
Histomages: Fully Synchronized Views for Image Editing

Fanny Chevalier
Department of Computer Science

University of Toronto, Canada
fanny@dgp.toronto.edu

Pierre Dragicevic
INRIA

F-91405 Orsay, France
dragice@lri.fr

Christophe Hurter
University of Toulouse

ENAC, France
christophe.hurter@enac.fr

Lightness Hue Saturation Saturation

a b dc

Lightness

Figure 1: Sky enhancement with Histomages: (a) the image is duplicated and its pixels rearranged into a lightness
histogram; (b) bright pixels are selected with the rubber-band selection tool; (c) all pixels are rearranged into a hue
histogram and yellow pixels are filtered out with the “subtract” selection brush (bottom). Missing pixels are added with the
“add” selection brush on the image (top); (d) the sky is enhanced by resizing the selection on the saturation histogram.

ABSTRACT
We present Histomages, a new interaction model for image
editing that considers color histograms as spatial rearrange-
ments of image pixels. Users can select pixels on image his-
tograms as they would select image regions and directly ma-
nipulate them to adjust their colors. Histomages are also af-
fected by other image tools such as paintbrushes. We explore
some possibilities offered by this interaction model, and dis-
cuss the four key principles behind it as well as their impli-
cations for the design of feature-rich software in general.
ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.
General terms: Design, Human Factors.
Keywords: Image editing, synchronized views, histograms.

INTRODUCTION
Bitmap image editing software like Photoshop or Gimp is ex-
tremely powerful in the hands of experts but is hard to master,
because of the wealth of functionality and tools that must be
learned. Taken individually, most of these tools are relatively
easy to learn and to use (e.g., levels, hue shift, color range
selection or selection transforms). However, they each fol-
low their own logics and have a different user interface. In
order to make image manipulations more flexible and fluent,
image editing software needs more unified, coherent interac-
tion models.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’12, October 7-10, 2012, Cambridge, MA, USA.
Copyright 2012 ACM 978-1-xxxx-xxxx-x...$10.00.

We present Histomages, a new interaction model based on
synchronized views that supports rich image selection and
manipulation operations through simple tools. Although syn-
chronized views have been used in various domains, their
support in current image editing software is still rudimen-
tary. In addition to illustrating the benefits of full support
for synchronized views in image editing, Histomages more
generally demonstrate the benefits that can be gained from
focusing on an interaction model rather than a swiss army
knife approach to the design of feature-rich applications.

BACKGROUND
We first briefly review previous work in interaction models,
image editing tools and synchronized views.

Interaction Models
An interaction model is “a set of principles, rules and prop-
erties that guide the design of an interface” [4]. Interaction
models can range from general principles (e.g., direct manip-
ulation) to more specific guidelines and mechanisms. They
help achieve logical soundness and consistency in user in-
terfaces, with benefits to both developers and end users of
complex software.

Like many authoring and productivity applications, image
editors are primarily based on the swiss army knife princi-
ple (i.e., a large set of specialized, independent and comple-
mentary tools), along with transversal mechanisms such as
selection, undo and redo, copy and paste, scripts and layers.

Software companies mainly focus on improving existing tools
and adding more powerful ones (often through plug-in mech-
anisms), while the underlying interaction models are consid-
ered immutable. Since these models only weakly enforce
consistency between tools – each new tool such as an image
filter typically comes with specific controls – image editing

1

applications are increasingly difficult to master and more and
more intimidating to beginners as new versions appear. In
this article we explore an alternative model for two types of
image editing tasks: selection and color manipulation.

Image Selection
Selecting image regions is a key task in image editing and
several tools are generally provided. They include image-
space tools (e.g., lasso or rubber-band selection) and color-
space tools (e.g., color range selection). Recently, a method
based on color naming has been proposed [17]. Mixed-space
tools combine both approaches. They include the magic
wand and other “intelligent” cutout tools whose algorithms
are still an active topic of research [22, 28]. Some of these
tools dynamically select image regions while the image is be-
ing painted [25]. Advanced selection tools can dramatically
facilitate common image editing tasks, but the more elabo-
rate they are, the more difficult it is for users to build a clear
mental model of how they work and to predict their results.

