
DREAMER: a Design Rationale Environment for
Argumentation, Modeling and Engineering Requirements

Célia Martinie, Philippe Palanque,
Marco Winckler

IRIT University Paul Sabatier
118, route de Narbonne

31062 Toulouse Cedex 9, France
(+33) 561 556 359

{martinie, palanque, winckler}@irit.fr

Stéphane Conversy
ENAC & IRIT University Paul Sabatier

7, avenue Edouard Belin
31055 TOULOUSE Cedex

(+33) 562 174 019
stephane.conversy@enac.fr

A BST R A C T
Requirements engineering for interactive systems remains a
cumbersome task still under-supported by notations, development
processes and tools. Indeed, in the field of HCI, the most common
practice is to perform user testing to assess the compatibility
between the designed system and its intended user. Other
approaches such as scenario-based design promote a design
process based on the analysis of the actual use of a technology in

and activities. Some of them also support a critical element in the
development of interactive systems: creativity [15]. However,
these approaches do not provide any support for a) the definition
of a set of requirements that have to be fulfilled by the system
under design and b) as a consequence for assessing which of these
requirements are actually embedded in the system and which ones
have been discarded (traceability and coverage aspects). This
paper proposes a tool-supported notation for addressing these
problems of traceability and coverage of both requirements and
design options during the development process of interactive
systems. These elements are additionally integrated within a more
global approach aiming at providing notations and tools for
supporting a rationalized design of interactive systems following a
model-based approach. Our approach combines and extends
previous work on rational design and requirements engineering.
The current contribution, DREAMER, makes possible to relate
design options with both functional and non functional
requirements. The approach is illustrated by real size case study
from large civil aircraft cockpit applications.

General T erms
Documentation, Design, Human Factors.

K eywords
Design rationale, requirements traceability, user interface design.

1. IN T R O DU C T I O N
Traceability of choices and systematic exploration of options is a
critical aspect of the development processes in the field of safety

critical systems. Some software standards such as DO 178 B [23]
(which is widely used in the aeronautical domain) require the use
of methods and techniques for systematically exploring design
options and for supporting the traceability of design decisions.
Similarly, ESARR (Eurocontrol Safety Regulatory Requirement)
on Software in Air Traffic Management Systems [8] explicitly
requires traceability to be addressed in respect of all software
requirements (p. 11 edition 0.2). However, such standards only
define what must be done in terms of traceability but provide no
information on how such goals can be reached by analysts and
developers. Other approaches such as scenario-based design
[9][22] [24] promote a design process based on the analysis of the
actual use of a technology in order to design new technologies

Some work such as [15][14]
address the aspect of creativity that is of high relevance as far as
interactive systems are concerned. However, these approaches
provide few support for a) defining the requirements in a way they
can be directly associated to every component of the system under
design and b) as a consequence, for assessing which of these
requirements are embedded in the system and which ones have
been discarded during the development process (maybe due to

.
Recent work in the field of software engineering has been trying
to provide solutions to that problem and a collection of papers on
that topic can be found in [7]. One of the remaining problems
pointed out by many contributions, such as chapters 1, 19 and 20,
is that requirements are poorly or even not addressed. As
discussed in [25], this is critical as Requirements Engineering
provides input to all the subsequent phases in the development
process. This paper addresses the problem of traceability and
coverage of requirements in a model-based development process.
It addresses the problem by providing an extension to a notation
TEAM and its associated tool DREAM which have previously
been presented in [12]. The current contribution, DREAMER,
makes it possible to relate design options with both functional and
non functional requirements. While the approach could address
any kind of requirements, we put the emphasis on requirement
expressed in standards [1] and ISO 9126
Software Quality [11].
This paper starts by presenting the basic principles of the TEAM
notation and the extensions that have been made to include
information related to requirements. Section 3 introduces a case
study describing alternative design options for implementing
ARINC user interface components. This case study exemplifies
how the DREAMER approach supports the design process with
respect to requirements providing ways of answering two

