calculations, no wind-tunnel tests, . . . ).

Figure 1. Quadrirotor (Blender, 350mm diameter and 300g weight) and aircraft (Solar Storm, 500mm span and
400g weight) min-UAVs from the ENAC (Ecole Nationale de l’Aviation Civile) University
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A. Kinematics and Nonlinear Evolution Equations

Assuming a flat non-rotating Earth, the flying rigid body motion can be mathematically described by:
q̇ =

1

2
q ∗ ω

V̇ = A+ q ∗ a ∗ q−1
(1)

In Eq.(1), symbol ∗ corresponds to the quaternion product. The first expression of Eq.(1) describes
the kinematic relation of the body of the considered mini-UAV and the second one corresponds to the
Newton’s law.10 The instantaneous attitude of the flying mini-UAV can be generalized and deduced using
the aforementioned standard quaternionial form which provides at the same time:

• a global parametrization;

• avoids the mathematical singularities inherent to Euler angles;

• and is convenient for calculations and simulations.

For more details about formulas used on quaternion in this paper, see Appendix I.

B. Comments on the Measurement and Sensor Reliability

Recent progresses in the miniaturization of the inertial instruments i.e., Inertial Navigation System (INS) and
Global Positioning System (GPS) hardware have led to the design of small, low-cost integrated navigation
systems. Under conditions where GPS is available, this one provides a position accuracy of approximately
3 to 10 meters. In our case, where the position is unavailable or intermittent such as in urban or indoor
environments, a major issue for autonomous maneuvering and obstacles avoidance for mini-UAVs is to
estimate vehicle orientation with respect to an inertial reference frame. Thus navigation quality is limited
by inertial sensor performance: given the size, power and cost constraints of miniature systems. To recover
navigation accuracy using low-cost sensors such as the well-known non-aided Attitude and Heading Reference
Systems (AHRS), it is necessary to use, if possible, additional instruments (e.g., magnetometers, which are
used to increase the heading accuracy) and/or nonlinear estimation algorithm to improve the global mini-
UAVs handling qualities. The nonlinear state estimation makes use of 3 triaxial sensors which deliver 9
scalar measurement signals:

• 3 of them are associated with 3 magnetometers which provide a local measurement of Earth’s magnetic
field, which is known constant a and expressed in the body-fixed frame such that the vector yB =
q−1 ∗B ∗ q where B = [Bx, By, Bz] can be considered as an output of the observation equations;

• 3 gyroscopes allow to obtain a measurement of the instantaneous angular velocity vector denoted by
ωm ∈ R3 s.t ωm = [ωmx, ωmy, ωmz]

T ;

• and finally, 3 accelerometers give a measurement of the specific acceleration denoted by am ∈ R3 s.t
am = [amx, amy, amz]

T .

All these measurements are obviously corrupted by noises whose effects will be taken into account in §III-B.
In this non-aided AHRS, no velocity and position measurements are available (no GPS, no Pitot sensors).
Thus, to keep the whole nonlinear state representation observable given these available informations, the
assumption that the linear acceleration V̇ remains small is made, i.e., V̇ = 0. As a result, the specific
acceleration vector, expressed in the body-fixed frame, can be approximated by a = −yA = −q−1 ∗ A ∗ q
where A is the local Earth’s gravity vector. This one can be compared, as an another output vector, with
its corresponding measurement am. Thereby, we consider the following system Ms given by:

Ms


q̇ =

1

2
q ∗ ω (evolution)

y =

yA
yB

 =

q−1 ∗A ∗ q
q−1 ∗B ∗ q

 (observation)

aThe magnetic field can be determined from a world magnetic model such as B is equal to [0.5156 0.0570 0.8549] at the local
flight coordinates 43.617-43◦-37′ (N) and 1.450-1◦-27′ (E)
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All the sensors embedded are low-cost and so have imperfections. The major error sources in the naviga-
tion system are due to: - the inertial instrument imperfection; - the possible incorrect navigation system
initialization (e.g., on magnetometers); - and the imperfections in the local Earth’s gravity vector used in
computations. For both instruments, the largest errors are usually a bias instability (expressed respectively
in (deg/hr) for gyros and µg for the accelerometers biases) and a wrong scale-factor value. Obviously, smaller
will be the inertial sensor errors and better will be the quality of the instruments (improved accuracy of the
navigation results), but higher will be the cost of the system. Fig.2 from11 shows INS relative strapdown
system cost “projections” as a function of the inertial instruments technology and performance. Note that
colored areas are function of the quantity of sensor systems produced which influences their production cost.
Thus, only MEMS (Micro-Electro-Mechanical Systems) gyros and accelerometers (performing at around
100◦/hr and 100mg bias stabilities respectively) are currently suitable for a potential use as a low-cost
AHRS.

