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Abstract

We present a fast and simple method to compute bundled layouts of general graphs. For this, we first transform
a given graph drawing into a density map using kernel density estimation. Next, we apply an image sharpening
technique which progressively merges local height maxima by moving the convolved graph edges into the height
gradient flow. Our technique can be easily and efficiently implemented using standard graphics acceleration tech-
niques and produces graph bundlings of similar appearance and quality to state-of-the-art methods at a fraction of
the cost. Additionally, we show how to create bundled layouts constrained by obstacles and use shading to convey
information on the bundling quality. We demonstrate our method on several large graphs.

Categories and Subject Descriptors (according to ACM CCS):

Generation—Line and curve generation

1.3.3 [Computer Graphics]: Picture/Image

Keywords: Graph layouts, edge bundles, image-based information visualization.

1. Introduction

Graphs are among the most important datasets in infor-
mation visualization, and are present in many application
domains such as software comprehension, geovisualiza-
tion, and network analysis. Visualization metaphors for gen-
eral graphs include node-link diagrams [TBET99], matrix
plots [VHO3], and graph splatting [vLdLO3].

In recent years, graph bundling methods have gained in-
creased attention. Bundling starts with a set of node posi-
tions, given as input data or computed by a layout algo-
rithm. Edges being close in terms of graph structure, po-
sition, data attributes, or combinations thereof, are drawn
as tightly bundled curves. This trades clutter for overdraw
and produces images which are easier to understand and/or
better emphasize the graph structure. Blending or shad-
ing can be used to add information or emphasize struc-
ture [HvW09, LBA10b, TE10]. Bundling algorithms ex-
ist for both compound (hierarchy-and-association) [Hol06]
and general graphs [HvW09, CZQ*08, PXY*05, LBA10b,
GHNSI11, EHP*11, SHH11]. However attractive, many
bundling algorithms for general graphs are relatively com-
plex and have high computational costs.

In this paper, we present a new method for bundling gen-
eral graphs. We work entirely image-based: Given a graph
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drawing, we first convolve the edges with a special kernel to
construct a density map. Next, we advect edges in the gradi-
ent of this map and iterate the process for a few steps with
decreasing kernels. This delivers a layout with well sepa-
rated and smooth bundle structures. Separately, we modify
our density map to obtain bundles which avoid user-specified
obstacles of arbitrary sizes and shapes. Finally, we propose a
new shading technique which conveys the bundling quality
in an easy to interpret way. Our contributions are as follows:

e a bundling technique for general graphs which is robust,
simple to implement, and up to one order of magnitude
faster than state-of-the-art techniques;

e a technique to generate bundled layouts that smoothly
avoid obstacles of arbitrary shape and position;

e a new way to visually convey the bundling quality by
means of shading.

The structure of this paper is as follows. In Section 2,
we review related work on edge bundles. Section 3 presents
our method. Section 4 details implementation and shows re-
sults on real-world graphs. Section 5 presents our obstacle-
constrained bundling and bundling quality visualization.
Section 6 discusses our method. Section 7 concludes the pa-
per.
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2. Related Work

Related work in reducing clutter in large graph visualizations
can be organized as follows.

Graph simplification techniques reduce clutter by simpli-
fying the graph prior to layout e.g. by grouping strongly con-
nected nodes and edges into so-called metanodes, followed
by classical node-link layouts for visualization [AvHKO6,
AMAO7]. Graph simplification effectively reuses existing
node-link layouts, but can be sensitive to simplification pa-
rameters, which may depend on the graph type. It does not
allow a continuous treatment of the graph: the simplification
events yield a set of discrete graphs rather than a smooth
exploration scale [LBA10b]. Also, simplification typically
changes node positions (collapse to metanodes). This is un-
desirable when positions encode information.

Edge bundling techniques trade clutter for overdraw by
routing geometrically and semantically related edges along
similar paths. Further details on clutter causes and reduc-
tion strategies are given in [ED07]. Bundling can be seen as
condensing the edges’ angle distribution along a small set
of directions and also sharpening the edge spatial density,
by making it high along bundles and low elsewhere. This
improves readability in terms of finding groups of nodes re-
lated to each other by groups of edges (the bundles) which
are separated by white space [GHNS11].

