
Unifying Textual and Visual: a Theoretical Account
of the Visual Perception of Programming Languages

Stéphane Conversy
Université de Toulouse - ENAC, France

stephane.conversy@enac.fr

Abstract
Firm principles which can be relied on to analyze and dis-
cuss textual and graphical code representations are still miss-
ing. We propose a framework relying on ScanVis, an ex-
tension of the Semiology of Graphics that models the per-
ception and scanning of abstract graphics, to model and to
provide plausible explanations of phenomena pertaining to
the visual perception of representations of code. This frame-
work unifies many aspects of the visual layout and appear-
ance of programming languages and reveals similarities and
substantial differences in the visual operations required by
those notations. We also show how the framework may help
compare and generate representations of programming lan-
guages with respect to visual perception. This work suggests
that the gap between textual and graphical languages is nar-
row, and that all kind of programming languages should rely
on the capability of the human visual system.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

Keywords Programming Languages; Visual Perception

1. Introduction
An implicit but important aspect of programming languages
is that they must support the production of readable pro-
grams [1]: “Programs must be written for people to read, and
only incidentally for machines to execute [2]”. Programmers
read a program by looking at its ‘code’, i.e., the representa-
tion of the program on the screen, perceptible by their eyes.
Both textual and so-called ‘visual’ representations of pro-
grams on the screen employ various graphical ‘features’:
texts, shapes, alignments, colors, arrows, etc. (fig. 1). Those

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Onward! 2014, October 20–24, 2014, Portland, OR, USA.
Copyright c© 2014 ACM 978-1-4503-3210-1/14/10. . . $15.00.
http://dx.doi.org/10.1145/10.1145/2661136.2661138

start
hyst

drag

Press

Release Drag > d

Drag

Release

CStateMachine sm = new CStateMachine(canvas) {
 CElement toMove = null;
 Point2D lastPoint = null;

 public State start = State() {
 Transition press = PressOnShape(">> hyst")};

 public State hyst = State() {
 Transition drag = Drag(">> drag");
 Transition release = Release(">> start")};

 public State drag = State() {
 Transition stop = Release(">> start");
 Transition move = new Drag(BUTTON1)}};

Figure 1. Two representations of the same program.

visual features are often considered ‘aesthetic sugar’ that do
not map semantics (e.g., a colored textual C program), but
they can also be part of the syntax (e.g. indented Python
code, arrows in state machines, colored Petri-nets).

As with any visual scene, the performance of program-
mers reading textual or visual programs depends on their
performance in perceiving the visual features presented on
the screen. However, few works exist that help analyze those
features and their impact on performance (an exception is
[3]). Instead, programming specialists mention ‘aesthetics’
or ‘personal preferences’ [1, 4] and warn about the possible
‘danger of religious wars’ when dealing with the topic [9].
The use of such terms signals a possible lack of foundation
for addressing the phenomenon of code perception and how
this may help or hinder programmers’ performance.

This paper investigates the principles of programming
languages that underpin the practice of code representation:
we aim to find the science in the art, rather than finding the
art in the science as advocated in [4]. We show how ScanVis
[5], an extension of the Semiology of Graphics [6] that mod-
els the perception and scanning of abstract graphics, may
help model, compare and generate visual representations of
programming languages with respect to human perception.
The expected benefits of this work from a scientific point of
view are a better understanding of the phenomenon of code
perception, the unification of the concepts used in the litera-
ture, and accurate definitions of these concepts. The outcome
for end programmers would be better designed programming
languages and IDEs with respect to this concern.

We focus on the representation of ‘a single page’ of code,
though current trends in the visualization of code focus on
the management and representation of large-scale programs

and despite the fact that we appreciate that interaction with
code is important [5, 7]. However, we think that represen-
tation at the level of the page is overlooked: understanding
a single page of code is still required since the very act of
programming (i.e., editing code) is often done at this level.

2. Related Work
Reading code is a complex process that involves many as-
pects. We have selected a number of works that address for-
matting, performance in reading, differences between textual
and visual languages, and frameworks to analyze them.