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

, September 27 29, 2010, São Carlos-São Paulo, Brazil.
Copyright 2010 ACM 1-58113-000-0/00/0010.

fundamental questions: 1) Which current design (among the many
ones available) satisfies a given requirement and 2) What is the
exhaustive list of requirements fulfilled by a particular design.
Section 4 illustrates all the functions provided by our tool-
supported notation for supporting traceability, versioning and
collaborative edition of TEAM diagrams. Lastly, section 5
summarizes the finding, draws conclusions and highlights some
perspectives to that work.

2. T H E T E A M N O T A T I O N in a NU TSH E L L
TEAM notation (Traceability, Exploration and Analysis Method)
and its CASE tool DREAM (Design Rationale Environment for
Argumentation and Modeling) have been originally proposed in
[18] to support the systematic exploration of options during the
development process of interactive safety critical systems [12].
Hereafter we describe the main concepts of the TEAM notation
and the extensions made for tracing requirements.

2.1 The original T E A M notation
TEAM notation is based on Question Option Criteria (QOC)
which is design rationale notation introduced by MacLean and al.
[13]. QOC notation allows the description of available options for
a design question and the selection of an option according to a list
of criteria. The TEAM notation is an extension of QOC that
enables the structuring and the recording (in an exhaustive
manner) of information produced during design meetings. TEAM
diagrams cover:
 The questions that have been raised,
 The design options that have been investigated and the ones

that have been selected,
 The evaluation performed for the different options,
 The collection of criteria that have been used for evaluating

the options considered,
 The collection of factors that have been taken into account

and how they relate to criteria,
 The task models corresponding to options,
 The scenarios extracted from the task models that are used to

compute, for each option the value of the criteria.

TEAM notation and its associated tool DREAM can leverage the
design rationale process for interactive applications by helping
engineers in deciding to reuse or not design choices when facing
an already experienced issue. Indeed, TEAM diagrams can be
considered as very specific design patterns and, as such, can be
reused in another design context. Besides this structuring and
recording of information, an important feature of TEAM is to
record design decisions and relate them to desired quality factors.
Figure 1 illustrates a simple TEAM model aiming at structuring
argumentation around the design of the navigation in a list of
candidates for a voting system. Supposed that not all the
candidates can be displayed in a single window the model
represents two options (i.e. circles): the upper one provides
scrolling facilities to the users while the lower one proposes a
vocal display with navigation commands (previous and next) in
that sequence. The triangles on the right hand side of the figure
represent a subset of the usability criteria (time to learn, retention
over time, see [11] for a full list) and their connection
to the usability factor. The different types of lines between the
criteria and options represent the fact that a given option can
support (favor) a criterion (the line is bold) or not support it (the
line is dotted). For instance, option -

supports time-to-learn. This is represented by a bold line in the

not support time-to-learn criterion and is thus represented by a
dotted line. TEAM supports more precise connection between
elements (including absolute and comparative values) but this is
not presented here due to space constraints.

F igure 1. Using T E A M notation to represent relations

between criteria and factors in usability

2.2 Adding requirements to notation
Figure 2 provides an exhaustive list of elements in the TEAM
notation which also includes all the extensions for supporting
requirements. Requirements are depicted as rectangles, questions
as rectangles with rounded corners, options as circles, criteria as
horizontal triangles and factors as upper part of half a square.
Scenarios used to describe a detailed usage of a design option are
depicted as squares while arguments (resp. tasks) are depicted as
vertical upwards triangles (resp. downwards triangles). The
occurrence of any other artifacts used to describe a particular
design option (e.g. documents or models specifying the
implementation, videos, low-fidelity prototypes, etc) are depicted
as paper clip icon and can be attached to any TEAM element.

F igure 2. G raphical representation of T E A M notation.

