
Improving Usability of Interactive Graphics
Specification and Implementation with Picking Views

and Inverse Transformation

Stéphane Conversy
University of Toulouse – ENAC - IRIT

Toulouse, France
stephane.conversy@enac.fr

Abstract—Specifying and programming graphical interactions
are difficult tasks, notably because designers have difficulties
expressing the dynamics of the interaction. This paper shows how
a specific architecture improves the usability of the specification
and the implementation of graphical interaction. The
architecture is based on the use of picking views and inverse
transforms from the graphics to the data. With three examples of
graphical interaction, I show how to specify and implement them
with the architecture and how this improves programming
usability. Moreover, I show that it enables implementing
graphical interaction without a scene graph. This kind of code
helps prevent errors due to cache consistency management.

Keywords-Usability of programming, Graphical Interaction,
Specification, Implementation, Picking views, Inverse Transforms

I. INTRODUCTION
Interactive system programming is difficult, notably

because designers have difficulties expressing the dynamics of
the interaction [1]. Even if interaction is inherently graphical,
specifying it and implementing it still relies mainly on textual
languages that enlarge the gap between the phenomenon to
describe and the description. Furthermore, writing interactive
code with calculus-oriented languages is not suitable for
describing reactive processes [2][3]. This results in so-called
spaghetti [2] code that prevents readability and favors bugs,
notably when the system grows after several increments.
Finally, the need to make systems as fast as required by the
interaction loop (short duration between user action/machine
reaction/user perception) forces the designers to optimize their
code and thereby make it difficult to read and modify.

I think that these problems pertain to the usability of
specification and implementation of interactive graphics.
Specifying interaction (referred to as “designing” in [1])
consists in describing how graphical representations react to
user input. This is a problem that has been approached before
with various languages (including visual), but as noted in [1],
further work needs to be done to facilitate this task.
Implementation is the process by which a programmer can turn
a specification into executable code. Again, various approaches
aimed at improving the transition and the readability of
interaction code. Still, I think that a number of unimportant
considerations hinder code readability and that a better
architecture is necessary.

In this work, I rely on a particular architecture to ease
specifying interactive graphics and to ease implementation of
interactive graphics. The specification narrows the gap between
the phenomenon and its description. The implementation
paradigm enables the designer to use a data-flow architecture,
which is more readable and more manageable than imperative
code. I first present the architecture on which this work relies.
After discussing a number of dimensions of analysis, I then
present three examples of interactive graphics and argue that
their specification and their implementation is more readable
and understandable.

II. MDPC
This section briefly introduces MDPC, the architecture I

used (more details are available in [4]). MDPC is a refinement
of the MVC architecture (‘M’ and ‘C’ denote ‘Model’ and
‘Controller’, the ‘View’ becomes ‘Display view’ and a
‘Picking view’ component is added). MDPC relies on two
principles: “picking views” and “graphical transformations”.

File
Open...
Open recent
Save
Save as...

Edit

eis2007.doc
letter.rtf
report.swx

thumbarrows spacesthumbarrows spaces

Figure 1. Top: display (left) and picking (right) view of a menu. Bottom:

display (left) and picking (right) view of a horizontal scrollbar

Picking views are invisible graphical objects overlaid on
visible ones, but that still react to user events. Fig. 01 shows the
“display view” of a hierarchical menu (top left) and the
corresponding picking view when the user is navigating in the
menu (top right). The (transient) triangle laid over the menu in
the picking view enables reaching the sub-menu entries while
avoiding submenu folding. Similarly, the picking view of the
scrollbar displays as many shapes as spatial modes (thumb,
arrows and spaces between thumb and arrows). Picking views
have two benefits. First, they help managing the dynamic of the
states of the interaction (e.g. the transient triangle), as opposed
to the graphical state of the display. Second, they enable to
avoid analytical computation of spatial relationships (e.g. the
movement with a direction below 45°, or the position of a click

with respect to the thumb) by using Enter/Leave events
generated by the underlying graphical toolkit. Picking views
actually reify spatial modes of interaction. A spatial mode is
the spatial equivalent of a temporal mode: different behavior in
function of space, versus different behavior in function of time.

Graphical transformations are functions that transform the
conceptual model into graphics. MDPC uses two graphical
transformations: one for the display view and one for the
picking view. Fig. 02 shows the affine transforms applied to the
model of a horizontal scrollbar (two values between 0 and 1) to
generate the display view and the picking view. Computing the
inverse transformations enable translating a graphical
interaction (say a drag of the thumb) into operations on the
model (translation of values).

0
0.18

1

0.63 translate

rotate
scale

0
0.18

1

0.63

scale

0
0.18

1

0.63 translate-1

rotate-1

scale-1

translate

rotate

drag

(display view)

(picking view)
(inverse transforms)

Figure 2. The graphical transforms (left) from the model to the views and
the inverse transforms from the picking view to the model (bottom right).