Dickerson et al. merge edges by reducing non-planar
graphs to planar ones [DEGMO3]. Holten pioneered edge
bundling for compound graphs by routing edges along
the hierarchy layout using B-splines [Hol06]. Gansner
and Koren bundle edges in a circular node layout sim-
ilar to [Hol06] by area optimization metrics [GKO6].
Dwyer et al. use curved edges in force-directed layouts
to minimize crossings, which implicitly creates bundle-like
shapes [DMWO7]. Force-directed edge bundling (FDEB)
creates bundles by attracting control points on edges close
to each other [HvW09], and was adapted to separate bun-
dles running in opposite directions [SHH11]. The MIN-
GLE method uses multilevel clustering to significantly ac-
celerate the bundling process [GHNS11]. Flow maps pro-
duce a binary clustering of nodes in a directed graph repre-
senting flows to route curved edges along [PXY*05]. Con-
trol meshes are used by several authors to route curved
edges, e.g. [QZW06,ZYC*08]; a Delaunay-based extension
called geometric-based edge bundling (GBEB) [CZQ*08];
and ’winding roads’ (WR) which use Voronoi diagrams
for 2D and 3D layouts [LBA10b, LBA10a]. Skeleton-
based edge bundling (SBEB) uses the skeletons, or me-
dial axes, of the graph drawing’s thresholded distance trans-
form as bundling cues to produce strongly ramified bun-
dles [EHP*11].

Several techniques exist for rendering and exploring bun-
dled layouts, e.g. edge color interpolation for edge di-
rections [Hol06, CZQ*08]; transparency or hue for lo-
cal edge density, i.e. the importance of a bundle, or for

edge lengths [LBA10b]. Bundles can be drawn as com-
pact shapes whose structure is emphasized by shaded cush-
ions [TE10, SWvdW*11]. Graph splatting visualizes node-
link diagrams as continuous scalar fields using color and/or
height maps [vLdL03, HTC09]. To explore crowded areas
where several bundles overlap, bundled layouts can be inter-
actively deformed using semantic lenses [HET11].

3. Algorithm

Most bundling methods for general graphs exploit edge-
to-edge neighborhood information: Given a graph drawing
G C R? and a point x € G, we can think of bundling as an
operator B : R?> — R? which displaces x based on the spatial
information in G Nve(x) where ve(x) is a small neighbor-
hood centered at x. The result B(G) is a new layout whose
edges are gathered in dense groups (bundles) separated by
low edge density areas (inter-bundle white space) to mini-
mize drawing ink. Intuitively, we can see B as an image pro-
cessing function which sharpens the local spatial density p
of edge points.

We model p using kernel density estimation (KDE) meth-
ods [Sil92]: Given a graph drawing G = {e;}|<j<y consist-
ing of edges e; C R%, we can estimate p : R — R as

N . x—y
rACE)

where K : R? — R™ is a so-called density kernel of band-
width h > 0. Typical kernel choices are Gaussian and
Epanechnikov (quadratic) functions. p can be computed by
convolving G with K, or building an accumulation map of K
over G.

p(x) =

The density map p reflects the degree of local agglomer-
ation of edges. A graph drawing with uniformly distributed
edges will yield a relatively flat map. Large values of p in-
dicate zones of high edge density. More interestingly, lo-
cal maxima of p are curves located roughly in the mid-
dle of local edge agglomerations. Ersoy er al. have shown
that such points are good positions for placing edge bun-
dles [EHP*11], and compute these points as the medial
axes, or skeletons, of the Euclidean distance transform of
G thresholded at a small value T > 0. In contrast, we define
bundling centers as the local maxima of a continuous den-
sity map computed with nonlinear kernels. As we shall see
later, this implies several differences and advantages for our
method.