Tasks and
Arguments

Outlined graphical elements (e.g. the top-left rectangle in Figure
2) represent the fact that, that element has a higher priority than
other elements in the design (e.g. top-right rectangle in Figure 2).
It is noteworthy that in the case of criteria and factors the
graphical representation might also change according to several
levels of importance from statured colors and straight shape (very
important) to faded colors and irregular shapes (less important).
Outlined options (e.g. O_2 in Figure 2) indicate choices made by
designers and developers amongst the set of available options.
In its original version, the notation TEAM did not have a
representation for requirements. The need for including
requirements in rational design diagrams emerged from actual
designers whilst trying to determine if the selected options in
TEAM diagrams meet functional and non-functional
requirements. Indeed, the lack of relationship between design
options and requirements prevents designers from exploiting
requirements for the generation of options and/or to take into
account identified requirements when designing an option. Whilst
the integration of requirements represents a small extension to the
TEAM notation it has a huge impact on the decision making
process based on TEAM diagrams. Indeed, whatever is quality
with respect to criteria and factors, a design option might be
chosen only on its merit with respect to the coverage of a given
critical requirement (such aspect will be detailed in next sections).

3. C ASE ST UD Y
The case study presented in this section is extracted from an
industrial cooperation project funded by the DGAC (French civil
aviation authority). In this project, one of the main goals was to
specify and implement interactive applications in the new
generation of interactive cockpits available in small jets but also
in large civil aircrafts such as Airbus A380 or Boeing 787.
This project had two main goals:
a) To develop a formal description technique for describing

widgets in User Applications for Cockpit Display System;
This issue has been addressed by extending the ICO notation
[17];

b) To specify User Applications compliant with ARINC 661
standard [1], which is an aeronautical international standard.

Due to space reasons, hereafter we only provide the overall
context for the use of rational design approach using a single
component from the set of ARINC 661 widgets. In our case study,
design options are associated to models describing the actual
behavior of user interface widgets used in the Cockpit Display
System by means of ICOs.
In this section we start by presenting the standard ARINC 661
specification. We then present the context of the case study i.e. the
specification of a widget to be used in interactive applications.
Section 3.3 presents the formal model of the widget while section
3.4 provides a list of requirements for it. Lastly, section 3.5
presents the design rationale for that widget and its relationship
with respect to the identified requirements.

3.1 The standard A RIN C 661
The Airlines Electronic Engineering Committee (AEEC) (an
international body of airline representatives leading the
development of avionics architectures) formed the ARINC 661
Working Group to define the software interfaces to the Cockpit
Display System (CDS) used in all types of aircraft installations.
The standard is called ARINC 661 - Cockpit Display System
Interfaces to User Systems [1].

The CDS (the software system embedded in an aircraft) provides
graphical and interactive services to user applications within the
flight deck environment. When combined with data from user
applications, it displays graphical images and interactive
components to the flight deck crew. It also manages user-system
interactions by integrating input devices for entering text (via
keyboard) and for interacting with these interactive components
(via mouse-like input devices). The CDS provides graphical and
interactive services to user applications (UA) within the flight
deck environment. The communication between the CDS and
UAs is based on the identification of user interface components
hereafter called widgets. Figure 3 provides a view at glance of the
ARINC 661 specification for the widget RadioBox2 (p. 100 and
101). As can be seen on Figure 3, ARINC 661 does not specify
the but only the parameters and events.
The next section describes review in the detail all the
requirements embedded into the specification of RadioButton2.
As the ARINC specification does not impose a particular
implementation of user interface widgets that should be embedded
into Cockpit Display System (CDS), we have employed
DREAMER to document and argument the decisions made on
alternative design options.