MVC was the result of the application of the separation of
concerns principle on interactive code [5] to improve
modularity. Still, the MVC controller is in charge multiple
concerns including the management of interactive state and the
translation of events into operations on the Model. MDPC can
be considered as the application of separation of concerns
down to the MVC Controller itself. By using picking views and
inverse transformations, MDPC offloads those two concerns
from the MVC Controller. This makes the Controller code
much simpler, almost eliminates the apparent impossibility to
decouple the Controller and the View and makes Views and
Controllers invariant from geometrical and layout transforms.
This also improves modularity since the Controller can be
made more general and reusable. For example, the same
Controller can be used for various species of scrollbar (e.g.
arrows at both ends, at one end, at the thumb ends; horizontal,
vertical and radial layout). MDPC has been shown to make
possible entirely “model-driven” implementation of scrollbars,
sliders, range-sliders and hierarchical menus.

III. DIMENSIONS OF ANALYSIS
I think that MDPC is also beneficial to the specification of

interactive graphics and to their implementation. More
precisely, using MDPC as a pattern helps at both designing the
specification and designing the code. As such, MDPC can be
considered as a method that improves the usability of
programming.

Usability of “programming” (taken in a broad sense, i.e
including specification and implementation) is the extent to
which an environment (including language, pattern, IDEs etc)
can be used to achieve programming tasks with effectiveness,
efficiency and satisfaction (see [6] for an introduction).

Usability is difficult to assess, because it requires longitudinal
studies with a large number of designers (as defined in [1]).
Since I have not done such studies in this work, I provide
predictive evaluation of specification usability and
implementation usability along three properties.

The first property that I assess is the descriptive power. i.e.
the extent to which a designer using MDPC is able to specify
and implement existing graphical interactions. This is a
prerequisite for designers if I want them to be effective: they
will not be able to design an intended interaction if the
architecture does not allow for it. In the next section, I present
three examples of specification and implementation of
interactive graphics: Drag’n’Drop with hysteresis (direct
manipulation technique [7]), Magnetic guides (instrumental
interaction technique [8]) and a Calendar (complex
representation combined with direct manipulation). Together,
those examples aimed at showing that MDPC expressive power
is sufficient to specify a large range of graphical interactions. In
addition, I describe two kinds of implementation, one based on
a scene-graph (Drag’n’Drop, Magnetic guides) and the other
one based on a data-flow (Calendar). I show code snippets to
help explain the implementation to the readers, to convince
them that the implementation actually exists and runs and to
enable them to replicate this work.

The second property that I assess is simplicity of
description. Even if MDPC has a sufficient descriptive power,
it would be useless if the description itself were cumbersome to
specify and program. I provide an evaluation of simplicity of
description by using concepts from the Cognitive Dimensions
of Notation framework (CDN) [9] and from a list of desirable
properties employed in the literature (see [3] for a survey).

The third property that I assess is the performance
(implementation only). I also discuss this aspect since however
elegant an implementation is, its usefulness can be reduced if
performances are too weak.

IV. DRAG’N’DROP WITH HYSTERESIS
The first example is the Drag’n’Drop with hysteresis, a

direct manipulation technique. Drag’n’Drop with hysteresis
forces the user to move past a small minimum distance from
the ButtonPress position, before effectively triggering the Drag
operation. This prevents the system from misinterpreting a
Selection for a Drag’n’Drop: when selecting a graphical object
with a click (ButtonPress then ButtonRelease), one or a few «
Move » events may occur between the button events, because
the mouse slips due to the force applied on the button by the
finger. This makes the system misinterpret a Selection for a
Drag’n’Drop and moves the selected object by a slight, but
undesirable amount.

A. Interaction specification
A traditional analytical algorithm consists in computing at

each Move event the distance between the ButtonPress position
and the cursor position, testing if the distance is superior to the
minimum distance and moving the object if the test is
successful. This necessitates the computation of a Euclidean
distance (square root of sum of squares).

1) Description
The version with MDPC consists in drawing an invisible

circle centered on the position of the ButtonPress, with a radius
equal to the hysteresis distance. Fig. 03 shows the display and
picking views for explanation purpose: the circle is visible, but
in the real system it is not. At the beginning, the cursor is at the
centre of the circle. If the cursor does not leave the circle before
a ButtonRelease, the interaction is interpreted as a Select. If the
cursor leaves the circle, the minimum distance is reached and
the Drag can start. The invisible circle is removed, which
allows the user to move the object within a distance from its
initial position smaller than the hysteresis distance.

 a b c d

Figure 3. Hysteresis with MDPC. (a) hover (b) press:an invisible circle is
inserted into the scene (visible here for explanation) (c) no drag while the

cursor stays in the circle (d) leaving circle: removal of the circle, drag starts.

2) Simplicity
I think that the MDPC description is closer to the

conceptual model of the interaction. In fact, computing the
distance between the cursor and its initial position at each
Move event is not necessary for specifying the interaction. The
only information needed is the minimum distance to be
reached. Since this distance is reified into a circle, the concept
of distance crossing is more directly represented. Hence,
MDPC improves the Closeness of Mapping cognitive
dimension. Finally, the designer can make picking view visible
for debugging purpose. By directly seeing the circle on the
screen, one can understand how the graphical interactive state
behaves and debugs more easily than with code only. Here,
MDPC improves the Visibility cognitive dimension.

B. Implementation
This particular implementation uses the SwingStates toolkit

[10]. SwingStates enables programming interaction with state
machines directly in java files. The transition between states
can be guarded (i.e. a predicate prevents the transition to fire)
and can trigger an action when fired. SwingStates relies on a
scene graph, i.e. a data structure that retains graphical objects.
With SwingStates scene graph, graphical objects may be
“tagged”: any operation on an object can also be applied on a
“tag”, meaning that any object with this tag will be modified
accordingly. The following code heavily used this feature.