Since no selection tool alone can address all selection tasks
no matter how sophisticated it is, it is also essential to be
able to combine different types of selection techniques. This
is achieved in image editing software through the support of
boolean operations on selections, a powerful feature that acts
as a bridge between selection methods and allows users to,
e.g., select a region using a color picker and tolerance slider,
then refine it by lassooing on the image. However, since dif-
ferent types of selections involve different interaction tech-
niques, switching between them can still be tedious.

Color Manipulation
Color manipulation is another key task in image editing, par-
ticularly in photo editing. The state-of-the-art interaction
model consists in filters whose parameters are set in con-
trol panels, with immediate preview on the image. The tools
are numerous and include luminosity and contrast correction,
color balance, and color replacement. Adobe Photoshop CS5
provides 21 color manipulation tools, 3 of which are auto-
matic and 18 have parameters that are exposed in specialized
dialog boxes [1]. Techniques have also been proposed for
controlling parameters directly on the image [24, 14].

Popular tools among photographers are image histograms,
which give a rapid overview of how color components (e.g.,
brightness) are distributed in an image and what corrections
need to be applied. Most image editors include an interactive
histogram that can be stretched by moving control points,
which in turn adjusts colors on the image. Although useful,
current histogram tools are often difficult to relate to the im-
age and require trial and error, or thorough practice.

A few professional applications provide more advanced in-
teractive histograms, such as Adobe Lightroom 4 where his-
tograms can be locally stretched by direct manipulation, al-
though only the vertical boundaries of a few predefined his-
togram regions can be moved, which effectively amounts
to moving control points [2]. Capture NX 2 provides his-
tograms where value ranges can be selected and the corre-
sponding pixels are shown on the image with a blinking ani-
mation [24]. However, this technique cannot be used to select
regions of the image for subsequent manipulation.

Synchronized Views
Early uses of the principle of synchronized views can be
found in the visual exploration system by Becker and Cleve-
land [6] and in the MVC design pattern from the Smalltalk
programming language [21], later implemented in a num-
ber of GUI toolkits. Today, examples of applications with
elaborate support for synchronized views include document
editing environments that combine a markup editor with a
WYSIWYG window [11], and a wealth of visual exploration
tools [27, 26]. These tools support synchronized highlight-
ing, i.e., hovering over an element in one view highlights the
same element in the other, and sometimes synchronized edit-
ing, i.e., edits in either view are reflected in the other.

Synchronized views have been extensively employed and
studied in the field of information visualization under the
name of coordinated views (see [27] for a survey). The use of
multiple data representations is thought to promote effective
visual exploration, especially if tools are provided to help
analysts relate different views. A popular approach in the
domain is synchronized highlighting, termed brushing and
linking [6, 7]. Other solutions involve drawing links between
views [10] or using animated transitions [16]. Synchro-
nized view configuration mechanisms have also been pro-
posed [26], but synchronized editing has comparatively re-
ceived little attention in this field, with a few exceptions [3].

Image editing applications also involve alternative image
representations (mostly histograms) but with very primitive
support for synchronized views: interaction with histograms
is poor and requires tools that are completely distinct from
other tools. Yet histograms are just another way of laying out
image pixels and could be therefore treated (at least partly) as
images. The similarity between histograms and images has
been evoked in art [15] but to the best of our knowledge, it
has never inspired any actual tool. In the following we use
simple scenarios to illustrate some of the possibilities offered
by such an interaction model for image editing.