F igure 3. Complete description of RadioBox2 in A RIN C 611

3.2 Description of the context
The case study is focused on the design of the ARINC widget
RadioBox2 that is used for selecting one button out of several
exclusive ones. Even though ARINC 661 specification does not
define the look and feel of widgets, examples of such widget are
presented in Figure 4.

a) b) c)

F igure 4. RadioBox2 alternatives for

The widget RadioBox2 (circled on Figure 5) is used in several
applications embedded into aircraft cockpits such as the Multi
Purpose Interactive Application (MPIA) user application (UA).
MPIA is a real User Application (UA) aimed at handling several
flight parameters. It is made up of 3 pages (called WXR, GCAS
and AIRCOND) between which a crew member is allowed to
navigate using 3 buttons (as presented at the bottom of each
window of Figure 5). WXR page is for managing weather radar
information; GCAS is for Ground Anti Collision System
parameters while AIRCOND deals with air conditioning settings.
Further details about this application can be found in [2].

F igure 5. The 3 windows of the user application M PI A

3.3 Formal modeling of A RIN C RadioBox2
The use of formal models for describing the behavior is an
important requirement to build complex systems such as cockpit
display systems. For this reason, the RadioBox2 widget, as well as
other widgets contained in the MPIA UA, has been specified
using the ICO notation and PetShop tool [20]. Figure 6 provides a
view at a glance of the entire ICO models designed to describe the
behavior of the ARINC 611 widget RadioBox2.
ICO notation is based on Petri nets. ICO models consist of a set of
connected places and transitions; the distribution of tokens among
places indicates the availability of actions in the application.
Figure 7 shows part of the model of ARINC 661 RadioBox 2, it
highlights how to set on/off the visibility of items in the group box
widget.

F igure 6. I C O model describing the behavior for the widget

A RIN C 661 RadioBox2

The details about how to model the behavior of ARINC widgets
using ICO is out of the scope of this paper and the interested
reader should refer to [16][19] for further information. The main
question hereafter is: assuming we need models (ICO models in
the present case study) to build complex systems [25]; how we
can justify that a given model comply with the requirements (such
as ARINC 611)? Other critical and more detailed ones can be
derived: Does it comply with all the requirements? Does it
comply with only part of them? If so which ones and why some
are not taken into account?

F igure 7. Zoom in I C O model of A RIN C 661 RadioBox2

(upper left part of the entire model in F igure 6)

3.4 Requirements for RadioBox2 widget
It is noteworthy that the formal specification of widgets cannot be
handled at once and some aspects of the specification are located
at different levels of priority according to the phase of the
development process (of the project) or to resources availability
(such as time, budget and man power for instance).
From the A661 RadioBox2 Domain System Requirement
Specification (SRS) the requirements are:

 SRS_SGTK_RB2_DOMAIN_REQ001: RadioBox2 shall be
of the Widget library categories: Container.

 SRS_SGTK_RB2_DOMAIN_REQ002: A RadioBox2 shall
have only children types: ToggleButton2,
PictureToggleButton2, and CheckButton2. Only one type
shall be used in a given RadioBox2 at a time. The CDS shall
assure that internal state of the children is consistent (one and
only one is selected) at all times, including when the user
changes the state of the children (the change of child state
shall generate two events: one for deselect and one for
select).

 SRS_SGTK_RB2_DOMAIN_REQ003: RadioBox2 shall be
defined with the parameters as described in the following
table:

Parameters Change Description

Commonly used parameters

WidgetType D A661_RADIO_BOX2

WidgetIdent D Unique identifier of the widget.

ParentIdent D Identifier of the immediate container of the
widget.

Visible DR Visibility of the widget
Enable DR Ability of the widget to be activated

 SRS_SGTK_RB2_DOMAIN_REQ004: RadioBox2 shall be
created using the parameters defined in the following table:

C reateParameterBuffer Type Size
(bits)

Value/Range
when necessary

WidgetType ushort 16 A661_RADIO_BOX2
WidgetIdent ushort 16
ParentIdent ushort 16

Enable uchar 8 A661_FALSE
A661_TRUE

Visible uchar 8 A661_FALSE
A661_TRUE

 SRS_SGTK_RB2_DOMAIN_REQ005: Available
SET_PARAMETER identifiers and associated data structure
shall be as described in the following table:

Name of
the
parameter
to set

Type
Parameter Ident used
in the
ParameterStructure

Type of Structure Used

Enable uchar A661_ENABLE A661_ParameterStructure_1Byte
Visible uchar A661_VISIBLE A661_ParameterStructure_1Byte

 SRS_SGTK_RB2_DOMAIN_REQ006: The creation of the
RadioBox2 shall be refused if one of the conditions defined
in the table below is raised:

C reation er ror cases E r rorId

Visible [A661_TRUE ; A661_FALSE] CREATE_ABORTED
Enable [A661_TRUE ; A661_FALSE] CREATE_ABORTED
Widget hierarchy constraints are not respected CREATE_ABORTED

 SRS_SGTK_RB2_DOMAIN_REQ007: The RadioBox2
shall send a A661_SET_ABORTED error message with the
following identifier ErrorId to UA on SetParameter
command if one of the condition defined in the table below is
raised:

Run-time error cases E r rorId

Enable [A661_TRUE ; A661_FALSE] A661_OUT_OF_RANGE_ERROR
Visible [A661_TRUE ; A661_FALSE] A661_OUT_OF_RANGE_ERROR

 SRS_SGTK_RB2_DOMAIN_REQ008: The RadioBox2
shall be able to change its feel upon reception of an A661
parameter modification command or CDS internal message.
For space constraints, we do not present the behavioral
requirements in this article.

3.5 Rationalizing the Design of the A RIN C
RadioBox2
This section describes how we have used DREAMER to support a
rationalized and argued design for the complete and unambiguous
specification of the widget ARINC 661 RadioBox2. The final
DREAMER diagram that is presented in Figure 8 was built
according to the following steps:

 First of all, known requirements were added to the diagram.
We started with requirement of highest priority for the
project that is to have a Formal description of widgets (using
ICO notation). Then we added all ARINC 661 requirements
for the RadioBox 2 (they have been listed in section 3.4);

 Questions raised by designers during brainstorming meetings
were included in the diagram; These questions are explained
latter in this section;

 For each question raised, several design options were
explored and the relationships between them are depicted by
edges in the diagram;

 Any artifacts (i.e. ICO models in the case of the project)
related to a particular element were connected to the
corresponding design option. The presence of artifacts (if
available) is indicated by a paper clip symbol next to the
element;

 Prior the selection of design options, criteria and factors
influencing the choice were added to the diagram; The
selection of criteria and factors has been guided by the ISO
9126 standard on Software Quality [11] as one of the main
goals of this project was to address reliability issues for
interactive applications in cockpits. For the specification and
development of the RadioBox2 widget, three factors have
been carefully considered: Reliability, Learnability and
Operability (the last two ones being sub-factors of usability
in ISO 9126)1.

 Edges were added for connecting options and criteria. In
addition they hold the measures representing the level of
compliancy between criteria and options. Lately, edges were
connected between requirements and options thus making
sure that all requirements were taken into account.

Three main questions have arisen while trying to make
unambiguous the behavior of the widget. These questions were
driven by two main requirements (i.e. REQ002 and REQ008).
The first question is issued from REQ002 (i.e. should an option
be selected by default?) and it aimed at deciding the detailed
behavior related to the selection of items in the group box.

The CDS shall
assure that internal state of the children is consistent (one and
only one is selected) at all times s given as
examples show a state in which no child is selected (see Figure
4b) and another where there at least one child selected (see Figure
4.c). Indeed, this question might lead to two design options: (i) to
allow that none can be selected, or (ii) to always have one
selected, thus requiring a default selection when none has been
selected by the crew.

1 It is interesting to note that ISO standard 9241 proposes another

set of sub-factors for usability namely: Effectiveness, Efficiency
and satisfaction. According to that standard, it would have been
necessary to identify other criteria for assessing the options.