Figure 2. Strapdown INS cost as a function of instrument technology

Based on these technical elements and the observation relations which composedMs, it is possible to choose
how these imperfections can be modeled since some degrees of freedom exist. A first-order observability
analysis − which can be led analytically by linearizingMs − (see12 for more details) shows that 6 additional
unknown constants can be estimated without introducing inobservability. Thus, an additive constant bias
vector ωb is basically considered on the angular velocity vector measurement ωm. Then, for mini-UAV safety
(magnetic measurements used to estimate the mini-UAV’s heading only and accelerometric imperfection
estimated without relying on the disturbed magnetic measurement), only two more constant positive scaling
factors as and bs are introduced in the estimation scheme. The latter quantity bs will be used to adjust and
preserve the unit norm on vector yB . All these sensor imperfections are modeled as gaussian random walks
which can be physically interpreted as slowly varying parameters. The Ms modeling now becomes:

M+
s



q̇ =
1

2
q ∗ (ωm − ωb)

ω̇b = 0 (evolution)

ȧs = 0

ḃs = 0yA
yB

 =

asq−1 ∗A ∗ q
bsq
−1 ∗B ∗ q

 (observation)

(2)

where ωm is seen as an imperfect and noisy but known measured input and am as an available imperfect
and noisy measured output like B. The nonlinear state space representation corresponding to M+

s can be
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described in a compact form such as: ẋ = f(x, u) and y = h(x, u) where: x = [qT , ωTb , as, bs]
T , u = [ωm] and

y = [yTA, y
T
C ] are the state, input and output vectors respectively.

III. π-Invariant Unscented Kalman Filter

A. Invariant observer and system symmetries

This section presents briefly the main theoretical principles of some research works dealing with dynamical
system symmetries and invariant observer.13 Let’s consider the following nonlinear state-space representation
defined by:


dx

dt
= f(x, u)

y = h(x, u)
(3)

where the state (resp. input)(resp. output) vector belongs to an open set X ∈ Rn (resp. U ∈ Rm) (resp.
Y ∈ Rp, p ≤ n). Then, we consider the transformation group defined on X × U × Y such that :

G× (X × U × Y)→ (X × U × Y)

(g, x, u, y) 7→ (ϕg(x), ψg(u), ρg(y)) = (X,U, Y )

whereG is a Lie-groupb (i.e., a finite-dimensional differentiable manifold in which multiplication and inversion
group operations are also differentiable) and (ϕg, ψg, ρg) are three diffeomorphismsc parametrized by g ∈ G.
Practically, the objective is to define 3 specific coordinates transformations whose actions on state, input and
output variables respectively are distinct such that the evolution (dx/dt=f(x, u)) and observation (y=h(x, u))
equations are left unchanged i.e., Ẋ = f(X,U) and Y = h(X,U).
Thus, a dynamical system ẋ = f(x, u) will be said G-invariant if ∃(ϕg, ψg)g∈G, ∀(g, x, u) ∈ G × (X × U),
f(ϕg(x), ψg(u)) = Dϕg(x) · f(x, u) and G-equivariant if moreover ∃(ρg)g∈G acting on Y, ∀(g, x, u) ∈ G ×
(X × U), h(ϕg(x), ψg(u)) = ρg(h(x, u)). These last definitions mean that all state and output equations
remain explicitly identical. Based on such G-invariant/equivariant dynamical systems it is possible to design
invariant observers (whose properties are often remarkable) by copying the predetermined group actions on
the estimated state and output spaces. By doing this, it is possible to replace the usual linear output error
on which a lot of observers are based (for instance KF), and which does not preserve systems symmetries,
with a nonlinear invariant one. In our inertial navigation application, this invariance feature corresponds to
some physical aspects of the mini-UAV’s movement such as the independent choice of the reference frame
(Galilean invariances through transformations composed with rotations and translations). So, we are looking
for frame transformations that leave the system identical. Considering the explicit M+