HISTOMAGES WALKTHROUGH
Histomages employ a classic multi-window image editor in-
terface and a toolbar that contains a small but fully-functional
set of traditional image editing tools (Figure 2). The only
visible difference is an extra toolbar at the top of each win-
dow. One button is for cloning the window (similar to the
Clone Window menu command in Photoshop) while other
buttons switch between the image view and several types
of histogram views (e.g., red, green and blue channels, LAB
lightness or hue) and a 2-D lightness/hue scatterplot.

In Histomages, a histogram is a spatial rearrangement of the
image’s pixels (Figure 1a): all pixels are displayed with their
initial color but instead of being laid out on a grid, they are
grouped into bins depending on the value of the color chan-
nel that is visualized. Pixels overlap vertically in case the
histogram does not fit the window, and their stacking order
reflects their y-ordering in the original image. Thus, pixels
remain coherently grouped, which produces a visual effect
similar to stacked graphs [8] and makes it easier to identify
image regions. In addition, view switches are smoothly ani-
mated by having each pixel rapidly move to its new location.

2

Saturation

Saturation

Figure 2: Increasing the saturation of the sky.

Since histograms are merely images with alternative pixel
layouts, all operations that can be done on images can also
be done on histograms. We illustrate this with a simple sce-
nario: Pamela was asked to illustrate the cover of a new novel
called “The Promised Land”. She finds a stock photography
(Figure 1a top) and feels it would fit perfectly with a few ad-
justements. She considers making the sky more blue and the
hill more verdant. She also finds that the color of the carpet
of yellow flowers is too aggressive and needs to be softened.

Adding and Switching Views
After loading the image in Histomages, Pamela duplicates
the window so that one view will be kept to display the im-
age while the other view will show histograms. She first se-
lects the lightness histogram. As the image transitions to the
histogram, she sees the sky region quickly move to the right
while the mountain region piles up at the center (Figure 1a).
On the final histogram, she sees that the two regions exhibit
a clean separation in terms of lightness, as opposed to the
yellow flowers that clearly span the whole luminosity range.

Selecting Regions of Histograms
Pamela first focuses on the sky. She picks the rubber band
selection tool and selects the rightmost region of the lightness
histogram (Figure 1b). This effectively selects the brightest
pixels on both the histogram and the image view. Unselected
pixels fade out to better show the selection.

Although unwanted pixels have been included in the selec-
tion, Pamela is aware that the sky and the flowers differ
enough in hue. She switches to the hue histogram and indeed
sees the flower region and the sky region split out into two
separate clusters. Using the brush selection tool and hold-
ing the key modifier for the “subtract” mode, she quickly
removes all yellow pixels as well as other isolated pixels out-
side the blue range (see Figure 1c, bottom). As some pixels
from the sky are still missing, she switches to the “add” mode
and brushes over the missing regions directly on the image
(see Figure 1c, top). Now the sky is properly selected.

Dragging and Stretching Histogram Regions
Since the sky appears washed out, Pamela switches to the sat-
uration histogram and indeed notices that the selected pixels
are all squeezed to the left, in the low saturation range (see
Figures 1d and 2). Therefore, she picks the transform tool
and drags the selected region to the right, towards higher sat-
uration values on the histogram. This effectively changes the
color of all selected pixels so that their saturation match their

Blue

Blue

Figure 3: Reducing the blue component of the hill.

new x-position on the histogram (see Figure 2). While she
drags the selection, Pamela sees the sky change on the im-
age, and she stops once she is satisfied with the color.

Although increasing saturation made the sky more blue over-
all, Pamela does not find the effect very natural. Since clouds
are generally supposed to be white, their saturation should
probably be left unchanged. Therefore, Pamela drags the
selection back to the left, then grabs the right handle and
stretches the selection towards more saturated values (Fig-
ure 1d). Her idea is to increase the dynamic range of the
selected pixels on the saturation channel, and while she is
dragging the handle, she does notice that this type of color
transformation works much better visually.