2.1 Formatting and pretty-printing
‘Formatting well’ is often advised and discussed in early
fundamental papers about programming languages (e.g., the
discussion in [8]): “Code formatting is about communica-
tion, and communication is the professional developer’s first
order of business” [9]. In a recent work, formatting is still
referred to as an ‘art’ [4]. Actually, the problem of program
representation goes well beyond code formatting and refers
to the more general problem of the visual perception of the
code by the programmer.

2.2 Performance in reading programming languages
A number of visual designs have been proposed to improve
reading performance [10–13]. Indentation length has been
experimentally shown to have an impact on the comprehen-
sion of code: 2- and 4-space indentation enables reader to
better understand the code than 6-space indentation, for both
novice and expert readers [14]. Eye tracking has been used
to observe and measure programmers switching between a
view of the code and a view presenting an animated algo-
rithm [15], and to determine whether identifier-naming con-
ventions (i.e., camelCase and under score) affect code com-
prehension [16]. Background colors may improve compre-
hension of preprocessors’ #ifdef directives [17].

Moher et al. observed that “performance was strongly de-
pendent on the layout of the Petri nets. In general, the re-
sults indicate that the efficiency of a graphical program rep-
resentation is not only task-specific, but also highly sensitive
to seemingly ancillary issues such as layout and the degree
of factoring” [18]. Green et al. found that textual represen-
tations outperformed LabView for each and every subject
[19]. Their explanation is that “the structure of the graph-
ics in the visual programs is, ‘paradoxically’, harder to scan
than in the text version”. LabView and its G language have
been studied “in the wild” [20]. Respondents declared that G
is easier to read than textual programming languages since
it provides an overview (a gestalt view) and clarifies struc-
ture. However, respondents also say that it is very easy to
create messy, cluttered, hard to read spaghetti code and that
sequence structures tend to be cryptic or obscure.

2.3 Differences between textual and visual languages
Researchers have already wondered where the actual differ-
ences between textual and visual languages lie. In [21] Pe-
tre argues that the differences in effectiveness between tex-
tual and visual languages “lie not so much in the textual-
visual distinction as in the degree to which specific repre-
sentations support the conventions experts expect.” As Petre
observed, programmers can find gestalt patterns in textual
representations [21]. Much of “what contributes to compre-
hensibility of a graphical representation is not part of the for-
mal notation but a ‘secondary notation’: layout, typograph-
ical cues and graphical enhancements.” Petre adds that “the
secondary notations (e.g., layout) are subject to individual
skills (i.e., learned ones) and make the difference between
novices and experts. What is required in addition is good
use of secondary notation, which like ‘good design’ is sub-
ject to personal style and individual skill” [21]. We take an
alternative point of view: we argue here that even if skills
can be learned, the basic visual capability is enough to ex-
plain some of the ease or difficulty programmers experience
in deciphering a program representation.

2.4 Analysis frameworks
There have been several attempts at building metrics for
software readability. In the metric from [22], a few features
can be considered perceptual (commas, spaces, indentation),
but most are based on the semantics of the code. The cog-
nitive dimensions of notation (CDN) is a framework that
helps designers analyze interactive tools, including program-
ming environments and languages [7]. CDN targets cogni-
tive and interactive aspects as opposed to perceptual aspects:
the graphic and perceptual concerns are addressed partly in
the “secondary notation” and “visibility” dimensions.

Gestalt is a well-known framework that explains the phe-
nomena underlying pattern perception. Gestalt may be used
to explain how programmers perceive patterns in their code,
but we found that Gestalt could not report about all percep-
tion phenomena. So-called pre-attentive features also have a
role in the perception of code [23]. The Physics of Notations
framework focuses on the properties of notations [3]. It ad-
dresses numerous aspects of graphical properties and can be
considered as a broader framework than the one presented
here. One of those aspects of the Physics of Notations relies
on the Semiology of Graphics. We discuss the relationship
between Semiology of Graphics, ScanVis, pre-attentiveness
and the Physics of Notations in the following section.

