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Abstract—Specifying and programming graphical interactions 
are difficult tasks, notably because designers have difficulties 
expressing the dynamics of the interaction. This paper shows how 
a specific architecture improves the usability of the specification 
and the implementation of graphical interaction. The 
architecture is based on the use of picking views and inverse 
transforms from the graphics to the data. With three examples of 
graphical interaction, I show how to specify and implement them 
with the architecture and how this improves programming 
usability. Moreover, I show that it enables implementing 
graphical interaction without a scene graph. This kind of code 
helps prevent errors due to cache consistency management. 

Keywords-Usability of programming, Graphical Interaction, 
Specification, Implementation, Picking views, Inverse Transforms 

I. INTRODUCTION 
Interactive system programming is difficult, notably 

because designers have difficulties expressing the dynamics of 
the interaction [1]. Even if interaction is inherently graphical, 
specifying it and implementing it still relies mainly on textual 
languages that enlarge the gap between the phenomenon to 
describe and the description. Furthermore, writing interactive 
code with calculus-oriented languages is not suitable for 
describing reactive processes [2][3]. This results in so-called 
spaghetti [2] code that prevents readability and favors bugs, 
notably when the system grows after several increments. 
Finally, the need to make systems as fast as required by the 
interaction loop (short duration between user action/machine 
reaction/user perception) forces the designers to optimize their 
code and thereby make it difficult to read and modify. 

I think that these problems pertain to the usability of 
specification and implementation of interactive graphics. 
Specifying interaction (referred to as “designing” in [1]) 
consists in describing how graphical representations react to 
user input. This is a problem that has been approached before 
with various languages (including visual), but as noted in [1], 
further work needs to be done to facilitate this task. 
Implementation is the process by which a programmer can turn 
a specification into executable code. Again, various approaches 
aimed at improving the transition and the readability of 
interaction code. Still, I think that a number of unimportant 
considerations hinder code readability and that a better 
architecture is necessary. 

In this work, I rely on a particular architecture to ease 
specifying interactive graphics and to ease implementation of 
interactive graphics. The specification narrows the gap between 
the phenomenon and its description. The implementation 
paradigm enables the designer to use a data-flow architecture, 
which is more readable and more manageable than imperative 
code. I first present the architecture on which this work relies. 
After discussing a number of dimensions of analysis, I then 
present three examples of interactive graphics and argue that 
their specification and their implementation is more readable 
and understandable. 

II. MDPC 
This section briefly introduces MDPC, the architecture I 

used (more details are available in [4]). MDPC is a refinement 
of the MVC architecture (‘M’ and ‘C’ denote ‘Model’ and 
‘Controller’, the ‘View’ becomes ‘Display view’ and a 
‘Picking view’ component is added). MDPC relies on two 
principles: “picking views” and “graphical transformations”. 
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Figure 1.  Top: display (left) and picking (right) view of a menu. Bottom: 

display (left) and picking (right) view of a horizontal scrollbar 

Picking views are invisible graphical objects overlaid on 
visible ones, but that still react to user events. Fig. 01 shows the 
“display view” of a hierarchical menu (top left) and the 
corresponding picking view when the user is navigating in the 
menu (top right). The (transient) triangle laid over the menu in 
the picking view enables reaching the sub-menu entries while 
avoiding submenu folding. Similarly, the picking view of the 
scrollbar displays as many shapes as spatial modes (thumb, 
arrows and spaces between thumb and arrows). Picking views 
have two benefits. First, they help managing the dynamic of the 
states of the interaction (e.g. the transient triangle), as opposed 
to the graphical state of the display. Second, they enable to 
avoid analytical computation of spatial relationships (e.g. the 
movement with a direction below 45°, or the position of a click 



with respect to the thumb) by using Enter/Leave events 
generated by the underlying graphical toolkit. Picking views 
actually reify spatial modes of interaction. A spatial mode is 
the spatial equivalent of a temporal mode: different behavior in 
function of space, versus different behavior in function of time. 

Graphical transformations are functions that transform the 
conceptual model into graphics. MDPC uses two graphical 
transformations: one for the display view and one for the 
picking view. Fig. 02 shows the affine transforms applied to the 
model of a horizontal scrollbar (two values between 0 and 1) to 
generate the display view and the picking view. Computing the 
inverse transformations enable translating a graphical 
interaction (say a drag of the thumb) into operations on the 
model (translation of values). 
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Figure 2.   The graphical transforms (left) from the model to the views and 
the inverse transforms from the picking view to the model (bottom right). 