More Selecting and Dragging
The various histograms provide many different ways of se-
lecting and recoloring image regions. As another example,
when Pamela switches to the hill, she browses through differ-
ent histograms and finds that it forms a clear bump in the blue
channel (Figure 3 top). She brushes the bump then cleans up
the selection on the hue and the lightness channels. She then
adjusts the hill to a greener tone by dragging the selection to
the left of the blue channel. Again, the image is dynamically
updated, which in turn updates the histogram in a way that
preserves the y-ordering of pixels and makes them appear to
“crawl” over the yellow region (Figure 3 bottom).

Two-Axis Scatterplots
To make yellow colors less aggressive and poppies stand out,
Pamela decides to retouch the carpet of yellow flowers. She
brings up the hue histogram but realizes that the hue channel
does not do a good job at separating yellow and green pixels,
which in addition to the stems now also include the hill.

Therefore, Pamela switches to a 2-D scatterplot visualization
of the color space, where the vertical axis is mapped to hue
and the horizontal one to lightness (Figure 4 left). Although
the scatterplot does not show pixel counts like histograms, it
is appropriate for selecting complex ranges of colors. In that
case, Pamela needs to select dark to light yellows and orange
tones while avoiding red, green and dark pixels. She picks
the brush selection tool, applies it starting from a bright yel-
low color, then uses the immediate selection feedback on the
image to help her adjust the trajectory of the brush (Figure
4 middle). She occasionally uses the subtract mode to clean
the selection or zooms in to gain more precision.

Once the yellow flowers are properly selected, their hue and
lightness can be simultaneously adjusted by freely dragging

3

Lightness / Hue Lightness / Hue

Figure 4: Selection in the Lightness/Hue space.

Red

Figure 5: Applying the paintbrush on a view temporar-
ily freezes all histograms (middle). At mouse release,
painted pixels jump to their new location (right).

the selection on the scatterplot. However, since Pamela only
needs to wash out the colors, she switches back to the satura-
tion channel and drags the selection to the left. By dragging
the selection too far she accidentally discovers that a carpet
of white flowers produce a soothing and enchanting effect
and thus decides to stick to white flowers.

Painting Histograms
Histomages are also compatible with other traditional image
editing tools, which opens up a range of other possibilities
in terms of color manipulation. Right after she finished her
novel cover, Pamela is asked to produce urgently a cover for
a special issue of the Garlic Magazine on a personality.

Pamela downloads a photograph of the personality and de-
cides to produce a Warhol-style posterized cover. She makes
four copies of the photo then loads the produced image in
Histomages. She then picks the paintbrush tool, and on the
red channel histogram, she paints a stripe in a uniform orange
(Figure 5). She uses the image preview as a guide, while the
histogram is temporarily frozen to prevent the brush from ac-
cidentally affecting neighboring pixels. At mouse release, all
pixels jump to the corresponding bin of the histogram.

Pamela then paints other stripes of the histogram. Since
she wants to preserve the lightness component of the hair,
she uses the transform tool and shrinks the selection to zero
width instead. Finally, she selects one of the faces on the
image view and drags it on the lightness/hue scatterplot until
she is satisfied with the variant produced. Through the same
method, she produces variants for the two remaining faces.

Quick Comparison with Photoshop
The principal strength of Histomages does not lie in its ex-
pressive power (the image manipulations shown can be done
with any professional photo editing application) but in the el-
egance and the concision of its interactions. For example, as
and far as our expertise goes, carrying out the task illustrated
in Figure 1 with Photoshop CS3 would require a user to:

(1) Select the magic wand or bring up the color range selec-
tion dialog (Selection menu) ; click on a pixel of the sky and
adjust the tolerance value (text field or slider) until the sky
is properly selected ; possibly change the seed pixel and re-
peat ; if no combination of seed pixel and tolerance is found
to work (which is the case in our example), break down the
task into several steps using boolean selections through key
modifiers ; Close the dialog, pick a tool like polygon selec-
tion and clean up the selection on the image. (2) Bring up
the Hue/Saturation dialog (Image → Adjustment menu or
Ctrl+U) and push the saturation slider to the maximum. This
happens to yield a result similar to the one on Figure 1c, but
if a result closer to Figure 2 was desired instead, it is not
clear how this could be done. Supposing the Levels tool sup-
ports saturation, the Hue/Saturation dialog box would have
to be closed (all dialogs are modal), and the Levels dialog
box would have to be brought up (Image → Adjustment or
Ctrl+L) in order to see the histogram and its control handles.