3. Framework
The framework we used relies on the Semiology of Graphics
and ScanVis.

3.1 Semiology of Graphics
The Semiology of Graphics (SoG) is a theory of abstract
drawings (i.e., drawings that do not imitate a natural scene)

such as maps and bar charts [6]. A part of this theory ex-
plains the perceptual phenomena and properties underlying
the act of visualizing 2D abstract drawings. SoG relies on
the characterization of data to be represented (the data type:
nominal, ordered, and quantitative), and the perceptual prop-
erties used in a drawing, such as color or shape.

SoG first defines a set of concepts and a vocabulary.
Drawings are a set of 2D marks (points, lines or zones)
lying over a background. Marks vary according to visual
variables such as position (Xpos and Ypos), shape, color,
luminosity, size, orientation [6], enclosures and lines that
link two marks [24]. Visual variables are characterized by
their perceptual properties, and can be: selective – enable a
viewer to assimilate and differentiate marks instantaneously
(e.g., all red marks) (fig. 2); ordered – enables a viewer to
rank marks perceptually (e.g., from light to dark) (fig. 3);
and quantitative – enable a viewer to quantify differences
between marks perceptually (e.g. twice as large) (fig. 3).

Figure 2. By default marks are circular and light. Left:
Some marks are dark to produce an H. Luminosity is se-
lective: the H letter emerges because the eye discriminates
two groups of marks (light and dark) instantaneously. Right:
Marks at the same locations, forming the H, are square.
Shape is not selective so the H letter does not emerge.

10% 20% 40% 80%

10% 20% 40% 80%

0%

0%

Lum

Xpos

Figure 3. Top: Luminosity is ordered but cannot be per-
ceived quantitatively. Bottom: Position is quantitative: one
can perceive the ratio and the difference between various X
positions (pos. 80% is 2x pos. 40% and 4x pos. 20%).

SoG also edicts a number of rules. All visual variables ex-
cept shape and link may be selective. Fig. 2 illustrates selec-
tivity: a H form emerges from marks varying in luminosity
(left) but not from the same marks varying in shape (left). All
visual variables except shape, link and color may be ordered
(colors are ordered in a limited spectrum only). Xpos, Ypos,
angle, length, size may be quantitative to various degrees,
as demonstrated experimentally [25]. Fig. 4 summarizes the
properties of visual variables. However, as we will see, any

statement about the properties of a particular (set of) mark(s)
should be made while taking into account the relations be-
tween all marks. The performance of readers at selecting,
ordering or quantifying depends on the number of values
that can be differentiated (e.g., 5 levels of luminosity for
selection, 20 levels of luminosity for order), the difference
between each value (larger differences produce better per-
formance), and the spatial distance between marks (smaller
distances produce better performance).

contlinksizeposcolorlumshape

ordered

quantitative

selective

Figure 4. Summary of the properties of the visual variables

3.2 ScanVis
SoG may help design a representation that enables users to
perceive multiple information elements at a single glance.
Nevertheless, however well designed a representation is, it
cannot be absolutely efficient: a representation may be well
suited to a particular task, but may not be suitable for all
tasks a user’s activity requires. For such tasks, instead of
perceiving the representation at one glance, the user falls
back to scanning the representation to discover information.

ScanVis is a descriptive model of this kind of representa-
tion scanning [5]. It enables a designer to analyze and assess
representation effectiveness with respect to a task. ScanVis
relies on the decomposition of representation scanning into
elementary visual operations: enter into the representation
by transforming the conceptual task at hand (“how long will
I wait?”) into a reading task (“find the time corresponding to
my bus route”), seek a subset of marks (“find the marks cor-
responding to my bus routes?”), seek and navigate among
a subset of marks (“navigate into a row of text representing
time in a time-table”), unpack a mark and verify a predi-
cate (“what datum does this position reflect, and does it an-
swer my question?”), exit from the representation (“this bus
passes at this time, I need to compute the waiting time”),
and memorize information (“I have to wait 2 minutes for this
bus; remember this to compare with another bus”). Those
operations constitute the vocabulary of ScanVis. Fig. 5 sum-
marizes the operations.