Given the density map p, we next define our kernel den-
sity estimation edge-bundling (KDEEB) operator B as the
solution of the following ordinary differential equation

dx _ hVplr)
dr— max(|[Vp(r)].e)

for all points x in the graph drawing, with initial condi-
tions given by the input graph G. The density gradient Vp

(@3
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is normalized in a regularized manner — the € = 10~ de-
nominator value takes care of zero gradients. Normalizing
Vp constrains the displacements ||dx|| to the kernel band-
width h(z). Since h(r) decreases in time (as explained next),
this effectively stabilizes the advection process. Eqn. 2 is
solved by Euler integration, i.e. we construct our bundling
B(G) by iteratively computing the density map p and ad-
vecting the points X € G in the direction of Vp. The effect
of Eqn. 2 is to sharpen the density image p starting with the
(typically straight-line, unbundled) input graph G and end-
ing with a tightly bundled graph whose density map asymp-
totically reaches bundle-aligned Dirac impulses.

d) iteration 10

Figure 1: Evolution of density map and corresponding
bundling for the US migrations graph.

The choice of the kernel K and bandwidth £ are discussed
next. We use an Epanechnikov kernel K(x) = 1 — ||x||%,
which optimally approximates the density map in a mini-
mal variance sense [Epa69, IMS96]. At each step i of the
numerical integration process, we decrease h following a
geometric series h; = N hyax, where hypqy is the initial ker-

ing the kernel bandwidth, such as data-based adaptive se-
lectors can be used, if desired [SJ91,IMS96]. However, we
do not need an exact density estimation for graph bundling
since we only use the density’s gradient and recompute the
density iteratively, so our simple heuristic suffices.

Figure 1 shows several iterations of the density map,
drawn as a height plot (normalized in height for display)
and corresponding bundled layouts for the US migrations
graph [HvWO09,EHP* 11]. The density map gets sharper dur-
ing the iterative solving of Eqn. 2. This bundles edges along
the density local maxima. As the density map gets sharper,
the average distance between local maxima increases, so
bundles get tighter and separated by more white space.

Figure 2: Density map (left) and corresponding bundling for
non-normalized advection (compare to Fig. 1)

Figure 2 shows iteration 10 of bundling the same graph,
this time without gradient normalization (Eqn. 2). Compared
to Fig. 1, the local maxima vary considerably, i.e. edge den-
sity non-uniformities in the input graph get amplified dur-
ing the bundling. Edges close to the high peak top-right in
Fig. 2 get bundled strongly, while other edges converge very
slowly.

4. Implementation

We achieve an efficient implementation of our method by
using a GPU image-based approach, as follows (see also
Fig. 3).

n iterations

splatting H

gradient
estimation

l edge edge Laplacian deri
. . . . resampling advection smoothing rendering
nel bandwidth, set to the average inter-edge distance in the \ ‘ ‘ \ ‘ ‘ ‘
input graph G, and A is a kernel bandwidth reduction fac- input sampled density gradiont pundled smooth final

tor. Setting A € [0.5,0.9] yields a kernel size which follows graph  edges map map graph bundles  image

the average edge density. The initial value hj,,, creates a
smooth density function p where any edge point is influ-
enced by at least one other edge, on the one hand, and on
the other hand we avoid large density overestimations. Dur-
ing numerical integration, edges get closer, so we decrease
the kernel size 4; in order, again, to avoid density overes-
timation. Decreasing /; also decreases the advection speed,
which stabilizes the process as the signal p is increasingly
’sharpened’. In other words, edges converge towards the lo-
cal density maxima instead of jumping from one side to the
other of such maxima. More advanced methods for estimat-

(© 2012 The Author(s)
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Figure 3: KDE edge bundling pipeline.

4.1. Graph representation

First, we discretize all edges e; of the input graph into sets of
points X;;, by using a small sampling step & equal to roughly
1% of the size of the graph’s bounding box, similarly to other
methods [HvW09, Hol06, EHP*11,LBA10b]. This typically
yields several tens of sample points per edge on average.
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4.2. Density computation and gradient estimation

To compute the density map p (Eqn. 1) and gradient Vp, we
can splat the kernel K, precomputed into an OpenGL 2D lu-
minance texture, at all edge sample points X;;, and accumu-
late results into a floating-point buffer by additive blending.
Maximal efficiency is achieved by drawing OpenGL point
sprites scaled by the bandwidth #; (Sec. 3). The accumula-
tion buffer size matches the screen size. From this accumu-
lation map, we compute Vp by finite differences. A more
accurate way is to precompute 0K /dx and 0K /dy as two
separate luminance textures and accumulate the two com-
ponents of Vp by splatting the two textures separately. The
two approaches are identical speed-wise: The former uses
two passes (accumulate, compute gradient); the latter uses a
single pass but creates two separate accumulation maps.