s modeling given in
Eq.(2) and the Lie-group G = H1×R5 (where H1 is the unit quaternions manifold) acting on the whole state
space ofM+

s , the following variable transformations give to our considered dynamical system the G-invariant
and G-equivariant properties s.t. ∀g = (qT0 ωT0 a0 c0) ∈ G :

1) ϕg

(
x =

(
qT ωTb as bs

)T)
=


q ∗ q0

q−10 ∗ ωb ∗ q0 + ω0

as · a0
bs · b0


2) ψg(ω = (ωm)) = q−10 ∗ ωm ∗ q0 + ω0

3) ρg

(
y =

(
yTA yTB

)T)
=

(
a0 · q−10 ∗ yA ∗ q0
b0 · q−10 ∗ yB ∗ q0

)
These latter are equivalent to time-constant rotations and translations in both earth- and body-fixed frames.
Moreover, let’s consider Q = (q ∗ q0) ,Ωb = (q−10 ∗ ωb ∗ q0 + ω0) and Ωm = (q−10 ∗ ωm ∗ q0 + ω0). The system

be.g., SE3(R) (rotation matrices and translation vectors of dimension 3) is a Lie-group.
cGiven a Lie-group, it is called diffeomorphism if it is bijective and its inverse is differentiable.
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M+
s is indeed invariant by transformation group since:

Q̇ =

·︷ ︸︸ ︷
(q ∗ q0)= (

1

2
q ∗ (ωm − ωb)) ∗ q0 =

1

2
(q ∗ (ωm − ωb)) ∗ q0

=
1

2
(q ∗ ωm − q ∗ ωb) ∗ q0 =

1

2
(q ∗ ωm ∗ q0 − q ∗ ωb ∗ q0)

=
1

2
(q ∗ q0 ∗ q−10 ∗ ωm ∗ q0 − q ∗ q0 ∗ q

−1
0 ∗ ωb ∗ q0)

=
1

2
(q ∗ q0) ∗ ((q−10 ∗ ωm ∗ q0 + ω0)− (q−10 ∗ ωb ∗ q0 + ω0))

=
1

2
Q ∗ ((q−10 ∗ ωm ∗ q0 + ω0)− (q−10 ∗ ωb ∗ q0 + ω0)) =

1

2
Q ∗ (Ωm − Ωb)

Ω̇b =

·︷ ︸︸ ︷
(q−10 ∗ ωb ∗ q0 + ω)= q−10 ∗ ω̇b ∗ q0 = 0

·︷ ︸︸ ︷
(as · a0) = ȧs · a0 = 0

·︷ ︸︸ ︷
(bs · b0) = ḃs · b0 = 0

whereas the output (observation) is G-compatible since:

ρg(y) =

(
a0 · q−10 ∗ yA ∗ q0
b0 · q−10 ∗ yb ∗ q0

)
=

(
a0 · q−10 ∗ (as · q−1 ∗A ∗ q) ∗ q0
b0 · q−10 ∗ (bs · q−1 ∗B ∗ q) ∗ q0

)
=


as · a0 · q−10 ∗ q−1 ∗A∗

Q︷ ︸︸ ︷
(q ∗ q0)

bs · b0 · (q−10 ∗ q−1)︸ ︷︷ ︸
=(q∗q0)−1i.e., Q−1

∗B∗

Q︷ ︸︸ ︷
(q ∗ q0)


=

(
as · a0 ·Q−1 ∗A ∗Q
bs · b0 ·Q−1 ∗B ∗Q

)
= h

(
ϕg(x), ψg(u)

)
Then, if we consider the particular case where : g = x−1 = [(q−1)T (−q ∗ ωb ∗ q−1)T a−1s b−1s ]T ,we obtain:

ϕx−1(x) =


q ∗ q−1

q ∗ ωb ∗ q−1 − q ∗ ωb ∗ q−1

as · a−1s
bs · b−1s

 =


1

0

1

1

 = e

which is equal to the neutral element e of the local transformation ϕg. Indeed, each component of the vector
(1 0 1 1)T corresponds to the neutral element of:

• the quaternion Hamilton product (1 ∗);

• the vector translation operation (0 +);

• and the real scalar product (1 ·).