MVC was the result of the application of the separation of 
concerns principle on interactive code [5] to improve 
modularity. Still, the MVC controller is in charge multiple 
concerns including the management of interactive state and the 
translation of events into operations on the Model. MDPC can 
be considered as the application of separation of concerns 
down to the MVC Controller itself. By using picking views and 
inverse transformations, MDPC offloads those two concerns 
from the MVC Controller. This makes the Controller code 
much simpler, almost eliminates the apparent impossibility to 
decouple the Controller and the View and makes Views and 
Controllers invariant from geometrical and layout transforms. 
This also improves modularity since the Controller can be 
made more general and reusable. For example, the same 
Controller can be used for various species of scrollbar (e.g. 
arrows at both ends, at one end, at the thumb ends; horizontal, 
vertical and radial layout). MDPC has been shown to make 
possible entirely “model-driven” implementation of scrollbars, 
sliders, range-sliders and hierarchical menus. 

III. DIMENSIONS OF ANALYSIS 
I think that MDPC is also beneficial to the specification of 

interactive graphics and to their implementation. More 
precisely, using MDPC as a pattern helps at both designing the 
specification and designing the code. As such, MDPC can be 
considered as a method that improves the usability of 
programming. 

Usability of “programming” (taken in a broad sense, i.e 
including specification and implementation) is the extent to 
which an environment (including language, pattern, IDEs etc) 
can be used to achieve programming tasks with effectiveness, 
efficiency and satisfaction (see [6] for an introduction). 

Usability is difficult to assess, because it requires longitudinal 
studies with a large number of designers (as defined in [1]). 
Since I have not done such studies in this work, I provide 
predictive evaluation of specification usability and 
implementation usability along three properties. 

The first property that I assess is the descriptive power. i.e. 
the extent to which a designer using MDPC is able to specify 
and implement existing graphical interactions. This is a 
prerequisite for designers if I want them to be effective: they 
will not be able to design an intended interaction if the 
architecture does not allow for it. In the next section, I present 
three examples of specification and implementation of 
interactive graphics: Drag’n’Drop with hysteresis (direct 
manipulation technique [7]), Magnetic guides (instrumental 
interaction technique [8]) and a Calendar (complex 
representation combined with direct manipulation). Together, 
those examples aimed at showing that MDPC expressive power 
is sufficient to specify a large range of graphical interactions. In 
addition, I describe two kinds of implementation, one based on 
a scene-graph (Drag’n’Drop, Magnetic guides) and the other 
one based on a data-flow (Calendar). I show code snippets to 
help explain the implementation to the readers, to convince 
them that the implementation actually exists and runs and to 
enable them to replicate this work. 

The second property that I assess is simplicity of 
description. Even if MDPC has a sufficient descriptive power, 
it would be useless if the description itself were cumbersome to 
specify and program. I provide an evaluation of simplicity of 
description by using concepts from the Cognitive Dimensions 
of Notation framework (CDN) [9] and from a list of desirable 
properties employed in the literature (see [3] for a survey). 

The third property that I assess is the performance 
(implementation only). I also discuss this aspect since however 
elegant an implementation is, its usefulness can be reduced if 
performances are too weak. 

IV. DRAG’N’DROP WITH HYSTERESIS 
The first example is the Drag’n’Drop with hysteresis, a 

direct manipulation technique. Drag’n’Drop with hysteresis 
forces the user to move past a small minimum distance from 
the ButtonPress position, before effectively triggering the Drag 
operation. This prevents the system from misinterpreting a 
Selection for a Drag’n’Drop: when selecting a graphical object 
with a click (ButtonPress then ButtonRelease), one or a few « 
Move » events may occur between the button events, because 
the mouse slips due to the force applied on the button by the 
finger. This makes the system misinterpret a Selection for a 
Drag’n’Drop and moves the selected object by a slight, but 
undesirable amount. 

A. Interaction specification 
A traditional analytical algorithm consists in computing at 

each Move event the distance between the ButtonPress position 
and the cursor position, testing if the distance is superior to the 
minimum distance and moving the object if the test is 
successful. This necessitates the computation of a Euclidean 
distance (square root of sum of squares). 



1) Description 
The version with MDPC consists in drawing an invisible 

circle centered on the position of the ButtonPress, with a radius 
equal to the hysteresis distance. Fig. 03 shows the display and 
picking views for explanation purpose: the circle is visible, but 
in the real system it is not. At the beginning, the cursor is at the 
centre of the circle. If the cursor does not leave the circle before 
a ButtonRelease, the interaction is interpreted as a Select. If the 
cursor leaves the circle, the minimum distance is reached and 
the Drag can start. The invisible circle is removed, which 
allows the user to move the object within a distance from its 
initial position smaller than the hysteresis distance. 

 
        a                                 b                              c                                    d 

Figure 3.  Hysteresis with MDPC.  (a) hover (b) press:an invisible circle is 
inserted into the scene (visible here for explanation) (c) no drag while the 

cursor stays in the circle (d) leaving circle: removal of the circle, drag starts. 