A better approximation of the kernel density estimation
(Eqn. 1) is obtained if we use edge-aligned, rather than ra-
dial, kernels. For this, we use elliptical kernels aligned with
the edge segments (X;;,X;j;1), i.e. draw rectangles textured
by the radial kernel K centered at the edge sample points,
aligned with the edge segments, and of size & (across the
edge) and equal to the average of ||x;; —X;j;1|| (along the
edge). Another option is to use one-dimensional half-kernels
stored as 1D textures and drawn as rectangles tangent to
the edge segments. The latter method was used by Ersoy et
al., with a different (distance) kernel, to create distance pro-
files [TE10]. Edge-aligned kernels allow a lower edge sam-
pling rate, since kernels are scaled separately along and
across edges, thus increase splatting speed without decreas-
ing the KDE quality.

4.3. Advection

After obtaining the gradient of our edge density map, we ad-
vect each edge by Euler integration of Eqn. 2 on the edge
sample points x;;. Edge endpoints are kept fixed, so bun-
dles start and end at the fixed node locations. Since we
first compute the gradient map and then advect all edge
points in this map, integration is explicit, which makes par-
allelization easy. After each advection step, we resample
the edges (Sec. 4.1). Resampling is needed since Vp has a
non-zero divergence and edge endpoints are fixed, so ad-
vection stretches and/or shrinks edges, which can lead to ar-
tifacts such as edge self-intersections or subsampled edge
fragments. Like advection, resampling is immediately paral-
lelizable.

4.4. Smoothing

As the last step of an iteration, we perform Laplacian
smoothing of the advected edges with a kernel of fixed
size, roughly 83, and 5..10 smoothing iterations, similar
to [HvWO09]. This removes small-scale advection artifacts
caused by the imprecise estimation of the density map p
which is due to errors in the kernel bandwidth estimation

(Sec. 3), on the one hand, and to discretization errors in the
finite edge sampling and finite kernel splat texture resolution
(Sec. 4.2), on the other hand. Artifacts show up as small-
scale undulations in the density map, which cause extra di-
vergence points, i.e. slight rotations, of Vp. In turn, gradient
imprecisions cause edges to become jagged during advec-
tion, thus yield slight zig-zags in the final bundles. Laplacian
smoothing completely removes this problem and generates
smooth bundles. Our smoothing is equivalent to anisotropi-
cally filtering the density map, prior to gradient estimation,
with a kernel aligned with the map’s curvature minor eigen-
vector, i.e. along its ridges [Wei98]. However, this type of
image filtering is considerably more expensive, and more
complicated, than our Laplacian edge smoothing.

4.5. Iterative bundling

We compute bundles by applying several iterations of gra-
dient computation, advection, and smoothing. For all tested
graphs, bundling converges to a stable layout after 8..10 it-
erations. The process is monotonic, i.e. edges move in a sin-
gle direction rather than back-and-forth. This is due to the
structure of the density map gradient: If two edge points
X,y € G are within each other’s bandwidths at some itera-
tion, then both will be equally advected towards the midpoint
(x+1y)/2, since we use the same kernel size and shape at all
points.

4.6. Examples

Figure 4 compares our KDEEB method with several re-
cent bundling methods: FDEB [HyW09], GBEB [CZQ*08],
SBEB [EHP*11], and WR [LBAI10b]. Overall, we pro-
duce tighter bundles than FDEB and GBEB, and smoother
bundles than SBEB. While SBEB requires an edge
pre-clustering based on similar directions and positions
(Fig. 4 a,cf,g), we obtain arguably similar or better results,
i.e. tight, smooth, well-separated bundles, with no clustering
at all. If meaningful edge clusters are provided in the input
graph, we can use these at no extra cost by bundling each
cluster separately. For example, in Fig. 4 (a,b), which shows
a software dependency graph with edges grouped by struc-
tural similarity, our method delivers tighter, better separated,
bundles, than SBEB. Also, compare Fig. 4 g (US migrations
graph, pre-clustered on edge similarity, bundled with SBEB)
with our method where we bundle each cluster separately
(Fig. 4 h). Our result is more similar to bundlings which do
not use clustering (e.g. our method, Fig. 4 j or WR, Fig. 4 1)
than to SBEB. This indicates that our method could be used
in cases where we want to bundle parts of a graph separately,
e.g. interactive exploration or online graph bundling. Per-
cluster bundling does not decrease the speed of our method,
since its complexity is O(E1/d) for a graph with E edges,
I bundling iterations, and an edge sampling step 8. Figure 5
shows the US airlines graph bundled by FDEB, SBEB, MIN-
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k)
Figure 4: Bundling examples. Radial graph (a,b); Poker graph (c,d); France airlines (e.f); US migrations, clustered (g,h);