This vector forms an invariant and defines x−1 ∈ G as the invariant Lie-group parametrization to choose.
This result is known as the normalization equations solution and allows to build an invariant output error
denoted by E. In the followings, we will use for commodity reasons the notation:

γ(x) =


q−1

−q ∗ ωb ∗ q−1

a−1s
b−1s

 (4)
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The general form of a symmetry-preserving invariant observer can be defined such as :

˙̂x =

prediction G-invariant︷ ︸︸ ︷
f(x̂, u) +

invariant correction term︷ ︸︸ ︷
n∑
i=1

Ki
(
ψx̂−1 , E :=

[
h
(
e = ϕx̂−1(x̂−1), ψx̂−1(u)

)
− ρx̂−1(y)

])
wi(x̂) (5)

In Eq.(5), x̂ corresponds to the estimated state vector and is an element of Rn. We recognize in Eq.(5)
the typical mathematical expression of a nonlinear state estimator in which a model-based prediction whose
dynamics is G-invariant and its output G-equivariant is summed with an invariant correction term. The
idea is to build an invariant additive correction term base on the nonlinear gains Ki (which depend on the
invariances (e, ψx̂−1 , ρx̂−1) in a nonlinear way) which keeps the whole estimated state vector dynamics ˙̂x
G-invariant such as for the dynamical system representation f . In Eq.(5) the standard analytical expression
of the invariant output error E is given. Its explict mathematical expression can be calculated directly such
that:

E = h
(
e = ϕx̂−1(x), ψx̂−1(u)

)
− ρx̂−1(y)

=

(
A− â−1s q̂ ∗ yA ∗ q̂−1

B − b̂−1s q̂ ∗ yB ∗ q̂−1

)
=

(
EA

EB

)

Moreover, the wi(x̂) vectors form an invariant frame i.e., for each x̂ ∈ X , (w1(x̂), · · · , wn(x̂)) project the
invariant correction term on each component of f(x̂, u) (i.e., the tangent state space). In our case, considering
the canonical basis of R3, (ei)i∈[[ 1;3 ]], the expression of these vectors which define an invariant reference frame
(also called invariant natural basis in the tangent state space) is obtained by the 8 vector equations with

respect to variable w(q̂, ω̂b, âs, b̂s) s.t.:

Jacobian matrix of the geometrical
transformation ϕg(x)︷ ︸︸ ︷Dϕγ(x)


q

ωb

as

bs


 .w(x) =



0

ei

0

0

0

0

0


i∈[[ 1;3 ]]

,



0

0

0

0

ei

0

0


i∈[[ 1;3 ]]

,



0

0

0

0

0

0

0

1

0


and



0

0

0

0

0

0

0

0

1


(6)

By inverting the Jacobian matrix Dϕγ(x)


q

ωb

as

bs

, it follows that the invariant vector field wi(x) is given by:


wqi (x)

wωb
i (x)

was(x)

wbs(x)

 =



0

ei ∗ q
0

0

0

0

0


i∈[[ 1;3 ]]

,



0

0

0

0

q−1 ∗ ei ∗ q
0

0


i∈[[ 1;3 ]]

,



0

0

0

0

0

0

0

as

0


and



0

0

0

0

0

0

0

0

bs


(7)
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Then, we have:

∀i ∈ [[ 1;n ]], Ki(ψx̂−1(u), E = 0) = 0 (i.e., no correction if no output error !)

