
Exploring Spatiotemporal Patterns By Integrating

Visual Analytics With A Moving Objects Database

System

Mahmoud A. Sakr #,∗,1, Thomas Behr #,2, Ralf Hartmut Güting #,3,
Gennady Andrienko ?,4, Natalia Andrienko ?,5, Christophe Hurter ◦,6

#Database Systems for New Applications, FernUniversität in Hagen

58084 Hagen, Germany
∗Faculty of Computer and Information Sciences, University of Ain Shams

Cairo, Egypt
?Fraunhofer Institute IAIS, Germany

◦ENAC, Toulouse, France
1mahmoud.sakr@fernuni-hagen.de
2thomas.behr@fernuni-hagen.de

3rhg@fernuni-hagen.de
4gennady.andrienko@iais.fraunhofer.de
5natalia.andrienko@iais.fraunhofer.de

6christophe.hurter@aviation-civile.gouv.fr

Abstract

In previous work, we have proposed a tool for Spatiotemporal Pat-
tern Query. It matches individual moving object trajectories against
a given movement pattern. For example, it can be used to find the
situations of Missed Approach in ATC data (Air Traffic Control sys-
tems, used for tracking the movement of aircrafts), where the landing
of the aircraft was interrupted for some reason. This tool expresses
the pattern as a set of predicates that must be fulfilled in a certain
temporal order. It is implemented as a Plugin to the Secondo DBMS
system. Although the tool is generic and flexible, domain expertise is
required to formulate and tune queries. The user has to decide the
set of predicates, their arguments, and the temporal constraints that
best describe the pattern. This paper demonstrates a novel solution
where a Visual Analytics system, V-Analytics, is used in integration
with this query tool to help a human analyst explore such patterns.
The demonstration is based on a real ATC data set.

1

1 Introduction

This paper demonstrates the use of the visual analytics system V-Analytics
[3] in integration with the moving objects DBMS Secondo [1] to explore
Spatiotemporal Patterns (STP) to analyze a real world data set. Secondo
brings an extensive set of query operations accessible through a query lan-
guage to let the user express arbitrarily complex queries and efficiently evalu-
ate them on large moving objects databases. On the other hand, V-Analytics
enables the user to pre-process the data, select an interesting subset for anal-
ysis, tune parameters of the sophisticated queries in Secondo and interpret
their results.

In this paper, we demonstrate two pattern exploration tasks on a data
set that includes one day (Feb 22, 2008) radar recording of aircraft positions
(Lon, Lat, Alt) over France and neighboring territories, consisting of 17,851
trajectories and 427,651 recorded positions. The sampling interval is vari-
able, ranging from about one to about three minutes. The data has been
anonymized by removing aircraft identities and airline information. In this
data set, we search for the following landing patterns:

1. Missed Approach: while the aircraft is in its final approach (i.e., the
landing phase) the pilot for some reason decides to climb again. In or-
der to improve the safety, it is worthwhile to analyze such hazardous
situations. Such analysis can highlight redundant situations that can
be solved by changing airways, approach procedures, etc.

2. Stepwise Descent Landing: a landing pattern in which the aircraft
alternates between descent and cruise till it touches the ground. This is
a less desirable landing pattern compared to the Diving pattern, where
the aircraft constantly descends till it lands. The latter is preferable
because of lower fuel consumption and lower pollution and noise.

Studying such patterns in the ATC data helps to improve the air traffic.
The rest of this paper is organized as follows. Section 2 briefly describes the
two systems Secondo and V-Analytics, and discusses issues related to their
integration. Section 3 briefly describes the Spatiotemporal Pattern Predicate.
Section 4 illustrates what will be demonstrated. Finally we conclude in
Section 5.

2

2 Integrating SECONDO and V-Analytics

Secondo [1] is an open source extensible DBMS platform. It consists of
three modules: the kernel, the GUI and the query optimizer. It contains
an extensible set of algebras, each of which is defining database types and
query operations. It contains algebras implementing a large part of the
moving objects database model in [6]. We provide the implementation of the
spatiotemporal pattern predicate as a Secondo Algebra which is included
in the Secondo distribution version 3.2 or later.

V-Analytics [3] incorporates various visualization techniques, interac-
tive tools, and computational methods for analyzing spatial, temporal, and
spatiotemporal data. Among them are time-aware maps, space-time cubes,
other types of graphs and diagrams; interactive dynamic filtering of data ac-
cording to their spatial, temporal, and thematic (attributive) components;
computational procedures oriented to movement data such as clustering
of trajectories [4], generalization and summarization [2], extracting various
types of events from movement data, etc.