US migrations, unclustered (i,j,k,1); Colors (where shown) indicate different edge clusters. More examples are available at
http://www.cs.rug.nl/svcg/Shapes/KDEEB
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c) g

GLE, and our method. Again, our results are tighter and ar-
guably less cluttered than other methods.

5. Additions

We describe next two visual additions for bundled graphs
that can be easily added atop of our bundling method:
obstacle-constrained bundles and visualizing bundling qual-

ity.

5.1. Obstacle-constrained bundles

In several cases, a layout is required which avoids certain ar-
eas in the embedding space, e.g. labels, icons, or other mark-
ers of interest. Although many methods for laying out graphs
with spatial constraints exist, this use case has not been stud-
ied, to our knowledge, for bundled layouts. We next present
such an approach.

Given a set of 2D obstacle shapes Q<;<p C R2, we want
to create a bundled layout which (a) follows the general
paradigm of bundling close edges into smooth and tight bun-
dles, and (b) routes bundles around obstacles without creat-
ing sharp bends or lengthening the bundles needlessly. Ob-
stacles are shapes of arbitrary geometry and topology, e.g.
can have protrusions, dents, or holes, and can be placed
freely. We model such shapes as binary images, with fore-
ground pixels (Q) inside the shape and background pixels
(Q) outside.

To constrain bundles, we modify the density map p used
by our method. Instead of the density p in Eqn. 1, we use
now

Pobs = p — DT (T (DT (u?zlﬁ,») r)) 3)

where DT (Q) : @ — R is the so-called distance transform

Figure 5: Bundling examples. US airlines (FDEB (a), SBEB (b), MINGLE (c), KDEEB (d)).

of the shape’s boundary dQ [CC00], evaluated on the fore-
ground, and T'(-,7) is the lower thresholding of a distance
field with a value 7. Hence, we subtract from p the distance
transform of an inflated version Q;,;; = T(DT (&), 7) of our
obstacle Q with a distance t. Since the gradient VDT (Q)
is a vector that points from each point x € Q to the clos-
est point on dQ to x, by using p,, instead of p in Eqn. 2,
we force edges that cross obstacles to move in the shortest
direction towards the obstacles’ boundaries, i.e. route edges
outside obstacles with minimal stretching. Once edges exit
an obstacle, this repelling effect ceases, since DT(Q) =0
outside the obstacles. For shapes with sharp convex corners,
VDT (Q) is not a smooth field: VDT (Q) has discontinuities
along the skeleton, or medial axis, of dQ, which in turn has
one separate branch for each such corner [CC00, TvWO02].
However, such discontinuities create no kinks or sharp bends
in the advected edges, for several reasons. First, outside ob-
stacles, edges are only influenced by the smooth € com-
ponent p. Secondly, since we use inflated obstacles Q;,y;,
any corners are rounded out, so edges never get sharp bends
when following the obstacles’ contours. This matches our
goal of producing smooth obstacle avoidance. The parame-
ter T (typically 10..20 pixels) controls how much corners are
smoothed, and also creates a thin halo-like band between the
routed edges and the obstacles, which helps better separating
the former from the latter.

The above method has one singular case when it can-
not route edges outside obstacles. Consider a rectangle Q
crossed by an edge which is exactly parallel to, and far from,
its short sides. This edge is parallel with VDT (Q), so it only
gets shifted tangentially by p,ps. But Laplacian smoothing
(Sec. 4) eliminates tangential shifts, so the edge will stay
fixed and never exit Q.