It follows that the 1st order Taylor series of each nonlinear gain is reduced to:

∀i ∈ [[ 1;n ]], Ki(ψx̂−1(u), E) = K̄i(ψx̂−1(u), E) · E

So that a linear approximation of Eq.(5) can be obtained easily s.t.:

˙̂x = f(x̂, u) +

n∑
i=1

K̄i(ψx̂−1(u), E) · E · wi(x̂) (8)

Combining all these results, Eq.(8) can be detailed as follows:

OMs



˙̂q =
1

2
q̂ ∗ (ωm − ω̂b) +

3∑
i=1

(K̄qAi · EA + K̄qBi · EB)ei ∗ q̂

˙̂ωb =

3∑
i=1

q̂−1 ∗ (K̄ωb

Ai · EA + K̄ωb

Bi · EB) ∗ q̂

˙̂as = âs(K̄asAi · EA + K̄asBi · EB)

˙̂
bs = b̂s(K̄bsAi · EA + K̄bsBi · EB)

where the quantities K̄qAi, K̄
q
Bi, K̄

ωb

Ai, K̄
ωb

Bi, K̄
as
Ai, K̄

as
Bi, K̄

bs
Ai and K̄bsBi are arbitrary 1×3 gain matrices whose choice

will determine the convergence properties of the estimation scheme. A direct and analytical design can be
done thanks to the linearization of the invariant state error denoted η(x, x̂) and defined such as:

η(x, x̂) = ϕγ(x)(x̂)− ϕγ(x)(x) =


q̂ ∗ q − 1

q̂ ∗ (ŵb − wb) ∗ q̂−1

as/âs

bs/b̂s

 ∼ x−1x̂.
Such an approach can be very tedious and non-systematic for more complex dynamical systems than the
ones represented by a fully kinematic model. That’s why recently, a more general EKF based method
dedicated to gains calculation (exploiting a re-linearization of the invariant state estimation error dynamics)
has been developed in.7–9 In that way, the Invariant EKF can be viewed as a “second-order” approximation
of the invariant estimation error. Once again, this technique can be very complex to implement due to
this re-linearization. As a consequence a novel and original UKF-based approach, named π-IUKF, has been
defined. It addresses the approximation issue of the invariant EKF without requiring any linearization of the
dynamical systems equations. It is called “pi-”IUKF because a compatibility condition, pronounced “pi”,
on the measurement equations has been defined and integrated to the standard UKF algorithm. This new
way for calculating the matricial gains has motived our research works.

B. π-IUKF algorithm

In this section, we propose a modification of the UKF3 algorithm for nonlinear systems possessing symmetries.
As mentioned in the previous section, this algorithm presents the advantage to compute an approximated
solution of a nonlinear optimal filtering problem in discrete-time without requiring any linearization of the
nonlinear systems equations. A method, named Sigma-Points Approach14 (SPA), is used for calculating the
gaussian approximation of an unknown random variable xk|k at time kT on which is applied a nonlinear
transformation such as follows:xk|k ∼ N(x̂k|k, Pk|k) s.t xk+1 = f(xk, uk, k) + wk

yk|k = h(xk|k, k) + vk
(9)
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where x ∈ Rn, y ∈ Rp and w, v are independent white gaussian noises. The aims of the basic SPA is to form a
fixed number of deterministically chosen sigma-points χk|k, which capture the “true” mean x̂k|k and covari-
ance Pk|k of the original distribution xk|k. This set of points must represent accurately the first and second
order moments. These sigma-points are then propagated through the nonlinear functions Eq.(9) providing
a cloud of evolving points. The mean x̂k|k+1 and estimated covariance matrix Pk|k+1 of the transformed
points are then computed based on their statistics. Therefore, the UKF is only a straightforward extension
of the SPA for computing approximate solutions to the estimation problem posed whose mathematical form
is presented by:

xk+1 = f(xk, uk) + wk (10)

zk = h(xk, uk) + vk (11)

Concerning both evolution and observation noises (w and v), we assume that they enter into the system
in an “invariant way” such as in.7 Noises can be considered as additive exogeneous invariant inputs and
outputs, which do not change systems symmetries, if their insertion in the modeling equations relies on G-
invariant/equivariant mathematical terms. That’s why some specific operations (such as the right quaternion
multiplications · ∗ q) appear in the discrete differential equations at the beginning of §IV. Note that in
reference,7 the authors make an important assumption on the local diffeomorphism ρg which is motivated
by the fact that this latter application is not generally linear. This can raise problems in considering the
measurement noises within the G-equivariant observation model. The exploitation of the UKF principles
within the nonlinear invariant estimation framework required the definition of a particular condition on the
observation equations, named compatibility condition, which corresponds to the application of a nonlinear
function, denoted π, to the predicted measurement vector. The resulting operation can be interpreted as
the construction of a set of new predicted measurements whose expressions can be projected in the natural
base wqi (x̂k+1|k) (see §III-A). Indeed, we have:

π(h(x̂k+1|k, uk)) =

3∑
i=1

ργ(x̂k+1|k)
(h(x̂k+1|k, uk))wqi (x̂k+1|k)ei (12)

where:

γ(x̂k+1|k) =


q̂−1k+1|k

−q̂k+1|k ∗ ω̂bk+1|k ∗ q̂
−1
k+1|k

â−1sk+1|k

b̂−1sk+1|k


Therefore, Eq.(12) can be detailed for M+

s as it follows :

π(h(x̂k+1|k, uk)) =


âsk+1|k ·

3∑
i=1

(A ∗ q̂k+1|k)ei

b̂sk+1
·

3∑
i=1

(B ∗ q̂k+1|k)ei

 (13)

This compatibility condition ensures that the measurement prediction step will be led in an “invariant way”
so that the Square-Root UKF14,15 (SR-UKF) gains now depend on the invariances. As a result, the π-IUKF
relies on the same ideas as the usual UKF but instead of using a linear correction term based on a linear
output error, it uses a geometrically adapted correction term based on an invariant output error. Likewise,
the covariance matrix is not updated from an initial linear state error (x0 − x̂0), but from an intrinsic
initial invariant state error η(x̂0, x0). The stochastic differential equations corresponding to the π-IUKF for
nonlinear systems possessing symmetries are given by the modifications of the initialization, observation and
correction steps of the standard SR-UKF. Note that we use the square-root form of the UKF method because
it avoids to perform a direct matrix square-root operation at each time kT . The pseudo-code of the π-IUKF
algorithm is detailed in Appendix II. For commodity reasons, the addition of a given vector u to each column
of a matrix M is noted M ± u. This technique provides an increasing computational efficiency as well as
a numerical stability. The SR-UKF calculations are based on three linear algebra computation techniques:
- the QR decomposition (denoted: qr{·}); - the Cholesky factor updating technique (cholupdate16 within
MATLABTM); - and the least squares17 (MATLAB’s ’\’ operator).
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IV. Simulation results

We now illustrate the performances reached by the developed π-IUKF method on the basis of simulated
data provided by the ONERAd lab. As it was aforementioned, the driving perturbation noises are introduced
within the G-invariant system of Eq.(10) such as follows:

qk+1 =
1

2
qk ∗ (ωmk

− ωbk) +Wqkwqk ∗ qk

wbk+1
= qk

−1 ∗Wwk
wwk

∗ qk
ask+1

= askWakwak

bsk+1
= bskWbkwbk

and the output noises enter the observation Eq.(11) such as:(
zAk+1

zBk+1

)
=

(
ask+1

q−1k+1 ∗ (A+ VAk+1
vAk+1

) ∗ qk+1

bsk+1
q−1k+1 ∗ (B + VBk+1

vBk+1
) ∗ qk+1

)

In the last expressions, Wqk , Wwk
, Wak and Wbk (resp. VAk

and VBk
) refer to the process (resp. mea-

surement) noise covariance matrices which are similar to weighting terms. Followingly, we define two block
diagonal matrices, denoted Wk and Vk, by concatenating these covariance matrices. The experimental data
are sampled with a frequency equal to 50Hz which characterized the inertial measurement unit and the
magnetometers. The measurements are corrupted by gaussian white noises whose standard deviations are
set to: σgyro = 0.2 ◦/s, σaccelero = 0.2 g and σmagneto = 500 nT. In order to validate our π-IUKF filter, we
have also introduced a biases vector on ωm s.t. ωb = [0.1 rad/s 0.05 rad/s 0.02 rad/s]T . The two positive
scalar factor values are set to as = 1.2 and bs = 0.9 respectively.