Three criteria might influence the decision making process on
design options: the learning effort, the possibility to manage to
use it and the last one concerns the frequency of failure of this
widget. The links between options and criteria are given a weight
between strongly denied, denied, neutral, supported and strongly
supported. For this first question, we can see from Figure 8 that

allows a better understanding of the usage of the widget. Then the
learnability factor (sub-factor of Usability) that is linked to this
criterion could be better supported by this option. The same
notation has been performed concerning the operability factor. We
can see from the black circle around the second option that it is
the one which has been selected. The requirements are filled or

one. The SRS document was presenting a contradiction (that
raised this first design question) and the designers have decided
rather to select the second option because it should have higher
levels of learnability and operability.
In Figure 8 the requirement number 008 is connected to the last
two questions which are How to handle the Focus Management
System and How to oversee the method call setParameter?
Indeed, these questions are directly issued from the definition of

the requirement REQ008 concerning the behavior of the widget
RadioBox2.
The first question refers to the management of the focus i.e. are
the designers going to include the management of focus it in their
behavioral description or not? At that time in the project they have
chosen not to implement it because they evaluated that the time
required to do so was not fitting within the project timeline.
Developing the Focus Management using the ICO formalism was
not possible in the time frame, even if this solution would have
best suited to learnability and operability factors. In this case the
reliability factor and formal modeling requirement were
considered as more important than the other factors and
requirements and this has been captured in the DREAMER model.
The second question is related to the handling of a procedure call
that is named setParameter and that takes as input parameters the
identification of the widget and the state it has to be set to. The
SRS document does not indicate how this procedure should
handle the setParamter when the widget is already in the state that
corresponds to the one required by the setParameter method call.
For instance, this would be the case if the receives a setParamter
call to set the selection to the first element of the RadioBox2
widget while it is already selected. The designers chose the
second option which only impacts the Reliability factor and that
was the more appropriate according to it.

F igure 8. Snapshot of the DR E A M diagram for the design of the behavior of the A RIN C 661 RadioBox2 widget

4. Tool Support for DR E A M E R
The diagram presented in Figure 8 was set by the designers using
of the DREAMER CASE tool. This CASE tool, which is an
extension of DREAM [12], is a software environment to edit,
record and analyze TEAM diagrams. The tool is publicly
available on the Internet [6]. The first version of the tool,
DREAM allows performing the following actions:

 Edit (add, modify and delete) any item from the TEAM
notation.

 Connect Question artifacts to Option artifacts.
 Connect Option artifacts to Criterion artifacts and set a

weight to this link, depending on how much the option is
fulfilling a criterion.

 Connect Criterion artifacts to Factor artifacts.
 Connect models to options as an option can be described by

a model (formal or not).
 Connect scenarios to criteria as scenario can be used to

evaluate how an option is fulfilling a requirement.
 Attach various types of documents to the different types of

TEAM artifacts. They can be related to the design itself or
to the project as a whole.

In addition to the functions described above, team work can also
be recorded using the two following features:

 Diagram versioning according to the design sessions that
took place.

 User roles of the people involved in the design (for instance
who decided to select a given option and who was involved
in that meeting).

Sometimes diagrams are crowded with a large number of artifacts,
and then there is a need to support designers in managing and
analyzing the diagram. To this end, a set of visualization tool have
been added. For instance, a bifocal view of the diagram has been
added to allow focusing on a particular item to explore the various
connections it has with the other items in a diagram. Further
details about the capabilities of the tool can be found at [12].

F igure 9. DR E A M Software environment

The new version of the tool (see Figure 9) now supports the
edition and traceability of requirements within the existing
DREAM environment. DREAMER features four main
improvements:

 Support for requirements representation;
 Support for relating requirements to design option;

 Visualization of coverage of requirements, options and
criteria.