DISCUSSION
We illustrated some of the possibilities of Histomages, a pro-
totype application that is based on a new interaction model
for image editing, and rethinks the way selection and color
manipulation tasks are carried out. The goal of Histomages
is to demonstrate new concepts, more so than to provide a
finished product. Therefore, our prototype has limitations
and possible extensions that we discuss. We then generalize
these concepts and discuss their possible implications for the
design of feature-rich applications.

Use by Novices
Retouching images on histograms requires a good under-
standing of image histograms, i.e., the meaning of different
color axes like hue or saturation, and the principle of count-
ing and vertically accumulating pixels of similar value. Al-
though Histomages is initially not meant to be a learning tool,
we believe that features like pixel color preservation and an-
imated transitions can help novices understand histograms.
We also think that letting users freely explore and manipu-
late various types of histograms in a consistent manner may
have an educational value too. These, however, are only con-
jectures that need to be further tested in user studies.

Limitations of Selections in Histograms
Selection in histograms is arguably more difficult when there
is little contrast between regions. This problem is however
common to all color-space selection tools, which are meant
to be used when the region of interest differs enough in color.
Histomages supports the same tasks but in a more elegant and
flexible manner, since it is based on a clear interaction model
rather than on black-box color selection algorithms.

Again, no selection tool can solve all selection problems. In-
telligent mixed-space selection tools are also limited, as se-
lection is more than automatically detecting contours or color
clusters. Ultimately, only the user can tell what is her re-
gion of interest so the solution likely lies in familiar, sim-
ple and powerful interactions. Boolean operations on selec-
tions brought lots of power by allowing selection tools to be
combined, while Histomages pushes simplicity and flexibil-
ity further by adding logical consistency to these tools.

4

Currently, Histomages only supports binary selection. A use-
ful extension would be support for fuzzy selections, with
support for antialiasing and feathering operations both in the
image and in the histogram spaces. Partially selected pix-
els would travel slower while dragged on a histogram or on
a scatterplot, resulting in less prominent edges after color
transformation and more natural-looking images. In addi-
tion, selected histogram regions are currently manipulated in-
dependently from unselected regions, but it could also useful
to have a “rubber sheet” feature that preserves boundaries in a
similar way to Capture NX 2’s direct manipulation tool [24].

Non-linear Color Transfer Functions
Our current prototype allows histogram manipulation with
the selection transform tool exclusively (move & resize) and
therefore only supports linear color transfer functions. Tradi-
tional image histograms usually include a third control point
and therefore allow for more flexibility in transfer functions,
while the Curve tool from Photoshop CS5 supports up to 14
control points. However, in practice 3 to 4 control points are
enough to specify transfer functions as complex as S-curves.
This is the number of control points supported by interac-
tive geometrical deformation tools such as Photoshop’s warp
transform, so supporting these tools on histograms would al-
low specifying non-linear color transfer functions.

Generalization to Other Image Editing Tools
We demonstrated two ways of extending traditional image
editing tools so that they can be used on histograms: (a) hav-
ing the tool affect histogram pixels the same way as image
pixels (selection and paintbrush) and (b) interpreting changes
in pixel positions within the histogram’s coordinate system
(the selection transform tool). We experimented with only a
few tools, but other common editing tools could be extended
to work on histograms following the same two approaches.