2) Simplicity 
I think that the MDPC description is closer to the 

conceptual model of the interaction. In fact, computing the 
distance between the cursor and its initial position at each 
Move event is not necessary for specifying the interaction. The 
only information needed is the minimum distance to be 
reached. Since this distance is reified into a circle, the concept 
of distance crossing is more directly represented. Hence, 
MDPC improves the Closeness of Mapping cognitive 
dimension. Finally, the designer can make picking view visible 
for debugging purpose. By directly seeing the circle on the 
screen, one can understand how the graphical interactive state 
behaves and debugs more easily than with code only. Here, 
MDPC improves the Visibility cognitive dimension. 

B. Implementation 
This particular implementation uses the SwingStates toolkit 

[10]. SwingStates enables programming interaction with state 
machines directly in java files. The transition between states 
can be guarded (i.e. a predicate prevents the transition to fire) 
and can trigger an action when fired. SwingStates relies on a 
scene graph, i.e. a data structure that retains graphical objects. 
With SwingStates scene graph, graphical objects may be 
“tagged”: any operation on an object can also be applied on a 
“tag”, meaning that any object with this tag will be modified 
accordingly. The following code heavily used this feature. 

1) Description 
The state machine is shown in Fig. 04. When the user 

presses on an object, the current state becomes “waitHyst” and 
waits for the hysteresis distance to be crossed. The code of the 
action associated to the “Press” transition is shown in Fig. 05. 
The picking shape is created (CEllipse, the circle), made 
invisible, then added to the scene graph. Graphical objects of 
the picking view are invisible to the user, but react to mouse 
events. As said before, one can comment the line that make 
objects invisible for debugging purposes. 

The circle is centered at the location of the cursor: hence, 
the cursor is inside the circle. The “leave” transition pertains to 
this circle (code not shown in the figure): when the cursor 
leaves the circle, the “leave” transition to the “dragging” state 
is fired, an action removes the invisible circle from the scene 
graph and the user is free to drag the object around. 
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Figure 4.  Hysteresis state machine. Circles denote states, arrows transition. 
The text on a transition denotes the interaction event that triggers a transition. 

Figure 5.  Action on “press” transition from “start” to “waitHyst”. 

2) Simplicity 
Even if simple, the MDPC-based description of the 

interaction illustrates how Enter and Leave events are used in 
place of analytical computation of the Euclidean distance. 
Hence, the designer is not required to write this code. Of 
course, with the traditional way, one could have used 
abstraction and call a ‘distance’ function instead of writing the 
distance code, but the MDPC version gets rid of this necessity. 

This example also illustrates how picking views help 
manage the dynamics of the interaction state. Finite State 
Machines are well adapted to MDPC descriptions of the 
interaction. At each state can correspond a particular picking 
view, which is active when the state is active. This is similar to 
the architecture described in [11]. Again, MDPC improves 
Closeness of Mapping with interactive state implementation. 

3) Performance 
Adding a single circle to a scene graph is inexpensive. The 

generation of Leave/Enter events may actually use a Euclidean 
distance, hence the computation is the same as the traditional 
algorithm. 

V. MAGNETIC GUIDES 
Magnetic guides are instruments for aligning graphical 

objects [8]. During the Drag’n’Drop of an object, if the object 
is close enough to the magnetic guide, the guide attracts the 
object: hence, dropping multiple objects on a linear guide 
makes them aligned. More complex alignments allow for 
alignment of objects center, but also of their boundaries. More 
complex guides include Bezier curves. Alignment with 

public State start = new State() { 
   Transition press = new PressOnShape(BUTTON1, ">> waitHyst") { 
      public void action() { 
         toMove = getShape(); // get the object to drag 
         lastPoint = getPoint(); // store last clic position 
         hystShape = new CEllipse(lastPoint.getX()-5,lastPoint.getY()-5, 10, 
10); // picking shape 
         hystShape.setDrawable(false); // set invisible 
         canvas.addShape(hystShape); // add to scene graph 
      }};}; 

 



magnetic guides is an example of instrumental interaction [8]: a 
Magnetic Guide is an instance of an instrument i.e. action 
(alignment) reified into an interactive object that control other 
interactive objects. Magnetic guides are different from a “grid”, 
since they are explicitly defined and manipulated by the user. 

A. Interaction specification 
As in to the previous example, a traditional analytical 

algorithm computes the distance between the guides and the 
dragged object, tests if the distance is inferior to the attraction 
distance and sticks the object on the guide if so. 

1) Description 
Fig. 06 shows both the display view (dashed line and green 

rectangle) and the picking view (gray rectangles, red square) 
for illustration purpose. With the MDPC pattern, the algorithm 
consists in drawing an invisible thick line over the guide (thin 
dashed line on the figure), whose thickness is equal to two 
times the attraction distance (Fig. 06, gray rectangles), and in 
registering a callback when the cursor enters or leaves the 
invisible thick line (events “Enter” and “Leave”). Thus, when 
the cursor enters the invisible thick line, the object sticks to the 
guide; when the cursor leaves the thick line, the object sticks to 
(and thus follows) the cursor. 