1) Description
The state machine is shown in Fig. 04. When the user

presses on an object, the current state becomes “waitHyst” and
waits for the hysteresis distance to be crossed. The code of the
action associated to the “Press” transition is shown in Fig. 05.
The picking shape is created (CEllipse, the circle), made
invisible, then added to the scene graph. Graphical objects of
the picking view are invisible to the user, but react to mouse
events. As said before, one can comment the line that make
objects invisible for debugging purposes.

The circle is centered at the location of the cursor: hence,
the cursor is inside the circle. The “leave” transition pertains to
this circle (code not shown in the figure): when the cursor
leaves the circle, the “leave” transition to the “dragging” state
is fired, an action removes the invisible circle from the scene
graph and the user is free to drag the object around.

start

wait
Hystpress

release

leave

dragging
release

move

Figure 4. Hysteresis state machine. Circles denote states, arrows transition.
The text on a transition denotes the interaction event that triggers a transition.

Figure 5. Action on “press” transition from “start” to “waitHyst”.

2) Simplicity
Even if simple, the MDPC-based description of the

interaction illustrates how Enter and Leave events are used in
place of analytical computation of the Euclidean distance.
Hence, the designer is not required to write this code. Of
course, with the traditional way, one could have used
abstraction and call a ‘distance’ function instead of writing the
distance code, but the MDPC version gets rid of this necessity.

This example also illustrates how picking views help
manage the dynamics of the interaction state. Finite State
Machines are well adapted to MDPC descriptions of the
interaction. At each state can correspond a particular picking
view, which is active when the state is active. This is similar to
the architecture described in [11]. Again, MDPC improves
Closeness of Mapping with interactive state implementation.

3) Performance
Adding a single circle to a scene graph is inexpensive. The

generation of Leave/Enter events may actually use a Euclidean
distance, hence the computation is the same as the traditional
algorithm.

V. MAGNETIC GUIDES
Magnetic guides are instruments for aligning graphical

objects [8]. During the Drag’n’Drop of an object, if the object
is close enough to the magnetic guide, the guide attracts the
object: hence, dropping multiple objects on a linear guide
makes them aligned. More complex alignments allow for
alignment of objects center, but also of their boundaries. More
complex guides include Bezier curves. Alignment with

public State start = new State() {
 Transition press = new PressOnShape(BUTTON1, ">> waitHyst") {
 public void action() {
 toMove = getShape(); // get the object to drag
 lastPoint = getPoint(); // store last clic position
 hystShape = new CEllipse(lastPoint.getX()-5,lastPoint.getY()-5, 10,
10); // picking shape
 hystShape.setDrawable(false); // set invisible
 canvas.addShape(hystShape); // add to scene graph
 }};};

magnetic guides is an example of instrumental interaction [8]: a
Magnetic Guide is an instance of an instrument i.e. action
(alignment) reified into an interactive object that control other
interactive objects. Magnetic guides are different from a “grid”,
since they are explicitly defined and manipulated by the user.

A. Interaction specification
As in to the previous example, a traditional analytical

algorithm computes the distance between the guides and the
dragged object, tests if the distance is inferior to the attraction
distance and sticks the object on the guide if so.

1) Description
Fig. 06 shows both the display view (dashed line and green

rectangle) and the picking view (gray rectangles, red square)
for illustration purpose. With the MDPC pattern, the algorithm
consists in drawing an invisible thick line over the guide (thin
dashed line on the figure), whose thickness is equal to two
times the attraction distance (Fig. 06, gray rectangles), and in
registering a callback when the cursor enters or leaves the
invisible thick line (events “Enter” and “Leave”). Thus, when
the cursor enters the invisible thick line, the object sticks to the
guide; when the cursor leaves the thick line, the object sticks to
(and thus follows) the cursor.

Figure 6. Dashed lines: magnetic guides; gray rectangles : picking view of
magnetic zones ; red squares: picking view of magnetic zones shared by two
guides (a) free drag (b) right horizontal alignment (c) just before entering in

the magnetic zone to align vertically, at the bottom (d)

As said earlier, more complex guides allow for alignment
with the center of objects, but also with their boundaries. With
MDPC, this is described with multiple picking zones, placed
around the magnetic guides with respect to the geometry of the
object and the position of the cursor relative to the object
(Fig. 06, gray rectangles). In addition, guides may intersect,
allowing an object to stick to their intersection and keep
alignment with two sets of objects. Drawing two thick lines
results in a partial occlusion of one line by the other at the
intersection point. With a toolkit that can synthesize Enter and
Leave events for occluded objects, no adaptation of the
previous algorithm is necessary. However, with the
SwingStates’ event synthesis model, the previous method does
not work: the topmost guide would prevent the attraction from
the occluded line since no Enter or Leave event would be
emitted for the occluded thick line. With such a model of
events, it is necessary to define the area of intersection between
thick lines and make the object stick at the intersection when
the cursor is in the intersection area (Fig. 06, red squares).