One of the major improvements introduced is the use of
visualization techniques for analyzing the coverage of
requirements by design options. These visualization techniques,
largely inspired from the previous work of Bertin [3] and Henry &
Fekete [10], are shown in Figure 10 and Figure 11.
As described in the section 3, REQ001 and REQ003 to REQ007
are fulfilled by all of the design options and then the connecting
edges between them and the options make the diagram crowded
with edges. To focus on the relationship between design options
and requirement they support, Figure 10 shows at a glance which
requirements are supported by which options (red color for
unsupported requirements and green color for supported
requirement). The same kind of view can be used to display the
evaluation of an option with regards to criteria (Figure 11). In this
colored matrix, the red color corresponds to the strongly denied
value and the green color corresponds to the strongly supported
value. Between them, a mix of red and green is used to represent
the denied, neutral and supported evaluation weights.

F igure 10. Snapshot of the Colored matrix for requirements
traceability with regards to design options

F igure 11. Snapshot of the Colored matrix to visualize the

evaluation relationship between options and criteria

It is important to note that these visualizations are embedded into
the DREAMER CASE tool so that representations can be
automatically generated from TEAM diagrams and interactively
manipulated by the designers/developers. They provide terrific
support to designers as a design rationale approach is only needed
for large and complex systems typically ending up in large and
cumbersome diagrams.

5. C O N C L USI O NS A ND PE RSPE C T I V ES
In this paper we have discussed the problem of traceability of
requirements for model-based approaches. It tackles the problem
by providing an extension to a notation TEAM and its associated
tool DREAM [12]. Whilst some recent approaches are able to deal
with the traceability of requirements to pieces of software code
[4][21] to pieces of models [5] there is no support for augmenting
the choices made during the implementation. DREAMER makes
it possible to relate design options with functional and non
functional requirements. While other approaches such as SCRAM
[24] focus on requirements identification, our approach is
intended for supporting the traceability of such identified
requirements within the design process of interactive systems.
The current paper has been built from experience drawn from a
real industrial project dealing with the behavioral specification of
widgets compatible with the standard ARINC 661. However, both
the notation and the tool could be used fruitfully with other
aspects of the design of interactive systems and other phases of
the development process.

R E F E R E N C ES
[1] ARINC. ARINC 661 specification: Cockpit Display System

Interfaces To User Systems, Prepared by Airlines Electronic
Engineering Committee, Published by Aeronautical Radio,
Inc, April 22, 2002.

[2] Barboni E., Conversy S., Navarre D. & Palanque P. Model-
Based Engineering of Widgets, User Applications and
Servers Compliant with ARINC 661 Specification. In Proc.
of DSVIS 2006, LNCS n°4323, Springer Verlag. pp. 25-38.

[3] Bertin, J. (1967) Sémiologie Graphique - Les diagrammes -
les réseaux - les cartes. Gauthier-Villars et Mouton & Cie,
Paris. Réédition de 1997, EHESS.

[4] Boulanger, J.-L., Dao, V. Q. Requirements Engineering in a
Model-based Methodology for Embedded Automotive
Software. In: IEEE International Conference on Research,
Innovation and Vision for the Future, 2008, p. 263-268.

[5] Coninx, K., Cuppens, E., De Boeck, J. & Raymaekers, C.,
2007, Integrating Support for Usability Evaluation into High
Level Interaction Descriptions with NiMMiT . In: Interactive
Systems: Design, Specification, and Verification. 2007,
Springr Verlag LNCS, pp. 95-108.

[6] DREAM. At: http://ihcs.irit.fr/dream/index.html
[7] Dutoit, A.H., McCall, R., Mistrík, I., Paech, B. (eds.)

Rationale Management in Software Engineering: Concepts
and Techniques, Rationale Management in Software
Engineering. Springer, 432 pages. 2006. ISBN-10:
3540309977.

[8] ESARR 6. EUROCONTROL Safety Regulatory
Requirement. Software in ATM Systems. Edition 1.0.
http://www.eurocontrol.int/src/public/standard_page/esarr6.h
tml (2003)

[9] Gregoriades, A., Sutcliffe, A. Scenario-Based Assessment of
Nonfunctional Requirements. In IEEE Transactins on
Software Engineering, vol. 31, N. 5, May 2005. P. 392-408.