 
Figure 6.  Dashed lines: magnetic guides; gray rectangles : picking view of 
magnetic zones ; red squares: picking view of magnetic zones shared by two 
guides (a) free drag (b) right horizontal alignment (c) just before entering in 

the magnetic zone to align vertically, at the bottom (d) 

As said earlier, more complex guides allow for alignment 
with the center of objects, but also with their boundaries. With 
MDPC, this is described with multiple picking zones, placed 
around the magnetic guides with respect to the geometry of the 
object and the position of the cursor relative to the object 
(Fig. 06, gray rectangles). In addition, guides may intersect, 
allowing an object to stick to their intersection and keep 
alignment with two sets of objects. Drawing two thick lines 
results in a partial occlusion of one line by the other at the 
intersection point. With a toolkit that can synthesize Enter and 
Leave events for occluded objects, no adaptation of the 
previous algorithm is necessary. However, with the 
SwingStates’ event synthesis model, the previous method does 
not work: the topmost guide would prevent the attraction from 
the occluded line since no Enter or Leave event would be 
emitted for the occluded thick line.  With such a model of 
events, it is necessary to define the area of intersection between 
thick lines and make the object stick at the intersection when 
the cursor is in the intersection area (Fig. 06, red squares). 

 

2) Simplicity 
The interaction is complex, and the distances to compute 

are numerous: there are 6 distances per guide (3 vertical, 3 
horizontal) and the reference point from which to compute the 
distance is not easy to grasp and understand. MDPC 
encourages the identification of spatial modes of interaction 
and their corresponding area. I think that thinking in terms of 
area of attraction is easier. As noted in [1], designers often use 
drawings to explore a solution and explain them to colleagues. 
MDPC allows designers to use these drawings directly to 
express the interaction. In addition, when the guide themselves 
are complex (e.g. curves), no additional cost in terms of 
reasoning is necessary compared to the distance model. 
Similarly to the Drag’n’Drop example, MDPC thus improves 
Closeness of Mapping and Visibility. 

The intersection area problem induces more coding for the 
designer than the distance computation model. The MDPC 
solution seems more complex than computing distances from 
guide: the burden of describing intersection shapes may not 
make MDPC as advantageous as claimed. This hinders the 
Terseness cognitive dimension. It must be underscored 
however that this problem only occurs with scene graphs that 
do not generate Enter/Leave events for occluded objects. 

B. Implementation 
1) Description 

This implementation also uses the SwingStates toolkit. The 
state machine is shown in Fig. 07. The interaction begins with 
the hysteresis interaction described earlier. When crossing the 
hysteresis distance, the “leave” transition is fired and the 
machine enters the “dragging” state. 
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Figure 7.  Magnetic guide state machine 

Picking views are managed in the code of the action 
associated to the “leave” transition (shown in bold in Fig. 07). 
The code itself is shown in Fig. 08. First the previous picking 
views (hysteresis circle) is removed (a) and replaced by three 
picking objects per guide (b), to align with the center and the 
boundaries of the dragged object. At the beginning, the picking 
objects are put on the position on the guide. The objects for the 
boundaries are then “spread around” the guide by a distance 
equal to half the height or width of the dragged object (c). 
Then, all guides are moved by a distance equal to the shift 
between the position of the cursor inside the dragged object and 
its boundaries (d). When the cursor enters the picking shape of 
a guide, the machine enters the corresponding state. In the 
“dragIn*Guide” state, the move transition triggers an action 

  
          a                         b                           c                             d 
 



that moves the object along the guide. In “inStickGuide”, no 
action (and thus transition) is necessary on a “move”. 

Figure 8.  Action on “move” transition from “waitHyst” to “dragging”  

2) Simplicity 
For simple guides, such as horizontal or vertical guides, the 

computation of the position of the dragged object stuck to the 
guide is straightforward: one of the Cartesian dimensions is 
that of the cursor and the other is that of the guide. In the case 
of a more complex guide, it is necessary to code the 
computation of the orthogonal projection of position of the 
dragged object on the guide and sets its coordinates to the 
coordinates of the projection. 

Since SwingStates does not synthesize Enter and Leave 
events for occluded objects, the code has to create the picking 
objects for the intersections. In the simple case of horizontal 
and vertical guides, the shape of the intersection is a square 
centered at the intersection of the guides. However, more 
complex guides may require more complex computation. In 
this case, MDPC extends nicely to the use of the AND 
operation of the constructive area geometry and the 
computation the shape resulting from an AND between the two 
thick lines. Some toolkits provide such algorithms (i.e. Java2D 
Shape API, or OpenGL GLU tesselator [12]). 