We solve this problem as follows (see also Fig. 7). For
each edge e that crosses an inflated obstacle Q;;, ¢/, we com-

(© 2012 The Author(s)
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Figure 6: Obstacle-constrained bundling without endpoint displacement (a,c) and with endpoint displacement (b,d).

pute the intersection points {p;} = ¢N 9L, ;. For simplicity,
we next consider that there are only two such points p; and
p2; the method works identically for more intersection point
pairs. We compute the shortest pixel path y C 9Q;, 1 between
p1 and p;. If there are two such paths, we take any of them.
Next, we replace the edge segment e N Q falling inside the
obstacle with y. This effectively pushes e outside Q;,; with
a minimal deformation. Finally, we apply Laplacian smooth-
ing on e (Sec. 4.4), but forbid the smoothed points to re-enter
Q11 This effectively rounds concave corners made by e as
it follows 0y, f;. Since convex corners are already rounded
off by using the inflated version of Q, we obtain edges that
smoothly avoid obstacles.

Figure 6 shows several obstacle-constrained bundles. Im-
ages (a,b) show our method on the France airlines graph (see
Sec. 6.2), with and without endpoint displacement. Icons
indicate cities close to large endpoint agglomerations, i.e.
flight endpoints. Figures (c,d) show obstacle avoidance on
the US airlines graph (Sec. 6.2). Edges starting or ending in-
side an obstacle are routed straight to the obstacle bound-
ary, after which they follow the bundle they are part of.
If we allow node displacement, endpoints inside obstacles
are moved too. The technique works both with our new
bundling (Sec. 3, images (a,b)), but also on graphs bundled
by other methods, e.g. Fig. 6 c,d whose bundling was gener-
ated with [EHP*11].

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Finally, we present a different type of obstacle avoidance:
global whole-area avoidance, or outward bundling. In this
use-case, we want to create a bundled layout where bundles
are routed, if possible, outside the entire area where nodes
are placed. This frees up space close to and/or between nodes
which can be used to show other information e.g. maps, an-
notations, or different types of (unbundled) edges. In con-
trast to obstacle avoidance, this is a global process, as we
now want to avoid an entire, large, area rather than iso-
lated obstacles. We achieve this by shifting the splat kernels
(Sec. 4.2) slightly along the vector between the barycenter of
the graph node positions and the position of the current splat-
ting point. This effectively offsets the kernels outside the
edges, and thus pulls the edges globally away from the graph
center. Edges which connect nodes radially, i.e. in directions
roughly leading to the barycenter, will stay unchanged. Bun-
dles which connect nodes at relatively similar distances from
the graph center will, however, be repelled further from this
center. Figure 9 b shows this technique on the France airlines
graph. We see that, even though the bundle constraints are
large, bundles stay coherent but get routed outside the nodes’
agglomerations, if possible. The inner space thus freed can
be used for additional visualizations. Implementation-wise,
this technique is trivial, as it requires only shifting the splat-
ting locations in a given direction when evaluating Eqn. 1.
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obstacle Q

inflated
obstacle Q;

original
edge

a)
shortest path vy,

bundle passing

medial axis S(€2) through S

)

shortest path v, b)

Figure 7: a) Obstacle-constrained bundling refinement;
b) Bundle splitting singularity. The background shows the
shape’s distance transform for illustration (Sec. 5.1).

Obstacle avoidance is simple to implement: We compute
the obstacles’ distance transforms, inflations, and shortest
boundary paths using the AFMM method [TvWO02] on im-
ages up to 10002 pixels in subsecond time. If higher speed
is needed, a CUDA version hereof can be used, which takes
under 10 milliseconds on modern graphics cards [EHP*11].

Obstacle avoidance can be applied during, or after,
bundling. In the former case, obstacles influence bundle for-
mation, i.e. different edges may land in the same bundle than
when no obstacles are present. In the latter case, edges in
the same bundle get re-routed together on the same side of
an obstacle (which is desirable as this keeps bundled edges
together) except in the rare, singular, case when a bundle
intersects the obstacle’s barycenter, which is also the cen-
ter S. of the obstacle’s medial axis S(Q) (Fig. 7 b). In this
case, edges which intersect S(Q) on different sides of S, are
re-routed to the two different shortest paths along the obsta-
cle’s boundary (blue and green curves y; and ¥, in Fig. 7 b).
Thick bundles that contain S, thus get split into two parts,
which creates a natural *flow’ of the bundle around the ob-
stacle.