[10] Henry N. and Fekete J-D. MatrixExplorer: a Dual-
Representation System to Explore Social Networks. IEEE
Transactions on Visualization and Computer Graphics

(Proceedings Visualization / Information Visualization
2006), 12(5), pp. 677-684, 2006.

[11] ISO/IEC 9126-1:2001. Software engineering -- Product
quality -- Part 1: Quality model.

[12] Lacaze, X., Palanque, P., Barboni, E., Bastide, R., Navarre,
D., From DREAM to Reality : Specificities of Interactive
Systems Development With Respect to Rationale
Management. In [7], Springer Verlag 2006, pp.155-170.

[13] MacLean, Allan; Young, Richard M.; Bellotti, Victoria M.
E., and Moran, Thomas P. Questions, Options, and Criteria:
Elements of Design Space Analysis. Lawrence Erlbaum
Associates; 1991; 6, pp. 201-250.

[14] Maiden N.A.M. & Robertson S., 'Developing Use Cases and
Scenarios in the Requirements Process', Proc. ICSE 2005
26th Int. Conference on Software Engineering, ACM Press.

[15] Maiden N.A.M., Ncube C. & Robertson S., 'Can
Requirements Be Creative? Experiences with an Enhanced
Air Space Management System', Proc. ICSE 2007 28th Int.
Conference on Software Engineering, ACM Press, 632-641.

[16] Navarre D., Palanque P. & Bastide R. A Formal Description
Technique for the Behavioural Description of Interactive
Applications Compliant with ARINC 661 Specification.
HCI-Aero'04 Toulouse, France, 29 September-1st October
2004. CD-ROM proceedings.

[17] Navarre, D., Palanque, P., Ladry, J., and Barboni, E. 2009.
ICOs: A model-based user interface description technique
dedicated to interactive systems addressing usability,
reliability and scalability. ACM Trans. Comput.-Hum.
Interact. 16, 4 (Nov. 2009), pp. 1-56

[18] Palanque P. & Lacaze X. DREAM-TEAM: A Tool and a
Notation Supporting Exploration of Options and Traceability
of Choices for Safety Critical Interactive Systems. In
Proceedings of INTERACT 2007, Rio, Brazil, September
2007, LNCS n°4663, Springer Verlag

[19] Palanque P., Ladry J., Navarre D. and Barboni E. High-
Fidelity Prototyping of Interactive Systems can be Formal
too 13th International Conference on Human-Computer
Interaction (HCI International 2009) San Diego, CA, USA.

[20] PetShop: At: http://ihcs.irit.fr/petshop, accessed Jan 2010.
[21] REQTIFY. At: http://www.geensoft.com/en/article/reqtify
[22] Rosson, M.B. & Carroll, J.M. 2002. Usability Engineering:

Scenario-Based Development of Human-Computer
Interaction. San Francisco: Morgan Kaufmann.

[23] RTCA. Software Considerations in Airborne Systems and
Equipment Certification, DO-178B RTCA, Washington D.C.
1992

[24] Sutcliffe A. & Ryan M. Experience with SCRAM, a
SCenario Requirements Analysis Method, in Proceedings of
the 3rd Int. Conf. on Requirements Engineering, April 1998,
pp. 164-173.

[25] van Lamsweerde, A. Engineering Requirements for System
Reliability and Security. In Software System Reliability and
Security. NATO Security through Science Series - D:
Information and Communication Security, Vol. 9. IOS Press,
2007, 196-238.

https://www.cs.tcd.ie/DSVIS06/
http://ihcs.irit.fr/dream/index.html
http://www.eurisco-international.com/hci-aero2004
http://www.hcii2009.org/
http://ihcs.irit.fr/petshop