3) Performance 
Again, in order to make reasoning easier, the code avoids 

analytical computation by relying on the algorithms provided 
by the scene graph. The test for shape inclusion does not 
require a rasterization. Instead, the algorithm in the scene graph 
may use the distance algorithm that one would have used in the 
interaction code. Hence performances are similar. 

With SwingStates model of events, additional computations 
of area are necessary. However, those computations happen 
only once during the interaction (in the transition between 
“waitHyst” and “Dragging”). 

VI. CALENDAR 
The next example is a Calendar application, with a “week” 

view on events, such as Apple’s iCal or Google Agenda. 
Fig. 09 shows the overall display (top) and picking (bottom) 
view. I have replicated two interactions: “Drag’n’Drop” of 
calendar entries, which allows the user to move an entry in the 
day, or to move it into another day of the displayed week; and 
the “Resize” of the duration of calendar entries. 

 
Figure 9.  The “display” view (top) and the corresponding “picking” view 
(bottom) of a calendar. The picking algorithm uses unique colors for each 

picking object, which explains the colorful picking view. 

A. Interaction specification 
A traditional algorithm uses the positions and analytical 

distance computation to decide the reaction to user events. 

1) Description 
With MDPC, the “Display” view of each calendar entry is a 

rectangle (Fig. 10). The top edge reflects the date and time 
when the entry starts, while the bottom edge reflects the date 
and time when the entry ends. The width of the entry is not tied 
to the data: it is equal to the width of a column, in this case a 
seventh of the window since a week contains seven day. When 
multiple calendar events overlap, the corresponding rectangles 
share the column width (left most column in Fig. 09). 

The picking view of each entry is composed of three 
juxtaposed rectangles (Fig. 10). The middle rectangle is similar 
to the rectangle of the display view and its height depends on 
the entry duration. A Drag’n’Drop of this rectangle allows 
modifying both the start and end time without modifying its 
duration. The two other rectangles allow the user to pick the 
top (resp. bottom) edge of an entry and change the start (resp. 
end) of the entry by direct manipulation. The modification of 
the data is done thanks to an inverse transformation, as 
explained in the next section. 

2) Simplicity 
The gain in simplicity is the same as in the previous 

examples: this improves Closeness of Mapping and Visibility. 

B. Implementation 
The previous examples use Java and a scene-graph. They 

illustrate the use of picking views for managing interaction 

public State waitHyst = new State() { 
   Transition drag = new LeaveOnShape(">> dragging") { 
      public void action() { 
         […] 
         // (a) remove previous picking view 
         canvas.removeShape(hystShape);  
         // (b) create horizontal pick shapes 
         for (int i=0; i<3; ++i) { 
            CShape s = new CShape(new 
BasicStroke(20).createStrokedShape(new Line2D.Double(0, 0, 500, 0))); 
            canvas.addShape(s); 
            s.addTag(hMagnetTag); 
            // (c) spread the pick shapes around the guideline 
            if (i==0) s.translateBy(0,toMove.getHeight()/2); 
            if (i==2) s.translateBy(0,-toMove.getHeight()/2); 
         } 
         // translate around guideline  
         hMagnetTag.translateBy(0,ymg); 
         // (d) translate the pick shapes according to the relative position of 
the cursor from the reference point of the shape (middle) 
         hMagnetTag.translateBy(0,pickRelPos.getY()); 
 
         // create vertical pick shapes and sticky pick shapes at h and v 
intersections 
         // hidden: similar to horizontal guides 
}}} 



state and for avoiding analytical computations. I implemented 
the calendar example with Tcl [13] and OpenGL [12], and by 
relying on a data-flow. This demonstrates not only the use of 
picking views, but also the use of inverse transformations, the 
second principle of MDPC. It also shows that MDPC is 
independent from the language and does not require a scene-
graph. 
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Figure 10.  Display and Picking view of a calendar entry. The position of the 

cursor is transformed back into the conceptual model by using the inverse 
picking transformation. 

1) Description 
The architecture is shown in Fig. 10). Calendar entries are 

stored in a relational database table. The table includes a 
“start”, an “end”, and a “title” column. A SQL select allows 
selecting visible entries and computing the value needed for the 
visualization. Each frame rendering triggers two OpenGL-
based redisplay functions, one for the display view (proc view, 
display view, Fig. 11) and one for the picking view (proc view, 
picking view, Fig. 11). The display transformation fills pixels 
in the frame buffer, while the picking transformation fills pixels 
in an offscreen buffer. Both transformations share a transf 
function (Fig. 11, middle-left).  transf first wraps the data 
multiple times on X and Y (Fig. 12). The wrap function (shown 
in Fig. 11, bottom-left) is more complex than necessary (since I 
only use the week view), but serves as a demonstration that 
even a complex function can be reversed. Once wrapping is 
done, the position in the day is computed and displayed on the 
screen’s Y dimension quantitatively (yInDay). This leads to a 
2-D position expressed in terms of cells (e.g. (3; 4.5)), which is 
then multiplied by the actual display size of a cell (CellWidth x 
CellHeight). Finally, the transf function applies a user-
controlled pan and zoom. A final computation shifts the x 
position of events inside a cell to take into account parallel 
entries (Fig. 09, right). 