A major class of image editing tools are tools that affect pixel
colors locally. Beside the paintbrush we implemented, these
include the airbrush, eraser, pencil, and brushes that affect
pixel lightness or hue. All could be easily modified to work
like our paintbrush. We expect these to be useful for retouch-
ing non-contiguous close-to-uniform regions. For example,
for red eyes removal a user could roughly select the eyes area
on the image then paint the hue histogram with a hue brush.
This procedure contrasts with current tools, which first re-
quire to explicitely select the exact area to be painted.

Another class of tools are pixel displacement tools, of which
our selection transform tool is an example. Other geometrical
transform tools like the skew, distort, perspective and warp
tools could be extended the same way, as well as local dis-
placement tools like the smudge tool. Applied to histograms,
these tools could enrich the repertoire of color manipulations.
We already mentioned possibilities warp tools could offer in
terms of non-linear color transformations.

Other categories of tools would require more experimenta-
tion before one can tell whether or not they could be useful
on histograms and how to extend their semantics. These in-
clude spatial filters (e.g., blur and sharpen) and pixel dupli-
cation tools (e.g., copy-paste and the clone stamp). Finally,
some tools such as writing text might not make sense at all.

Alternative Pixel Layouts
We illustrated our interaction model on histograms and scat-
terplots, but other types of pixel layouts can be explored. Vi-
sual exploration and complex selections might be facilitated
with multidimensional visualizations techniques such as par-
allel coordinates [18] or scatterplot matrices [13], where data
points would be pixels and the dimensions would be color
components and pixel coordinates. Some layouts could also
be user-defined, in order to let users create meaningful pixel
groups and easily reuse them for subsequent manipulations.
Especially promising are techniques that combine both ap-
proaches such as star plots [20], where users directly manip-
ulate axes to create and explore linear combinations of di-
mensions, or dynamic filtering lenses [19], where users can
switch between different dimension mappings locally.

An Interaction Model for Rich Multi-View Applications
The interaction model behind Histomages reuses and refines
the paradigm of synchronized views and is based on the fol-
lowing four general principles:

1. Consistent View Structures. All views are made of sim-
ilar graphical primitives (pixels in our case) which try to re-
tain their graphical attributes across views. This gives a sense
of “conservation of matter” and can make it easier for users
to build a mental model of how views are constructed (e.g.,
what an image histogram means), and how regions of differ-
ent views relate to each other once they are constructed.

2. Consistent View Interactions. Any tool used to interact
with a view can also be used on other views, with identical
or similar effects. This is especially relevant for selection
tools, because if both multi-view selections and boolean op-
erators are supported, powerful “selection sculpting” tasks
can be carried out [13]. Furthermore, tool consistency can be
beneficial to facilitate learning, since what has been learned
for one view can be transferred to other views with little ef-
fort (e.g., our paintbrush). Finally, the semantics of some
tools can be adapted to the specificities of different views in
order to enrich their expressive power (e.g., our transform
tool). Overall, applying this principle requires breaking tra-
ditional master/slave relationships between views [27] in fa-
vor of multidirectional dependencies [26, 12], and removing
traditional couplings between tools and views in favor of tool
polymorphism [4, 5].

3. Constantly Synchronized Views. The visual consistency
between views and the underlying data is maintained at all
times, except during modifications that require a view to be
temporarily frozen (e.g., using a paintbrush on a histogram).
This principle, together with principles 1 and 2, ensures that
the system fully supports the traditional synchronized views
paradigm: synchronized highlighting (or brushing and link-
ing) is supported through selection tools, while synchronized
editing is supported through regular editing tools.

4. Smooth View Transitions. Transitions between views
within the same window are smoothly animated, which can
further help explain how views are built and clarify how they
are mapped [16, 9, 11]. The design and implementation of
animated transitions are greatly facilitated by the principle 1.
We believe this interaction model can make it easier for both

5

experts and beginners to use multi-view interfaces, and can
also make interaction less tedious and more rewarding.