A. Acceleration disturbance (V̇ 6= 0)

First of all, we present the acceleration V̇ in Fig. 3(a) for which the assumption made previously (V̇ = 0) may
be wrong. Indeed, we can observe that this acceleration goes down and up strongly at time 20s < t < 35s.
Thus, in Fig. 3(b), biases, as well as scaling factors, are a little bit influenced by this inconsistency since
these ones are estimated while system is evolving. However, it appears that both biases and scaling factors
converge quickly to their respective true constant values.
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(a) Acceleration yA (locally: V̇ 6= 0)
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Figure 3. Biases and scaling factors locally influenced by V̇ 6= 0

dOffice Nationale d’Etudes et de Recherches Aérospatiales.
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B. Attitude estimation

In Fig. 4(a), we firstly illustrate a typical realization of the gaussian white noise stochastic processes with
zero mean which perturbate the nonlinear state estimation problem to solve. Then, the real (red solid line)
and estimated (blue dashed line) attitude angles (φ, θ, ψ) are plotted on the same subfigures respectively
in order to be compared. These first estimation results have been obtained without introducing an initial
condition error on the state vector. We can observe on the last graph that the estimation errors are small
in spite of strong acceleration phases for which the assumption V̇ = 0 is not true. Moreover, we would like
to see the behavior (the local domain of attraction, even if we have no proof of convergence) with an initial
condition error on the estimated state vector. In Fig. 4(b), initial condition errors are now introduced on
the whole state vector. For instance, the quaternion is initialized s.t. q = [0.8 0.05 0.05 0.01]T instead of
q = [1 0 0 0]T which is not an unit norm quaternion. The real (red solid line) and estimated (blue dashed
line) Euler angles are represented and a zoom on the first seconds is depicted. We can observe the good
convergence behavior of our developed π-IUKF algorithm, in terms of accuracy and settling time, in presence
of process and measurement noises, sensors imperfections and erroneous initial conditions.
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Figure 4. Attitude estimation results - (φ, θ, ψ)

C. Estimated covariance matrices P (t) of the π-IUKF vs. standard UKF

Fig. 5 shows the estimation error covariance matrix P (t) calculated by the standard SR-UKF method
(on the left) and by the proposed π-IUKF technique. As explained in the theoretical development part,
the new π-IUKF invariant observer must have the same invariance properties as, for instance, the IEKF
developed in.7 If the π-IUKF estimation error covariance matrix is constant then the whole approach will
be validated. The results depicted in Fig. 5 show that P (t) (which is initialized with a given value P (0))
converge, as expected, to constant values over the whole flight trajectory due to the symmetry-preserving
property provided by the nonlinear estimation theory based on invariant filter. Meanwhile, the SR-UKF
estimation error covariance matrices do not convergence to constant values. Obviously, they also depend on
the followed trajectory which is illustrated by the peaks. This is indicative of a smaller convergence domain
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for this estimation technique in comparison with the new π-IUKF method. A last cross-comparison of the
results show that in some steady-state interval, the values of the standard SR-UKF and π-IUKF covariance
matrices are equal. This invariance property is remarkable and can be potentially exploited to characterize
some flight parameters in terms of estimation acuracy which is constant for all trajectories. Indeed, these
constant covariances can be viewed as a very useful characterization of the attitude angles in a complete and
future robust control law design.
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Figure 5. Estimated covariance matrices P (t): SR-UKF (left) vs. π-IUKF (right)

V. Conclusions and Perspectives

The new nonlinear state estimation approach named π-IUKF has been presented in this paper. The
first results obtained in simulation appear as promising. The hybridation of the standard SR-UKF with
the invariant observer theory represents a significant research topic to improve the handling qualities of
mini-UAVs. Indeed, the computational cost of such an approach seems suitable given the low-cost sensor
technology used so far and whose micro-processors performances increase year after year. The perspectives
of these research works are numerous and various. In the future, a complete validation of this method must
be led by treating the case of real data which will be gathered from real flight experimentations. Moreover,
as the final objective concerns the insertion of mini-UAVs in complex environments (such as urban areas or
indoor flights), future works will deal with the robustness of this developed methodology when one or several
measurement signals become unavailable. In that case, some adaptations of the π-IUKF algorithm must be
made in order to recover satisfying performances. These latter works aim at providing to the estimation
scheme adaptive features.
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Appendix I: quaternions and rotations

An unit quaternion provide a convenient mathematical notation and a global parametrization for repre-
senting orientation and rotation of a rigid body in three dimensions. Indeed, for any unit quaternion

q = q0 + q = cos
θ

2
+ usin

θ

2

and for any vector p ∈ R3 the action of the operator

q−1 ∗ p ∗ q = Rq · p

is associated to a rotation matrix Rq ∈ S0(3) which is a rotation of the coordinate frame about axis u = q
||q||

through an angle θ.
But how can a quaternion, which lives in R4, operate on a vector, which lives in R3?