The code that manages user input is shown in Fig. 11, right. 
When the user presses on and moves one of the small 
rectangles in the picking view of a calendar entry, an inverse 
transformation is applied on the X and Y dimensions of the 
Move event. Since the position of the rectangles is the result of 
the application of a continuous and monotonous function on a 
scalar (a time), it is sufficient to apply the inverse function to 
the position of the cursor to get the corresponding value in the 
referential of the data model. The inverse transf is shown in 
Fig. 11, middle-right and the inverse wrap is shown in Fig. 11, 
bottom-right. Finally, a SQL query update modifies the data in 
the data table. After each modification (hence each movement), 
the system triggers a redisplay and the modification is visible 
immediately. 

proc view {} {
   set sql [subst {SELECT * FROM event WHERE start>=$s AND end<
$e ORDER BY day,start}]

   db eval $sql {
      # for each event in the query do…       
      foreach {x y_top} [transf $start] {} # find x and y according to time
      foreach {x y_bottom} [transf $end] {}
    
      # shift x for parallel events
      set x [expr $x+$cellWidth*$rankInParaEvents/($numParaEvents
+1.0)]
      set x_right [expr $x+$cellWidth/($numParaEvents+1)]

      if {$view==DisplayView} {
         # display view 
         # rect fill
         glRectf $x $y_bottom $x_right $y_top     
         # text for title
         renderText $title
     } else if {$view==PickingView} {
         # picking view
         # top rectangle
         setColorAnId "$idx top"
         glRectf $x $y_top $x_right [expr $y_top+3]
         # middle rectangle
         setColorAndId "$idx middle"
         glRectf $x [expr $y_top+3] $x_right [expr $y_bottom-3]
         # bottom rectangle
         setColorAndId "$idx bottom"
         glRectf $x [expr $y_bottom-3] $x_right [expr $y_bottom] }}

proc pick {} {
bind $win <ButtonPress> {
    set rgb [getRGB %x %y]
    foreach {idx zone} [eval getColor $rgb] {}
    set sql [subst {SELECT start as oldstart, end as oldend, title FROM 
event WHERE idx=$idx} ]
   db eval $sql ""

   set pointedTime [expr [invtransf %x %y]]
   set offset [expr $pointedTime-$oldstart]

   bind %W <B1-Motion> {
      set pointedTime [%%x %%y]
      set newstart $oldstart
      set newend $oldend

      if {$zone=="top"} {
          set newstart [expr $ss+$pointedTime]
      } elseif {$zone=="middle"} {
          set newstart [expr $ss+$pointedTime-$offset]
          set newend [expr $newstart+($oldend-$oldstart)]
      } elseif {$zone=="bottom"} {
          set newend [expr $ss+$pointedTime]
      }
      # turn invtransform into operation on the model 
      set sql [subst {UPDATE event SET start=$newstart, end=$newend 
WHERE idx=$idx} ]
      db eval $sql ""       
      %W postredisplay }}}

proc transf {value} {
    global zoom xpan ypan
    global cellWidth cellHeight heightPerSecond

    #wrap days
    foreach {x y} [wrap $value/(24*3600)] {}

    #y position in the day [0;1.0[
    set yInDay [expr ($value%(24*3600))/double(24*3600)]
    set y [expr $y + $yInDay]

    # scale for a day cell
    set x [expr $x*$cellWidth]
    set y [expr $y*$cellHeight]

    # pan and zoom
    set x [expr int($x*$zoom+$xpan)]
    set y [expr int($y*$zoom+$ypan)]
 
    return "$x $y"}

proc invtransf {x y} {
    global zoom xpan ypan
    global cellWidth cellHeight heightPerSecond
    