However, this interaction model alone cannot support the
large variety of tasks supported by feature-rich commercial
applications and is not meant to be used as a replacement.
It is rather a complement to existing tools and mechanisms
and a way to “polish” their logics. Although integrating this
model in existing software might require significant refac-
toring, it does not necessarily involve many changes from
the user’s perspective. Histomages is fully integrated with
the traditional GUI of image editors: it uses the same multi-
window environment and similar visual representations (with
some visual enhancements to histograms), and the selection
and editing tools it supports are essentially the same.

CONCLUSION
There has been much focus on the problem of “software
bloat”, often with the assumption that not all features of large
applications are useful, or at least not for everyone and not
all the time [23]. However, complex activities such as im-
age editing cannot be properly carried out without mastering
a wealth of tools that are all complementary and all relevant
to many tasks. We believe that the major issue with most
feature-rich applications is not an excess of functionalities
but a lack of logics and consistency in the way they are ex-
posed at the user interface. Often, most development efforts
are spent designing new tools, without much concern for the
interaction models that allow these tools to work together.

With Histomages, we show that with a proper interaction
model, a small number of tools can provide a large set of
functionalities (with sometimes unexpected features), while
ensuring some logical coherence. Histomages also suggests
that new interaction models do not necessarily have to dis-
orient expert users and can be sometimes integrated into ex-
isting GUIs without major changes.

ACKNOWLEDGMENTS
We would like to thank Dustin Freeman and Jean-Daniel
Fekete for their comments on this paper.

REFERENCES
1. Adobe. Photoshop CS5. www.photoshop.com, 2011.
2. Adobe. Photoshop Lightroom 4. www.adobe.com/

products/photoshop-lightroom, 2012.
3. T. Baudel. From information visualization to direct manip-

ulation: extending a generic visualization framework for the
interactive editing of large datasets. In Proc. ACM User inter-
face software and technology, UIST ’06, 67–76, 2006.

4. M. Beaudouin-Lafon. Instrumental interaction: an interac-
tion model for designing post-wimp user interfaces. In Proc.
ACM Human factors in computing systems, CHI ’00, 446–
453, 2000.

5. M. Beaudouin-Lafon and W. E. Mackay. Reification, poly-
morphism and reuse: three principles for designing visual in-
terfaces. In Proc. ACM Advanced visual interfaces, AVI ’00,
102–109, 2000.

6. R. A. Becker and W. S. Cleveland. Brushing scatterplots.
Technometrics, 29(2):127–142, May 1987.

7. A. Buja, D. Cook, and D. F. Swayne. Interactive high-
dimensional data visualization. Journal of Computational and
Graphical Statistics, 5:78–99, 1996.

8. L. Byron and M. Wattenberg. Stacked graphs & geometry
& aesthetics. IEEE Trans. Vis. & Comp. Graphics, 14:1245–
1252, 2008.

9. F. Chevalier, P. Dragicevic, A. Bezerianos, and J.-D. Fekete.
Using text animated transitions to support navigation in doc-
ument histories. In Proc. ACM Human factors in computing
systems, CHI ’10, 683–692, 2010.

10. C. Collins and S. Carpendale. Vislink: Revealing relationships
amongst visualizations. IEEE Trans. Vis. & Comp. Graphics,
13(6):1192–1199, 2007.

11. P. Dragicevic, S. Huot, and F. Chevalier. Gliimpse: Animating
from markup code to rendered documents and vice versa. In
Proc. ACM User interface software and technology, UIST ’11,
257–262, 2011.

12. P. Dragicevic, G. Ramos, J. Bibliowitcz, D. Nowrouzezahrai,
R. Balakrishnan, and K. Singh. Video browsing by direct ma-
nipulation. In Proc. ACM Human factors in computing sys-
tems, CHI ’08, 237–246, 2008.

13. N. Elmqvist, P. Dragicevic, and J.-D. Fekete. Rolling the dice:
Multidimensional visual exploration using scatterplot matrix
navigation. IEEE Trans. Vis. & Comp. Graphics (Proc. Info-
Vis), 14(6):1141–1148, 2008.