5.2. Visualizing bundling quality

Given any bundling method, how to measure its quality?
First, one can measure the results’ fitness for a given task
e.g. by user studies. Secondly, one can measure the qual-
ity of the produced images by some given image metrics.

infl

shortest path y

re-routed edge

For the latter approach, little work exists so far. We use
here the second approach: We model a graph’s bundling
strength by measuring how densely packed its edges are.
Areas with high edge density, separated by areas with zero
density, indicate strong, clearly delimited, bundles, and min-
imize ink [GHNS11]. Low edge density areas indicate spu-
rious edges which could not be bundled. These are either
limitations of the bundling method or actual data outliers,
i.e. edges with no other similar-direction edges in their prox-
imity.

We address the above as follows. We compute our den-
sity map p, we compute its normal n, and next its Phong
shading, with diffuse color set to a user-chosen ’graph ma-
terial’ color and specular strength inversely proportional to
the density p. This creates two effects. First, strong bun-
dles appear as shaded cushions in the graph’s color, sim-
ilar to [TE10, EHP*11]. Secondly, outlier edges appear as
strongly specular (e.g. white). Edges are rendered as lines
with classical alpha blending and shading applied at the edge
sample points X;;. Technically, our method is simpler than
the image-based shading in [TE10]: We only need to apply
Phong lighting to the edge sample points, whereas [TE10]
constructs 2D shaded bundle images by means of splatting,
thresholding, and skeletonization. Thin (outlier) edges ap-
pear clearly in our shading, whereas [TE10] only shades
bundles having a minimal thickness of several pixels.

Figure 8 shows two examples. The first graph (a) encodes
software dependencies i.e. nodes are functions and edges are
function calls. Shaded red structures show strong bundles in-
dicating groups of functions i.e. software subsystems calling
each other. These are clearly separated from outlier, unbun-
dled, edges (white). We see that many edges are not bundled.
In Fig. 8 b (France airlines graph), most edges are well bun-
dled, as there are very few white outliers. Note that the above
visualization is just an aid to reflect on the bundling strength
and not a self-contained bundled graph visualization tech-
nique in itself: To be effective, it should be combined with
suitable shading showing edge types, directions, and nodes.

6. Discussion
6.1. Comparison

Several differences are visible between our method and ex-
isting methods (Fig. 4): We produce smoother, less twist-
ing, bundles than GBEB and SBEB, and tighter bundles than
FDEB and MINGLE.

Figure 9 a shows the effect of using strongly elongated
edge-aligned kernels (Sec. 4.1): The obtained bundling (US
migrations graph) resembles now more the style of GBEB
(Fig. 4 k) than the smooth style of FDEB or WR (Fig. 4 i,1).

A synthetic example of our method is shown in Fig. 9 c:
Here, a graph of 100K edges with nodes randomly placed in
a square was bundled. The result is, however, a set of quite

(© 2012 The Author(s)
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a)

b)

Figure 8: Bundling quality visualized by shading. Shaded colorful structures indicate dense bundles. Outlier edges are white.

Radial graph (a), France airlines (b)

well structured, smooth, bundles, with little clutter. Obvi-
ously, there is no semantic associated to such bundles, since
our initial graph was random. The purpose of this example
is strictly to show that KDEEB can effectively declutter and
bundle very dense graphs.

Our bundling strategy (Eqns. 1 and 2) shares some as-
pects with FDEB [HyW09] and SBEB [EHP*11]. As FDEB,
we move edge points close to each other. However, we do
not need any additional edge compatibility computations
(see [HVWO09], Sec. 3.2). As SBEB, we move edges close
to their local center. However, while SBEB computes this
center explicitly as medial axes of thresholded distance func-
tions of similar-direction edges, we move edges towards
their implicit local center using the density map gradient.
Eqn. 2 resembles solving the Eikonal equation [TvW02],
since we move edge points with equal speed in the direction
of aradial kernel gradient, which is similar to the gradient of
an Euclidean distance map. The main difference is that we
recompute this gradient at each step, while [TvWO02] uses a
fixed motion direction given by an explicit initial boundary.