2) Simplicity
The interaction is complex, and the distances to compute

are numerous: there are 6 distances per guide (3 vertical, 3
horizontal) and the reference point from which to compute the
distance is not easy to grasp and understand. MDPC
encourages the identification of spatial modes of interaction
and their corresponding area. I think that thinking in terms of
area of attraction is easier. As noted in [1], designers often use
drawings to explore a solution and explain them to colleagues.
MDPC allows designers to use these drawings directly to
express the interaction. In addition, when the guide themselves
are complex (e.g. curves), no additional cost in terms of
reasoning is necessary compared to the distance model.
Similarly to the Drag’n’Drop example, MDPC thus improves
Closeness of Mapping and Visibility.

The intersection area problem induces more coding for the
designer than the distance computation model. The MDPC
solution seems more complex than computing distances from
guide: the burden of describing intersection shapes may not
make MDPC as advantageous as claimed. This hinders the
Terseness cognitive dimension. It must be underscored
however that this problem only occurs with scene graphs that
do not generate Enter/Leave events for occluded objects.

B. Implementation
1) Description

This implementation also uses the SwingStates toolkit. The
state machine is shown in Fig. 07. The interaction begins with
the hysteresis interaction described earlier. When crossing the
hysteresis distance, the “leave” transition is fired and the
machine enters the “dragging” state.

start

waitHystpress

release

leave

dragging

release

dragIn
Horizontal
Guide

enter

leave

move

dragIn
Vertical
Guide

enter
leave

move
inStick
Guide

enter

leaverelease

release
release

move

Figure 7. Magnetic guide state machine

Picking views are managed in the code of the action
associated to the “leave” transition (shown in bold in Fig. 07).
The code itself is shown in Fig. 08. First the previous picking
views (hysteresis circle) is removed (a) and replaced by three
picking objects per guide (b), to align with the center and the
boundaries of the dragged object. At the beginning, the picking
objects are put on the position on the guide. The objects for the
boundaries are then “spread around” the guide by a distance
equal to half the height or width of the dragged object (c).
Then, all guides are moved by a distance equal to the shift
between the position of the cursor inside the dragged object and
its boundaries (d). When the cursor enters the picking shape of
a guide, the machine enters the corresponding state. In the
“dragIn*Guide” state, the move transition triggers an action

 a b c d

that moves the object along the guide. In “inStickGuide”, no
action (and thus transition) is necessary on a “move”.

Figure 8. Action on “move” transition from “waitHyst” to “dragging”

2) Simplicity
For simple guides, such as horizontal or vertical guides, the

computation of the position of the dragged object stuck to the
guide is straightforward: one of the Cartesian dimensions is
that of the cursor and the other is that of the guide. In the case
of a more complex guide, it is necessary to code the
computation of the orthogonal projection of position of the
dragged object on the guide and sets its coordinates to the
coordinates of the projection.

Since SwingStates does not synthesize Enter and Leave
events for occluded objects, the code has to create the picking
objects for the intersections. In the simple case of horizontal
and vertical guides, the shape of the intersection is a square
centered at the intersection of the guides. However, more
complex guides may require more complex computation. In
this case, MDPC extends nicely to the use of the AND
operation of the constructive area geometry and the
computation the shape resulting from an AND between the two
thick lines. Some toolkits provide such algorithms (i.e. Java2D
Shape API, or OpenGL GLU tesselator [12]).

3) Performance
Again, in order to make reasoning easier, the code avoids

analytical computation by relying on the algorithms provided
by the scene graph. The test for shape inclusion does not
require a rasterization. Instead, the algorithm in the scene graph
may use the distance algorithm that one would have used in the
interaction code. Hence performances are similar.

With SwingStates model of events, additional computations
of area are necessary. However, those computations happen
only once during the interaction (in the transition between
“waitHyst” and “Dragging”).

VI. CALENDAR
The next example is a Calendar application, with a “week”

view on events, such as Apple’s iCal or Google Agenda.
Fig. 09 shows the overall display (top) and picking (bottom)
view. I have replicated two interactions: “Drag’n’Drop” of
calendar entries, which allows the user to move an entry in the
day, or to move it into another day of the displayed week; and
the “Resize” of the duration of calendar entries.

Figure 9. The “display” view (top) and the corresponding “picking” view
(bottom) of a calendar. The picking algorithm uses unique colors for each

picking object, which explains the colorful picking view.

A. Interaction specification
A traditional algorithm uses the positions and analytical

distance computation to decide the reaction to user events.

1) Description
With MDPC, the “Display” view of each calendar entry is a

rectangle (Fig. 10). The top edge reflects the date and time
when the entry starts, while the bottom edge reflects the date
and time when the entry ends. The width of the entry is not tied
to the data: it is equal to the width of a column, in this case a
seventh of the window since a week contains seven day. When
multiple calendar events overlap, the corresponding rectangles
share the column width (left most column in Fig. 09).

The picking view of each entry is composed of three
juxtaposed rectangles (Fig. 10). The middle rectangle is similar
to the rectangle of the display view and its height depends on
the entry duration. A Drag’n’Drop of this rectangle allows
modifying both the start and end time without modifying its
duration. The two other rectangles allow the user to pick the
top (resp. bottom) edge of an entry and change the start (resp.
end) of the entry by direct manipulation. The modification of
the data is done thanks to an inverse transformation, as
explained in the next section.