    # pan and zoom
    set x [expr int($x/$zoom-$xpan)]
    set y [expr int($y/$zoom-$ypan)]

    # unscale from a day cell
    set x [expr int($x/$cellWidth)]
    set y  [expr int($y/$cellHeight)]

    # seconds in the day
    set secInDay [expr int( ($y%int($cellHeight))/$heightPerSecond)]
 
   #unwrap days
    set day [invwrap $x $y]
    
    return [expr $secInDay + 24*3600*$day] }

proc wrap {sss} {
    set x 0; set y 0
    # year    
    set x [expr $x+int($sss/(7*5*3*4))]
    set x [expr $x*3]
    set sss [expr $sss%(7*5*3*4)]
    # trimester
    set y [expr $y+int($sss/(7*5*3))]
    set y [expr $y*5]
    set sss [expr $sss%(7*5*3)]
    # monthInTrimester
    set x [expr $x+int($sss/(7*5))]
    set x [expr $x*7]
    set sss [expr $sss%(7*5)]
    # week
    set y [expr $y+int($sss/(7))]
    set sss [expr $sss%(7)]
    # day
    set x [expr $x+int($sss)]
    set sss [expr $sss%(1)]
    return [list $x $y] }

proc invwrap {x y} {

    set year [expr int($x/(7*3))]
    set x [expr $x%(7*3)]

    set trimester [expr int($y/(5))]
    set y [expr $y%(5)]

    set month [expr int($x/(7))]
    set x [expr $x%int(7)]

    set week [expr $y]

    set day [expr int($x)]

    set res [expr int(($day+7*($week+5*($month+3*($trimester+4*
$year)))))]
    return $res
}

 
Figure 11.  Actual code for calendar. Left: disp. & pick. views, transformation 
(transf) and wrapping (wrap) - Right: their inverse (pick, invtransf, invwrap). 

Note the symmetry or anti-symmetry of functions and their inverse. 

sec: y day: x week: y month: x trimester: y year: x  
Figure 12.  A calendar is a wrapped view of time over X and Y 

2) Simplicity 
The display is the result of the application of a function on 

the data. The first advantage is that the understanding of how 
the model is transformed on the screen is easier to grasp, 
because it only depends on an identified flow and is not spread 
around the entire program (Fig. 11): in other words, spaghettis 
untangle [2]. This improves Locality [3] and thus Visibility. 
The second advantage is that if the function is a reversible 
transformation  (which is the case here), the design of the 
function that transforms user manipulations into results on the 
model is straightforward: it consists in applying inverse sub-
functions in reverse order. Moreover, the visualization of the 
program text helps to design such an inverse function, because 
of the Symmetry [3] between transformation and their inverse 
(Fig. 11). When designing the display and the interaction, a 
good way for a designer to get confidence in the code is to 



target and reach this symmetry and verify that for each sub-
function there is an inverse sub-function. 

Using functional code enables the implementation to use a 
data-flow. When applying modifications to the model, all 
depending variables (in particular all graphical positioning 
properties) are recomputed and displayed immediately. There 
is no need to manage consistency, which reduces the Viscosity 
cognitive dimension. Variables external to the model also 
benefit from data-flow. For example, the width and height of a 
cell depend on the containing window. When the user resizes 
the window, the size of cells adapts “automatically”. 

3) Performance 
If it is simpler to manage than analytical computation, this 

architecture is more costly in terms of computation. For 
example, it is necessary to recompute for each modification the 
tessellation and the rasterization of each graphical object. This 
behavior is similar to 3D applications and games: with 3D 
scenes, since the point of view may differ for each frame, 
coders do not bother implementing algorithms that manage 
damaged zones and usually redisplay all objects. I think that, 
given the computing power available since the advent of 3D 
games, it is more beneficial to trade performances for ease of 
coding. Besides, the description with a data flow can help 
optimizing performances: it is possible to consider the chain of 
transformation from data to pixels as a compiler and use 
automatic optimization provided by a graphical compiler [14] 
(partial evaluation, automatic cache, dead-code elimination, 
etc). Finally, if a data-flow may be more costly in terms of 
computation, it is less costly in terms of memory since it does 
not retain graphics. 

VII. DISCUSSION 
This section synthesizes the benefits of using MDPC for 

specification and implementation. 

A. Software Engineering 
As explained in [4], MDPC improves software modularity. 

The role of the Controller of MDPC is limited to the 
management of the dynamics of the interaction state. In the 
Drag’n’Drop and Magnetic guide, the controller is reduced to 
the state-machine. In the Calendar example, the Controller is 
the interaction code. Since the Controller is independent from 
geometrical or layout transforms, it can be reused across 
multiple interactions. For example, if a pan is applied to the 
D’n’D or Magnetic guide scenes, there is no need to change the 
interaction code. This is particularly visible in the Calendar 
example: the same code can be used regardless of the fact that 
pan and zoom is handled by the application. One can add a 
rotation at the end of the transf function and its inverse at the 
beginning of the invtransf function (for example to implement 
interactions from [15]), with no need to modify further the 
existing code. The interaction of the user will still be perfectly 
transformed into operations on the model. 

It is important to note that it is the combination of picking 
views and inverse transformations that enables this feature. 
Using picking views radically simplifies the code and cancels 
the need for complex adaptation of analytical code when one 
adds a new transformation. And transformations are an 

abstraction which is both independent from the notion of 
interactive state and can still be applied easily to the reification 
of interactive state into picking views. 