Similar to us, image-based techniques based on a density
map computed from a graph drawing using GPU accelera-
tion are also used by [FT09]. However, the aim is different:
We ’concentrate’ the density signal in order to create edge
bundles, and keep nodes fixed, whereas [FT09] works in the
opposite direction, spreading nodes towards less dense areas
in order to declutter a given layout.

6.2. Performance and simplicity

Our entire bundling code is under 1000 lines of C#, and con-
sists of four simple steps: density computation (Sec. 4.2),

(© 2012 The Author(s)
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edge advection (Sec. 4.3), and edge Laplacian smooth-
ing (Sec. 4.4). Compared to all other bundling methods
whose implementations we could study [HvW09, LBA10b,
EHP*11], our pipeline is simpler, e.g. we do not require
graph clustering, skeletonization, Voronoi diagrams, or spa-
tial search structures. GPU-wise, we only need OpenGL 1.1
as compared to the more complex CUDA or pixel shader
code in [EHP*11,LBA10b].

Graph Nodes Edges Edge Bundling time (sec.)
samples 8800 GTX GeForce 580
US airlines 235 2099 86K 1.4 0.5
US migrations 1715 9780 220K 3.6 1.5
Radial 1024 4021 290K 4.5 1.5
France air 34550 17275 330K 3.8 1.8
Poker 859 2127 50K 0.8 0.4
Random 200K 100K 4.8M 43 18

Table 1: Graph statistics for datasets used in this paper.

Table 1 shows running times on two Nvidia cards, both
on a 3.3 GHz Core i5 PC, for 10 iterations (full bundling).
The Edge samples column shows the number of sam-
ple points on all graph edges. Advection, resampling, and
smoothing were implemented in C# CPU multithreading
(4 threads). These take approximately 40% of the entire
computational cost, the remainder being the OpenGL-based
splatting. These steps can be easily accelerated further with
e.g. vertex shaders or CUDA. However, even without this
extra boost, KDEEB is significantly faster than similar ap-
proaches - on average for the tested graphs, 16 times faster
than FDEB [HvW09], 6 times faster than GBEB [CZQ*08],
5 times faster than SBEB [EHP*11], and 4 times faster
than winding roads [LBA10b]. The only faster bundling
method we are aware of is MINGLE [GHNSI11], which is
2..3 times faster than our method for smaller graphs (up to
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Figure 9: Additional examples. GBEB-style layout (a); Outward bundling (b); Random 100K edge graph bundling (c).

2000 edges), and about the same speed for larger graphs.
The lower performance of our method for small graphs can
be explained by the relatively large amount of work done
in C# on the CPU for these graphs, which gets dominated
by the scalable GPU computations for larger graphs. Also,
MINGLE arguably produces more cluttered, less bundled,
layouts (Fig. 5 ¢ vs Fig. 5 d), as it uses only the start and
endpoints of edges to bundle these, whereas we use the en-
tire edge paths.

Memory-wise, we only need to store three frame buffers
equal to the screen size (density map and its two gradi-
ent components). This means practically zero data overhead
atop of the edge samples which describe the bundled layout.

7. Conclusion

We have presented a new method for creating bundled lay-
outs of general graphs. As compared to other methods, we
require only an input graph with node positions. Our ap-
proach offer a simple, (GPU) parallelizable method which is

several times faster, and arguably simpler to implement, than
comparable methods. Our method produces bundled graph
layouts with tight and smooth structures, robustly handles
graphs of widely variable complexity and size, and requires
no complex user parameter settings. We show how to con-
strain bundling to avoid arbitrary-shaped obstacles placed
in the embedding space at user-selected positions, and also
a way to globally route bundles outside the nodes’ posi-
tion area. Our approach, which follows an image sharpen-
ing technique, opens new ways for analyzing and refining
graph bundling based on well understood image processing
techniques.

Several future work directions exist. First, speed-wise,
our method can directly benefit from a fully-parallel (e.g.
CUDA) optimization. Secondly, by modifying the splat ker-
nels, different bundling styles could be obtained e.g. orthog-
onal layouts. Last but not least, our image sharpening tech-
nique may have direct applications in image processing and
simplification, beyond the confines of information visualiza-
tion.

(© 2012 The Author(s)
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