2) Simplicity
The gain in simplicity is the same as in the previous

examples: this improves Closeness of Mapping and Visibility.

B. Implementation
The previous examples use Java and a scene-graph. They

illustrate the use of picking views for managing interaction

public State waitHyst = new State() {
 Transition drag = new LeaveOnShape(">> dragging") {
 public void action() {
 […]
 // (a) remove previous picking view
 canvas.removeShape(hystShape);
 // (b) create horizontal pick shapes
 for (int i=0; i<3; ++i) {
 CShape s = new CShape(new
BasicStroke(20).createStrokedShape(new Line2D.Double(0, 0, 500, 0)));
 canvas.addShape(s);
 s.addTag(hMagnetTag);
 // (c) spread the pick shapes around the guideline
 if (i==0) s.translateBy(0,toMove.getHeight()/2);
 if (i==2) s.translateBy(0,-toMove.getHeight()/2);
 }
 // translate around guideline
 hMagnetTag.translateBy(0,ymg);
 // (d) translate the pick shapes according to the relative position of
the cursor from the reference point of the shape (middle)
 hMagnetTag.translateBy(0,pickRelPos.getY());

 // create vertical pick shapes and sticky pick shapes at h and v
intersections
 // hidden: similar to horizontal guides
}}}

state and for avoiding analytical computations. I implemented
the calendar example with Tcl [13] and OpenGL [12], and by
relying on a data-flow. This demonstrates not only the use of
picking views, but also the use of inverse transformations, the
second principle of MDPC. It also shows that MDPC is
independent from the language and does not require a scene-
graph.

...

mon
12:00am

mon
1:00pm

lunch w/
mom

mon
8:00am

rendez-
vous

mon
10:00am

titleendstart
rendez-vous

display view

picking view

display
transform

picking
transform-1

picking
transform

database

Figure 10. Display and Picking view of a calendar entry. The position of the

cursor is transformed back into the conceptual model by using the inverse
picking transformation.

1) Description
The architecture is shown in Fig. 10). Calendar entries are

stored in a relational database table. The table includes a
“start”, an “end”, and a “title” column. A SQL select allows
selecting visible entries and computing the value needed for the
visualization. Each frame rendering triggers two OpenGL-
based redisplay functions, one for the display view (proc view,
display view, Fig. 11) and one for the picking view (proc view,
picking view, Fig. 11). The display transformation fills pixels
in the frame buffer, while the picking transformation fills pixels
in an offscreen buffer. Both transformations share a transf
function (Fig. 11, middle-left). transf first wraps the data
multiple times on X and Y (Fig. 12). The wrap function (shown
in Fig. 11, bottom-left) is more complex than necessary (since I
only use the week view), but serves as a demonstration that
even a complex function can be reversed. Once wrapping is
done, the position in the day is computed and displayed on the
screen’s Y dimension quantitatively (yInDay). This leads to a
2-D position expressed in terms of cells (e.g. (3; 4.5)), which is
then multiplied by the actual display size of a cell (CellWidth x
CellHeight). Finally, the transf function applies a user-
controlled pan and zoom. A final computation shifts the x
position of events inside a cell to take into account parallel
entries (Fig. 09, right).

The code that manages user input is shown in Fig. 11, right.
When the user presses on and moves one of the small
rectangles in the picking view of a calendar entry, an inverse
transformation is applied on the X and Y dimensions of the
Move event. Since the position of the rectangles is the result of
the application of a continuous and monotonous function on a
scalar (a time), it is sufficient to apply the inverse function to
the position of the cursor to get the corresponding value in the
referential of the data model. The inverse transf is shown in
Fig. 11, middle-right and the inverse wrap is shown in Fig. 11,
bottom-right. Finally, a SQL query update modifies the data in
the data table. After each modification (hence each movement),
the system triggers a redisplay and the modification is visible
immediately.

proc view {} {
 set sql [subst {SELECT * FROM event WHERE start>=$s AND end<
$e ORDER BY day,start}]

 db eval $sql {
 # for each event in the query do…
 foreach {x y_top} [transf $start] {} # find x and y according to time
 foreach {x y_bottom} [transf $end] {}

 # shift x for parallel events
 set x [expr $x+$cellWidth*$rankInParaEvents/($numParaEvents
+1.0)]
 set x_right [expr $x+$cellWidth/($numParaEvents+1)]

 if {$view==DisplayView} {
 # display view
 # rect fill
 glRectf $x $y_bottom $x_right $y_top
 # text for title
 renderText $title
 } else if {$view==PickingView} {
 # picking view
 # top rectangle
 setColorAnId "$idx top"
 glRectf $x $y_top $x_right [expr $y_top+3]
 # middle rectangle
 setColorAndId "$idx middle"
 glRectf $x [expr $y_top+3] $x_right [expr $y_bottom-3]
 # bottom rectangle
 setColorAndId "$idx bottom"
 glRectf $x [expr $y_bottom-3] $x_right [expr $y_bottom] }}

proc pick {} {
bind $win <ButtonPress> {
 set rgb [getRGB %x %y]
 foreach {idx zone} [eval getColor $rgb] {}
 set sql [subst {SELECT start as oldstart, end as oldend, title FROM
event WHERE idx=$idx}]
 db eval $sql ""

 set pointedTime [expr [invtransf %x %y]]
 set offset [expr $pointedTime-$oldstart]