Note that a vector p ∈ R3 can be viewed as a pure quaternion whose real part is zero

(
0

p

)
. Thus, when the

real part is a scalar denoted p0 ∈ R the quaternion p is given as :

p =

(
p0

p

)

We can utilize the inner product and cross product of two vector in R3 to write the above (non commutative)
quaternion product ∗ in more concise form:

p ∗ q .
=

(
p0q0 − p · q

p0q + q0p + p× q

)

The unit element is e
.
=


1

0

0

0

, and (p ∗ q)−1 = q−1 ∗ p−1

We have to useful formulas

p× q .
= p× q =

1

2
(p ∗ q − q ∗ p)

(p · q)r = −1

2
(p ∗ q − q ∗ p) ∗ r.
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Appendix II: π-IUKF algorithm

The pseudo-code for the π-UKF with additive noise:

• parameters definition:

? the scalar λ : is a parameter set to capture the moments of the given distribution.

?
√
P k|k : is shorthand notation for a matrix Sk|k such that Pk|k = Sk|kS

T
k|k.

?W(m),W(c) : are weights associated to the mean and covariance distributions s.t :
∑2n
i=0W

(i)

(m,c) = 1.

? Wk, Vk : are the predifined covariance matrices of the process and observation noises.

• Initialization:

x̂0 = E[x0] S0 = chol
{
E[η(x̂0, x0)η(x̂0, x0)T ]

}
• For kT = 1, . . . ,∞ :

1. Calculate sigma-points:

χk|k =
[

x̂k|k χ
(1)

k|k · · ·χ
(n)

k|k︸ ︷︷ ︸
x̂k|k+

√
n+λ
√
Pk|k

χ
(n+1)

k|k · · ·χ(2n)

k|k︸ ︷︷ ︸ ]
x̂k|k+

√
n+λ
√
Pk|k

2. Time-update equations:

χk+1|k =
[
χ
(0)

k+1|k · · ·χ
(2n+1)

k+1|k

]
= f(χk|k, uk)

x̂k+1|k =

2n∑
i=0

W(i)

(m)χ
(i)

k+1|k

Sk+1|k = qr

{[√
W(1)

(c)

([
χ
(1)

k+1|k · · ·χ
(2n)

k+1|k

]
− x̂k+1|k

) √
Wk

]}
Sk+1|k = cholupdate

{
Sk+1|k, χ

(0)

k+1|k − x̂k+1|k,W(0)

(c)

}
3. Measurement-update equations:

Ẑk+1|k =
[
z
(0)

k+1|k · · · z
(2n+1)

k+1|k

]
= π(h(χk+1|k, uk))

ẑk+1|k =

2n∑
i=0

W(i)

(m)z
(i)

k+1|k

Sz,k+1|k = qr

{[√
W(1)

(c)

[
Ẑk+1|k(:, 2 : 2n+ 1)− ẑk+1|k

] √
Vk+1

]}
Sz,k+1|k = cholupdate

{
Sz,k+1|k, z

(0)

k+1|k − ẑk+1|k,W(0)

(c)

}
Pxz,k+1|k =

2n∑
i=0

W(i)

(c)

[
χ
(i)

k+1|k − x̂k+1|k

][
z
(i)

k+1|k − ẑk+1|k

]T
4. Compute the Kalman filter gain:

K̄k+1 = (Pxz,k+1|k/S
T
z,k+1|k)/Sz,k+1|k

x̂k+1|k+1 = x̂k+1|k + K̄k+1(π,E) · E · wqi (x̂k+1|k)

U = K̄k+1Sz,k+1|k

Sk+1|k+1 = cholupdate
{
Sk+1|k, U,−1

}
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