Figure 1: Integrating SECONDO with V-Analytics

Secondo and V-Analytics are integrated so that it is possible to ex-
change data between the two systems in both directions (Figure 1). The
moving object trajectories are initially loaded into the databases of the two
systems. One can start by visualizing the data in V-Analytics, select a set
of candidate trajectories, and/or interesting time periods within their life
times, then send the trajectory identifiers and periods to Secondo for fur-
ther processing. In the other direction, one can perform sophisticated query
operations in Secondo (e.g., STP queries) and compute derived attributes,
then transfer the query results to V-Analytics for visualization and further
analysis. This process of transferring data between the two systems allows
the user to explore the patterns in the data effectively.

3

3 The Spatiotemporal Pattern Predicate

Consider the Missed Approach procedure in the Section 1. It can be de-
scribed by three predicates: aircraft comes close to destination, aircraft de-
scends till it is below a certain altitude, aircraft climbs up again. Temporally,
the third predicate must be fulfilled after the second predicate, and both of
them must be fulfilled during the fulfillment time of the first predicate.

The STP Predicate is proposed in [7]. It is based on the abstract data
types model for moving objects in [6] [5]. The model defines the moving
type constructor. It constructs the time-dependent counterpart of every
static type. The moving types are denoted by prefixing m to the standard
types (e.g., mpoint). We use the italic underline style all over the paper
to denote types. The mpoint , for example, is represented as a temporally
ordered list of units (upoint), each of which consists of a time interval and
a line function. The coordinates of the mpoint at any time instant within
the interval are obtained by evaluating the line function.

 378.3

 397.7

t Trip

R

x

y

t

FALSE

TRUE

 378.3 397.7
t

Trip inside R

Figure 2: Time-dependent predicates

The STP predicate is a pair (P,C), where P is a set of time-dependent
predicates, and C is a set of temporal constraints on the fulfillment times of
the predicates in P . Time-dependent predicates were first introduced in [6].
Figure 2 illustrates an example. The Trip is an mpoint object, that crosses
the region object R between the time instants 378.3 and 397.7. The eval-
uation of the time-dependent predicate Trip inside R is a time-dependent
boolean (mbool) having the value true between these two time instants and
false otherwise. A time-dependent predicate, hence, is an operation that
yields an mbool . All the static predicates defined for non-moving types can
uniformly and consistently be made applicable to the corresponding moving
types as time-dependent predicates, see [6].

4

The temporal constraints specify the order of fulfillment of the time-
dependent predicates. The Missed Approach procedure can be expressed as
follows:

... stpattern[

Close: distance(.Position, .Destination) < 5000.0,

Down: ((.AltitudeDerivative < 0.0) and

(.Altitude < 1000.0)),

Up: .AltitudeDerivative > 0.0;

stconstraint("Close", "Down", vec("abba","a.bba","baba")),

stconstraint("Close", "Up", vec("abba","aba.b","abab")),

stconstraint("Down", "Up", vec("aabb","aa.bb"))] ...

Here we show only the STP predicate (expressed in Secondo using the
stpattern operator) and omit the rest of the query for simplicity. We assume
that it gets a tuple of type:

tuple[Position: mpoint , Destination: point , Altitude: mreal ,
AltitudeDerivative: mreal],

where Position is the time-dependent (Lon, Lat) of the flight. The stpattern
operator accepts two argument lists, separated by a semicolon. The first list
contains three time-dependent predicates having the aliases Close, Down,
and Up. The second list contains three temporal constraints, expressed by
the stconstraint operator, each of which specifies a temporal relation between
two time-dependent predicates.

Each of the terms/arguments of the vec operator specifies a relation
between two time intervals. The start and the end time instants of the first
interval are denoted aa, and those of the second interval are denoted bb.
The order of the symbols describes the interval relationship visually. The
dot symbol denotes the equality. For example, the relation aa.bb between
the intervals i1, i2 denotes the order: ((i1.t1 < i1.t2) ∧ (i1.t2 = i2.t1) ∧
(i2.t1 < i2.t2)). The temporal relation expressed by the vec operator is the
disjunction of its components. Now we generalize this relation between two
time intervals into a relation between two mbool objects.