 bind %W <B1-Motion> {
 set pointedTime [%%x %%y]
 set newstart $oldstart
 set newend $oldend

 if {$zone=="top"} {
 set newstart [expr $ss+$pointedTime]
 } elseif {$zone=="middle"} {
 set newstart [expr $ss+$pointedTime-$offset]
 set newend [expr $newstart+($oldend-$oldstart)]
 } elseif {$zone=="bottom"} {
 set newend [expr $ss+$pointedTime]
 }
 # turn invtransform into operation on the model
 set sql [subst {UPDATE event SET start=$newstart, end=$newend
WHERE idx=$idx}]
 db eval $sql ""
 %W postredisplay }}}

proc transf {value} {
 global zoom xpan ypan
 global cellWidth cellHeight heightPerSecond

 #wrap days
 foreach {x y} [wrap $value/(24*3600)] {}

 #y position in the day [0;1.0[
 set yInDay [expr ($value%(24*3600))/double(24*3600)]
 set y [expr $y + $yInDay]

 # scale for a day cell
 set x [expr $x*$cellWidth]
 set y [expr $y*$cellHeight]

 # pan and zoom
 set x [expr int($x*$zoom+$xpan)]
 set y [expr int($y*$zoom+$ypan)]

 return "$x $y"}

proc invtransf {x y} {
 global zoom xpan ypan
 global cellWidth cellHeight heightPerSecond

 # pan and zoom
 set x [expr int($x/$zoom-$xpan)]
 set y [expr int($y/$zoom-$ypan)]

 # unscale from a day cell
 set x [expr int($x/$cellWidth)]
 set y [expr int($y/$cellHeight)]

 # seconds in the day
 set secInDay [expr int(($y%int($cellHeight))/$heightPerSecond)]

 #unwrap days
 set day [invwrap $x $y]

 return [expr $secInDay + 24*3600*$day] }

proc wrap {sss} {
 set x 0; set y 0
 # year
 set x [expr $x+int($sss/(7*5*3*4))]
 set x [expr $x*3]
 set sss [expr $sss%(7*5*3*4)]
 # trimester
 set y [expr $y+int($sss/(7*5*3))]
 set y [expr $y*5]
 set sss [expr $sss%(7*5*3)]
 # monthInTrimester
 set x [expr $x+int($sss/(7*5))]
 set x [expr $x*7]
 set sss [expr $sss%(7*5)]
 # week
 set y [expr $y+int($sss/(7))]
 set sss [expr $sss%(7)]
 # day
 set x [expr $x+int($sss)]
 set sss [expr $sss%(1)]
 return [list $x $y] }

proc invwrap {x y} {

 set year [expr int($x/(7*3))]
 set x [expr $x%(7*3)]

 set trimester [expr int($y/(5))]
 set y [expr $y%(5)]

 set month [expr int($x/(7))]
 set x [expr $x%int(7)]

 set week [expr $y]

 set day [expr int($x)]

 set res [expr int(($day+7*($week+5*($month+3*($trimester+4*
$year)))))]
 return $res
}

Figure 11. Actual code for calendar. Left: disp. & pick. views, transformation
(transf) and wrapping (wrap) - Right: their inverse (pick, invtransf, invwrap).

Note the symmetry or anti-symmetry of functions and their inverse.

sec: y day: x week: y month: x trimester: y year: x
Figure 12. A calendar is a wrapped view of time over X and Y

2) Simplicity
The display is the result of the application of a function on

the data. The first advantage is that the understanding of how
the model is transformed on the screen is easier to grasp,
because it only depends on an identified flow and is not spread
around the entire program (Fig. 11): in other words, spaghettis
untangle [2]. This improves Locality [3] and thus Visibility.
The second advantage is that if the function is a reversible
transformation (which is the case here), the design of the
function that transforms user manipulations into results on the
model is straightforward: it consists in applying inverse sub-
functions in reverse order. Moreover, the visualization of the
program text helps to design such an inverse function, because
of the Symmetry [3] between transformation and their inverse
(Fig. 11). When designing the display and the interaction, a
good way for a designer to get confidence in the code is to

target and reach this symmetry and verify that for each sub-
function there is an inverse sub-function.

Using functional code enables the implementation to use a
data-flow. When applying modifications to the model, all
depending variables (in particular all graphical positioning
properties) are recomputed and displayed immediately. There
is no need to manage consistency, which reduces the Viscosity
cognitive dimension. Variables external to the model also
benefit from data-flow. For example, the width and height of a
cell depend on the containing window. When the user resizes
the window, the size of cells adapts “automatically”.

3) Performance
If it is simpler to manage than analytical computation, this

architecture is more costly in terms of computation. For
example, it is necessary to recompute for each modification the
tessellation and the rasterization of each graphical object. This
behavior is similar to 3D applications and games: with 3D
scenes, since the point of view may differ for each frame,
coders do not bother implementing algorithms that manage
damaged zones and usually redisplay all objects. I think that,
given the computing power available since the advent of 3D
games, it is more beneficial to trade performances for ease of
coding. Besides, the description with a data flow can help
optimizing performances: it is possible to consider the chain of
transformation from data to pixels as a compiler and use
automatic optimization provided by a graphical compiler [14]
(partial evaluation, automatic cache, dead-code elimination,
etc). Finally, if a data-flow may be more costly in terms of
computation, it is less costly in terms of memory since it does
not retain graphics.