B. Implementation: scene graph considered harmful 
The implementation of the calendar uses a paradigm that 

contrasts with the paradigm relying on a scene graph. Often, 
implementers use a scene-graph to retain the properties of the 
graphical objects and to optimize the rendering. In fact, a scene 
graph is also a “cache” of the rendering pass. As a cache of 
graphical properties, it relieves the designer from the apparent 
obligation to retain the graphical objects for subsequent 
redisplay. As a cache of transforms, it optimizes the redisplay: 
often, the modification between two frames is minor and one 
can expect better performance if previous computation is 
reused. 

However, as with any “cache”, consistency must be dealt 
with. Consistency management is known to be error-prone and 
even if it seems compulsory to users of scene-graph, it requires 
caution to be taken, hence time and resources, at the expense of 
other concerns. I think that graphics management, user input 
management and data update are hindered by consistency 
management. The data-flow architecture inherently eliminates 
cache management problems, since there is no cache anymore. 
Thus, getting rid of scene-graph makes implementing 
interactive graphics easier. 

Two arguments may counter this claim: performance and 
lack of services of scene-graph-less code. As for performance 
of data-flow, I have already noticed that highly demanding 3D 
applications behave this way and are efficient. Furthermore, 
some interaction requires drawing the entire scene. For 
example, resizing the window of the calendar application leads 
to a complete computation of all graphical elements in the 
scene. In this case, the advantage of the scene graph is null, 
since it does not act as a cache anymore (the cache is 
invalidated at each rendering pass). Besides, the use of a 
graphical compiler offloads optimization concerns from the 
programmer to a tool [14]. 

As for services, a number of them provided by a scene 
graph (ready-to-use graphical shape rendering, picking 
management) do not require a data structure that retains 
graphics. For example, the graphical properties need not be 
retained, since the transformations that lead to those graphical 
properties are retained in the code: graphical properties can be 
generated at each redisplay. In the same way, picking does not 
require a complex scene-graph. In the calendar example, 
picking is realized with a “pick by color” algorithm [16]. 

VIII. RELATED WORK 
A number of works have tackled usability of programming, 

including psychology of programming, cognitive dimensions of 
notation [9], or API usability [17]. For example, [10] and [11] 
enable the programmer to describe interactive state with state 
machines [18]. Most usability studies target general-purpose 
languages or APIs rather than tools for building interactive 
systems [3]. Exceptions include Myers’ study of the 
programming practices of graphical designers [1]. Our work 
builds on these concerns and proposes a practical method that 



aims at improving usability of specification and 
implementation of graphical interaction. Artistic resizing is a 
technique that enables to specify how graphical components 
resize when users resize the container window [19]. It is an 
example of how specification can be turned from a program 
into graphical description. Our work pursues this effort, in that 
it improves the Closeness of Mapping between the 
phenomenon and its description. 

Describing graphics with Data Flow has been extensively 
studied in the past. For example, Fabrik is a direct 
manipulation-based user interface builder that enables a 
designer to specify transforms between widget with a visual 
flow language [20]. Events flow in the same flow graph that 
describes the geometrical transforms, so that they are 
automatically transformed to a position relative to the 
graphically transformed widget. Garnet uses one-way 
constraints, which can be considered as data flow to propagate 
changes [21]. In order to improve interactive graphics 
programming, [22] proposes solutions to facilitate mixing of 
data flow of input and scene graph for output.  

The inverse of model-view matrix is often used to retrieve 
an object that has undergone multiple 3D transforms (due to a 
change of point of view, or due to modeling) [12]. [23] 
discusses how to enable users to change data through 
visualization and a data-flow. Metisse [15] and Façade [24] 
rely on inverse transforms to handle user manipulation in 
rotated views. However, none discusses how to design inverse 
transformations to reflect users’ manipulation into the models. 

IX. CONCLUSION 
I have presented how the MDPC pattern - based on picking 

views and inverse transformations - can facilitate specifying 
and implementing graphical interaction. I have evaluated 
positively its ability to describing a large range of graphical 
interaction. I have also assessed the simplicity of description by 
identifying the benefits (modularity, closeness of mapping, 
visibility, locality and symmetry of code). Of course, there are 
some drawbacks (terseness and performances in certain cases) 
and the claims, even if supported analytically, must be 
experimentally tested. Furthermore, I do not claim that MDPC 
is adapted to all graphical interaction. For example, one would 
better apply a modulo operation to the cursor position to align 
objects on a grid, instead of relying on one picking shape per 
row or column on the grid. However, I believe that thinking in 
terms of reified spatial modes of interaction and 
transformations facilitate designing an interaction. In the 
future, I plan to separate even further the implementation of 
graphics and the implementation of transformation by using 
specialized languages (e.g. SVG as in [14]) and to explore 
optimization and especially cache management. 
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