Given P = {p1, ..., pm} a set of time-dependent predicates, C = {c1, ..., cn}
a set of temporal constraints, and a tuple u. Let pi(u) denote the evaluation
of pi for the tuple u (i.e., pi(u) is of type mbool). Let [pi(u)]j denote the jth

time interval during which pi(u) is true. The evaluation of the STP predicate
(P,C) for the tuple u is true iff: ∃j1..jm such that the set of time intervals
[p1(u)]j1 ..[pm(u)]jm fulfills all the temporal constraints c ∈ C, and we call
[p1(u)]j1 ..[pm(u)]jm a supported assignment. The STP predicate yields true
iff at least one supported assignment is found.

5

Note that the stpattern predicate does not allow for constraints on the
temporal difference between the starts/ends of the fulfillment times of the
time dependent predicates. For example, it cannot express that the Down
predicate in this query must be fulfilled for at least 2 minutes. Such con-
ditions can be expressed using an extended version of the predicate called
stpatternex [7]. Note also that both sptattern and stpatternex do not re-
port the supported assignments in their output. The user, hence, cannot
locate the parts of the trajectory that fulfill the pattern. Therefore, we
have added four operators stpatternextend, stpatternexextend, stpatternex-
tendstream and stpatternexextendstream. The first two operators report the
first supported assignment, while the other two operators report all of them.

So far, we have shown that the STP predicates, and its variants, are
very flexible, and can be used to express arbitrarily complex patterns. How-
ever, it remains tricky to decide the parameter values of the STP predicate,
that best describe the intended pattern. In fact, STP queries are not triv-
ial. They require fine tuning by checking the sensitivity of their results to
the parameters. Moreover, real data is often incomplete or erroneous, the
sampling rate might be low, and the user might lack a good description of
the pattern in terms of time-dependent predicates. The integration with a
visual analytics system allows for such fine tuning through user interaction.
This is illustrated in more detail in the following section.

4 What Will Be Demonstrated

In this Demo we explore the Missed Approach and the Stepwise Descent
Landing procedures, described in Section 1, using the proposed integra-
tion scheme. The typical use scenario for exploring patterns is: (1) in
V-Analytics, select a subset of candidate trajectories, and transfer their ids
to Secondo, (2) in Secondo, issue queries to locate the pattern instances
(i.e., using the variants of the STP predicate), and to compute additional
attributes, (3) transfer the query results to V-Analytics for visualization and
analysis, and (4) if necessary, adjust the parameters and return to steps (1),
(2) and (3).

4.1 Missed Approach

In this exploration task, we started in V-Analytics and selected the trajec-
tories that landed at the end of their observed trips, to filter out noisy and
incomplete data and to eliminate transit flights. In Secondo, we received
the identifiers of this subset, and issued the query in Section 3 for Missed

6

Approach. After several cycles of adjusting the parameters, the final query
that we have reached is:

...stpatternexextend[

Close: distance(gk(.Position), gk(.Destination))< 15000,

Down1: ((.AltitudeDerivative < 0.0) and

(.Altitude < 600.0)),

Up: .AltitudeDerivative > 0.0,

Down2: .AltitudeDerivative < 0.0;

stconstraint("Close", "Down1",

vec("abba","a.bba","baba")),

stconstraint("Close", "Up", vec("abba","aba.b","abab")),

stconstraint("Down1", "Up", vec("aabb","aa.bb")),

stconstraint("Up", "Down2", vec("aabb","aa.bb"));

is_within_total_turn_range(.Pos atperiods theRange(

end("Up"), inst(final(.Position)), TRUE, FALSE),

50.0, 270.0)]

filter[isdefined(.Close)] ...

Again we show only the part of the query that expresses the STP. The
pattern is expressed, using the stpatternexextend operator, as a sequence of
decreasing, increasing, then decreasing altitude, that all happen when the
aircraft is close to the destination (i.e., within 15 km). The gk operator,
that is used within the Close predicate, transforms the geographical coor-
dinates (Lon, Lat) into the Gauss Krüger coordinate system, so that the
distance operator is able to compute the Euclidean distance in meters. The
aircraft is required to do a total turn between 50◦ and 270◦ after the Up
event and before it lands. This is expressed using the user defined function
is within total turn range which aggregates the turns of an mpoint object
and asserts that the absolute total turn is within the given range. The tra-
jectories/tuples that fulfill this pattern will be extended with the attributes
Close, Down1, Up, and Down2 storing the time periods during which the
corresponding time-dependent predicates are fulfilled. The tuples that do
not fulfill the pattern are extended with undefined values. These time pe-
riods are used in the rest of the query to compute other attributes for the
visualization in V-Analytics.