VII. DISCUSSION
This section synthesizes the benefits of using MDPC for

specification and implementation.

A. Software Engineering
As explained in [4], MDPC improves software modularity.

The role of the Controller of MDPC is limited to the
management of the dynamics of the interaction state. In the
Drag’n’Drop and Magnetic guide, the controller is reduced to
the state-machine. In the Calendar example, the Controller is
the interaction code. Since the Controller is independent from
geometrical or layout transforms, it can be reused across
multiple interactions. For example, if a pan is applied to the
D’n’D or Magnetic guide scenes, there is no need to change the
interaction code. This is particularly visible in the Calendar
example: the same code can be used regardless of the fact that
pan and zoom is handled by the application. One can add a
rotation at the end of the transf function and its inverse at the
beginning of the invtransf function (for example to implement
interactions from [15]), with no need to modify further the
existing code. The interaction of the user will still be perfectly
transformed into operations on the model.

It is important to note that it is the combination of picking
views and inverse transformations that enables this feature.
Using picking views radically simplifies the code and cancels
the need for complex adaptation of analytical code when one
adds a new transformation. And transformations are an

abstraction which is both independent from the notion of
interactive state and can still be applied easily to the reification
of interactive state into picking views.

B. Implementation: scene graph considered harmful
The implementation of the calendar uses a paradigm that

contrasts with the paradigm relying on a scene graph. Often,
implementers use a scene-graph to retain the properties of the
graphical objects and to optimize the rendering. In fact, a scene
graph is also a “cache” of the rendering pass. As a cache of
graphical properties, it relieves the designer from the apparent
obligation to retain the graphical objects for subsequent
redisplay. As a cache of transforms, it optimizes the redisplay:
often, the modification between two frames is minor and one
can expect better performance if previous computation is
reused.

However, as with any “cache”, consistency must be dealt
with. Consistency management is known to be error-prone and
even if it seems compulsory to users of scene-graph, it requires
caution to be taken, hence time and resources, at the expense of
other concerns. I think that graphics management, user input
management and data update are hindered by consistency
management. The data-flow architecture inherently eliminates
cache management problems, since there is no cache anymore.
Thus, getting rid of scene-graph makes implementing
interactive graphics easier.

Two arguments may counter this claim: performance and
lack of services of scene-graph-less code. As for performance
of data-flow, I have already noticed that highly demanding 3D
applications behave this way and are efficient. Furthermore,
some interaction requires drawing the entire scene. For
example, resizing the window of the calendar application leads
to a complete computation of all graphical elements in the
scene. In this case, the advantage of the scene graph is null,
since it does not act as a cache anymore (the cache is
invalidated at each rendering pass). Besides, the use of a
graphical compiler offloads optimization concerns from the
programmer to a tool [14].

As for services, a number of them provided by a scene
graph (ready-to-use graphical shape rendering, picking
management) do not require a data structure that retains
graphics. For example, the graphical properties need not be
retained, since the transformations that lead to those graphical
properties are retained in the code: graphical properties can be
generated at each redisplay. In the same way, picking does not
require a complex scene-graph. In the calendar example,
picking is realized with a “pick by color” algorithm [16].

VIII. RELATED WORK
A number of works have tackled usability of programming,

including psychology of programming, cognitive dimensions of
notation [9], or API usability [17]. For example, [10] and [11]
enable the programmer to describe interactive state with state
machines [18]. Most usability studies target general-purpose
languages or APIs rather than tools for building interactive
systems [3]. Exceptions include Myers’ study of the
programming practices of graphical designers [1]. Our work
builds on these concerns and proposes a practical method that

aims at improving usability of specification and
implementation of graphical interaction. Artistic resizing is a
technique that enables to specify how graphical components
resize when users resize the container window [19]. It is an
example of how specification can be turned from a program
into graphical description. Our work pursues this effort, in that
it improves the Closeness of Mapping between the
phenomenon and its description.

Describing graphics with Data Flow has been extensively
studied in the past. For example, Fabrik is a direct
manipulation-based user interface builder that enables a
designer to specify transforms between widget with a visual
flow language [20]. Events flow in the same flow graph that
describes the geometrical transforms, so that they are
automatically transformed to a position relative to the
graphically transformed widget. Garnet uses one-way
constraints, which can be considered as data flow to propagate
changes [21]. In order to improve interactive graphics
programming, [22] proposes solutions to facilitate mixing of
data flow of input and scene graph for output.

The inverse of model-view matrix is often used to retrieve
an object that has undergone multiple 3D transforms (due to a
change of point of view, or due to modeling) [12]. [23]
discusses how to enable users to change data through
visualization and a data-flow. Metisse [15] and Façade [24]
rely on inverse transforms to handle user manipulation in
rotated views. However, none discusses how to design inverse
transformations to reflect users’ manipulation into the models.