14. N. Elmqvist, P. Dragicevic, and J.-D. Fekete. Color lens:
Adaptive color scale optimization for visual exploration. IEEE
Trans. Vis. & Comp. Graphics, 17(6):795–807, 2011.

15. D. Friedman. Idea: The histogram as the image. Blog post
http://goo.gl/2PfcV, 2007.

16. J. Heer and G. Robertson. Animated transitions in statistical
data graphics. IEEE Trans. Vis. & Comp. Graphics (Proc.
InfoVis), 13:1240–1247, 2007.

17. J. Heer and M. Stone. Color naming models for color selec-
tion, image editing and palette design. In Proc. ACM Human
factors in computing systems, CHI ’12, 237–246, 2012.

18. P. Hoffman, G. Grinstein, and D. Pinkney. Dimensional an-
chors: a graphic primitive for multidimensional multivari-
ate information visualizations. In Proc. 1999 workshop on
new paradigms in information visualization and manipula-
tion, NPIVM ’99, 9–16, 1999.

19. C. Hurter, A. Telea, and O. Ersoy. Moleview: An attribute
and structure-based semantic lens for large element-based
plots. IEEE Trans. Vis. & Comp. Graphics (Proc. InfoVis),
17(12):2600–2609, Dec. 2011.

20. E. Kandogan. Star coordinates: A multi-dimensional vi-
sualization technique with uniform treatment of dimensions.
In Proc. IEEE Information Visualization Symposium, Late
Breaking Hot Topics, 9–12, 2000.

21. G. E. Krasner and S. T. Pope. A cookbook for using the
model-view-controller user interface paradigm in Smalltalk-
80. Object-Oriented Programming, 26–49, 1988.

22. Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum. Lazy snapping.
ACM Trans. Graphics, 23(3):303–308, Aug. 2004.

23. J. McGrenere and G. Moore. Are we all in the same bloat ? In
Proc. of the Graphics Interface Conference, 187–196, 2000.

24. Nikon. Capture NX 2 v2.3.0. www.capturenx.com, 2012.
25. D. R. Olsen, Jr. and M. K. Harris. Edge-respecting brushes.

In Proc. ACM User interface software and technology, UIST
’08, 171–180, 2008.

26. N. H. Riche, B. Lee, and C. Plaisant. Understanding interac-
tive legends: a comparative evaluation with standard widgets.
Comput. Graph. Forum, 29(3):1193–1202, 2010.

27. J. C. Roberts. State of the art: Coordinated & multiple views
in exploratory visualization. In Proc. IEEE Coordinated and
Multiple Views in Exploratory Visualization, 61–71, 2007.

28. J. Wang, M. Agrawala, and M. F. Cohen. Soft scissors: an in-
teractive tool for realtime high quality matting. In ACM SIG-
GRAPH, 2007.

6

www.photoshop.com
www.adobe.com/ products/photoshop-lightroom
www.adobe.com/ products/photoshop-lightroom
http://goo.gl/2PfcV
www.capturenx.com

	ABSTRACT
	INTRODUCTION
	BACKGROUND
	Interaction Models
	Image Selection
	Color Manipulation
	Synchronized Views

	HISTOMAGES WALKTHROUGH
	Adding and Switching Views
	Selecting Regions of Histograms
	Dragging and Stretching Histogram Regions
	More Selecting and Dragging
	Two-Axis Scatterplots
	Painting Histograms
	Quick Comparison with Photoshop

	DISCUSSION
	Use by Novices
	Limitations of Selections in Histograms
	Non-linear Color Transfer Functions
	Generalization to Other Image Editing Tools
	Alternative Pixel Layouts
	An Interaction Model for Rich Multi-View Applications
	1. Consistent View Structures.
	2. Consistent View Interactions.
	3. Constantly Synchronized Views.
	4. Smooth View Transitions.

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