Figure 3 illustrates several visualizations of the results. The Trajectory
Globe View in (a) illustrates an aircraft coming from the top left corner
of the figure, making a sharp dive in order to land, but then missing this
first approach, climbing up again, making a cycle, and finally landing. The
Trajectory Globe View is a tool developed by NASA, and integrated in V-
Analytics. It visualizes the earth in 3D, and allows for flexible navigation.

7

(a) (b)

(c) (d)

Figure 3: Missed Approach Query Results

Figure 3 (b) is a Trajectory Time Graph that shows the projection of the tra-
jectory lifetimes, and highlights in red the parts where the Missed Approach
occur. The Trajectory Wall in (c) is another 3D visualization tool from
V-Analytics. The wall height corresponds to the trajectory lifetime. Finally
the Secondo view in (d) shows the altitude curve and the 2D trajectory
projection of an aircraft that performed a Missed Approach procedure at
the Châteauroux-Déols airport. The green color highlights the Down1 and
Down2 events, and blue highlights the Up event. Note that the sharp turns
in the flight trajectory are due to the relatively low sampling rate.

4.2 Stepwise-Descent Landing

A similar exploration procedure is used to explore the Stepwise-Descent
Landing. The pattern is expressed using the stpatternexextendstream oper-

8

ator as follows:

...stpatternexextendstream[

Dive1: .SecondAltitudeDerivative < 0.0,

Lift: .SecondAltitudeDerivative >= 0.0,

Dive2: .SecondAltitudeDerivative < 0.0 ;

stconstraint("Dive1", "Lift", vec("aa.bb")),

stconstraint("Lift", "Dive2", vec("aa.bb"));

(end("Lift") - start("Lift")) > OneMinute]

filter[isdefined(.Dive1) and

(AverageDiveAngle(.Alt atperiods .Lift) < 30.0)]...

It is expressed as a sequence of increasing (Dive1), decreasing (Lift), then
again increasing rate of descent (Dive2). The Lift event is required to last
for more than one minute, and the diving angle (i.e., the smallest angle
between the altitude tangent and the horizontal) is less than 30◦. That is,
the aircraft is flying almost horizontal.

We attach a map (Figure 4 (a)) and a space-time cube (Figure 4 (b))
showing median positions of the horizontal (Lift) segments of the landing
trajectories and 388 trajectories that own these events. The map shows
interesting pattern: such landings occur frequently for flights to Paris from
SW, W and NW, and sometimes from SE. The space time cube shows that
such patterns occur in the morning and late afternoon around Paris, and
during the day in Lyon and Nice. Figure 4 (c), (d) show individual results
in the Trajectory Globe View, where one can clearly identify the sequence
dive-lift-dive described in the query.

5 Conclusions

In this paper, we have demonstrated a novel work of integrating a visual
analytics system and a moving objects database system. Now we have an
integrated system that allows flexible query processing and is open for ex-
tensions. It is scalable and can be applied, in principle, to very large data
sets. Experiments with larger data sets, and other kinds of operations (e.g.,
kNN and spatial join) are in preparation.

References

[1] Secondo web site. http://dna.fernuni-hagen.de/secondo.html/.

9

(a) (b)

(c) (d)

Figure 4: Stepwise-descent Query Results

[2] Adrienko, N., and Adrienko, G. Spatial generalization and aggre-
gation of massive movement data. IEEE Transactions on Visualization
and Computer Graphics 17 (February 2011), 205–219.

[3] Andrienko, G., Andrienko, N., and Wrobel, S. Visual analytics
tools for analysis of movement data. SIGKDD Explor. Newsl. 9 (De-
cember 2007), 38–46.

[4] Andrienko, G. L., Andrienko, N. V., Rinzivillo, S., Nanni, M.,
Pedreschi, D., and Giannotti, F. Interactive visual clustering of
large collections of trajectories. In IEEE VAST (2009), pp. 3–10.

10

[5] Forlizzi, L., Güting, R. H., Nardelli, E., and Schneider, M.
A data model and data structures for moving objects databases. In
SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data (New York, NY, USA, 2000), ACM,
pp. 319–330.

[6] Güting, R. H., Böhlen, M. H., Erwig, M., Jensen, C. S.,
Lorentzos, N. A., Schneider, M., and Vazirgiannis, M. A
foundation for representing and querying moving objects. ACM Trans.
Database Syst. 25, 1 (2000), 1–42.

[7] Sakr, M., and Güting, R. Spatiotemporal pattern queries. GeoIn-
formatica 15 (2011), 497–540.

11