IX. CONCLUSION
I have presented how the MDPC pattern - based on picking

views and inverse transformations - can facilitate specifying
and implementing graphical interaction. I have evaluated
positively its ability to describing a large range of graphical
interaction. I have also assessed the simplicity of description by
identifying the benefits (modularity, closeness of mapping,
visibility, locality and symmetry of code). Of course, there are
some drawbacks (terseness and performances in certain cases)
and the claims, even if supported analytically, must be
experimentally tested. Furthermore, I do not claim that MDPC
is adapted to all graphical interaction. For example, one would
better apply a modulo operation to the cursor position to align
objects on a grid, instead of relying on one picking shape per
row or column on the grid. However, I believe that thinking in
terms of reified spatial modes of interaction and
transformations facilitate designing an interaction. In the
future, I plan to separate even further the implementation of
graphics and the implementation of transformation by using
specialized languages (e.g. SVG as in [14]) and to explore
optimization and especially cache management.

ACKNOWLEDGMENT
S. Chatty, H. Gaspard-Boulinc, Y. Jestin, C. Letondal and

B. Tissoires help improve the paper, many thanks to them.

REFERENCES
[1] B. Myers, S. Park, Y. Nakano, G. Mueller and A. Ko, “How designers

design and program interactive behaviors,” in Proc. of IEEE VL/HCC,
pp. 177-184, 2008.

[2] B. A. Myers, “Separating application code from toolkits: eliminating the
spaghetti of callbacks,” in Proc. of ACM UIST, pp. 211–220, 1991.

[3] C. Letondal, S. Chatty, G. Phillips, F. André and S. Conversy, “Usability
requirements for interaction-oriented development tools,” in Proc. of
PPIG, 2010.

[4] S. Conversy, E. Barboni, D. Navarre and P. Palanque, “Improving
modularity of interactive software with the MDPC architecture,” in Proc.
of IFIP EIS, pp. 321–338, 2007.

[5] T. Reenskaug, Models - views - controllers. Xero PARC, 1979.
[6] T.R.G. Green and M. Petre. "Usability Analysis of Visual Programming

Environments: A 'Cognitive Dimensions' Framework," in Journal of
Visual Languages and Computing, (1996), p131-174.

[7] B. Shneiderman, “Direct Manipulation: A Step Beyond Programming
Languages,” Computer, vol. 16, no. 8, pp. 57-69, 1983.

[8] M. Beaudouin-Lafon, “Instrumental interaction: an interaction model for
designing post-WIMP user interfaces,” in Proc. of ACM CHI, pp. 446–
453, 2000.

[9] T. Green, “Cognitive dimensions of notations,” in Proc. of HCI, p 443-
460, 1989.

[10] C. Appert and M. Beaudouin-Lafon, “SwingStates: adding state
machines to Java and the Swing toolkit,” Software—Practice &
Experience, vol. 38, pp. 1149–1182, Sep. 2008.

[11] S. Chatty, S. Sire, J. Vinot, P. Lecoanet, A. Lemort and C. Mertz,
“Revisiting visual interface programming: creating GUI tools for
designers and programmers,” in Proc. of ACM UIST, pp. 267–276, 2004.

[12] M. Woo, J. Neider and T. Davis, Opengl Programming Guide: The
Official Guide to Learning Opengl, Version 1.1, Addison-Wesley, 1997.

[13] J. Ousterhout, “Scripting: higher level programming for the 21st
Century,” Computer, vol. 31, no. 3, pp. 23-30, 1998.

[14] B. Tissoires and S. Conversy, “Graphic rendering considered as a
compilation chain,” in Proc. of DSVIS, pp. 267–280, 2008.

[15] O. Chapuis and N. Roussel, “Metisse is not a 3D desktop!,” in Proc. of
ACM UIST, pp. 13–22, 2005.

[16] P. Hanrahan and P. Haeberli, “Direct WYSIWYG painting and texturing
on 3D shapes,” in ACM SIGGRAPH Comp. Graphics, p215–223, 1990.

[17] B. Myers, Usability issues in programming languages. School of
Comuter Science, CMU, 2000.

[18] R. J. K. Jacob, “A Visual Language for Non-WIMP User Interfaces,” in
Proc. of Visual Languages, pp. 231–, 1996.

[19] P. Dragicevic, S. Chatty, D. Thevenin and J. Vinot, “Artistic resizing: a
technique for rich scale-sensitive vector graphics,” in ACM SIGGRAPH
2006 Sketches, 2006.

[20] D. Ingalls, S. Wallace, Y. Chow, F. Ludolph and K. Doyle, “Fabrik: a
visual programming environment,” in ACM SIGPLAN Notices, pp. 176–
190, 1988.

[21] B. T. Vander Zanden et al., “Lessons learned about one-way, dataflow
constraints in the Garnet and Amulet graphical toolkits,” ACM
Transactions on Programming Languages and Systems (TOPLAS), vol.
23, pp. 776–796, Nov. 2001.

[22] C. Appert, S. Huot, P. Dragicevic and M. Beaudouin-Lafon,
“FlowStates: prototypage d'applications interactives avec des flots de
données et des machines à états,” in Proc. of IHM, pp. 119–128, 2009.

[23] T. Baudel, “From information visualization to direct manipulation:
extending a generic visualization framework for the interactive editing of
large datasets,” in Proc. of ACM UIST, pp. 67–76, 2006.

[24] W. Stuerzlinger, O. Chapuis, D. Phillips and N. Roussel, “User interface
façades: towards fully adaptable user interfaces,” in Proc. of ACM UIST,
pp. 309–318, 2006.