Given a task and a representation, a designer can ex-
press the required sequence of visual operations to accom-
plish it. For example, fig. 6 shows two different representa-
tions of a bus schedule. Depending on the representation, the
amount and the nature of visual scanning operations will dif-
fer (we do not discuss the differences between those partic-
ular two schedule representations here). The overlaid arrows
and circles depict the visual scanning required on each to an-
swer the same question: “how long will I wait for the next
bus?”. A small blue circle with a letter M depicts a need to
memorize a datum e.g. the current time and the compatible

M

current
time

1 2 3

4

M

M

M bus line
current time

1 2 3

4

M

M

M bus line
current time

enter the representation

unpack a mark and
verify a predicate

seek a subset of marks

seek and navigate
among a subset of marks

exit the representation

memorize

waiting
time

➔

➔

current
time

(all greyish
texts)

(yellow: compatible
bus route?)

1

Figure 5. Summary of ScanVis operations

bus route numbers. Red [resp. green]-stroked circles refer to
predicates that proved false [resp. true]. For instance, the or-
dered view requires the user to memorize the current time
and the number and color of bus routes, to navigate (since
they do not use a selective variable) the ordered list of times
from left to right until the first time which is superior to the
current time is found (verify a predicate), to seek and navi-
gate among the colored cells from left to right until a com-
patible bus is found, to read (or unpack) the corresponding
time, and to exit the representation by subtracting the current
time to the found time and obtain the waiting time.

2

1 bus line
current time

1 2 3

4

M

M

M bus line
current time

M

M

M

Figure 6. Two representations and the visual operations for
the task “find how long I have to wait for the next bus.”

ScanVis operations may be facilitated by the use of ad-
equate visual properties as described by SoG e.g. selective
visual variables to support seeking and navigating among a
subset of marks. For example, if one wants to find out the
next bus #51 in the representation at the bottom of fig. 6,
one can visually select a subset of marks that are yellow (a
selective variable) and that lie in the area whose position (a
selective variable) corresponds roughly to the current time.
One can then scan through the marks of this subset and hop
from mark to mark until the next bus is found.

3.3 Comparison with other frameworks
The ’selective’ property is equivalent to ’pre-attentive’ (im-
plicitly ’pre-attentive selection’) or the ’pop-out’ effect, but
SoG is more comprehensive: preattentiveness not only con-
cerns selection, but also ordering and quantification. As
we will see, we also explicitly identified the data that the

graphics represent (e.g. expression nesting, order of instruc-
tions, importance of text (comment/code)), which shows that
the representations are indeed semiotic and not only pre-
attentive. Compared to the Physics of Notations, our work
offers a finer and more complete account of how SoG applies
to graphical and textual code representation. Nevertheless,
SoG alone cannot be used to assess code representation: the
use of ScanVis and its emphasis on image scanning and pre-
cise task elicitation (e.g. “match parenthesis” vs “figure out
the hierarchy of expressions”, or “what is the next bus?” vs
“how long will I wait?”) makes the analysis finer.

4. Contribution
ScanVis & SoG (together referred to as ‘the framework’)
have been applied to charts or visualizations of information
in the past. The remainder of this paper is devoted to the
application of the framework to programming languages.

Our goal is the production of knowledge about the phe-
nomenon of code perception in order to ultimately design
better programming languages and IDEs. Our contribution
is threefold: (1) the demonstration that ScanVis & SoG can
be applied to Programming Languages (2) the modeling of
some phenomena pertaining to the properties attributed to
code representation with ScanVis & SoG concepts (i.e, the
translation of phenomena into ScanVis & SoG concepts and
vocabulary) (3) the formulation of hypothetical explanations
to these phenomena. The second and third contributions con-
stitute the crux of the paper: the difficulty lies in finding and
formulating a correct modeling in order to provide detailed
and plausible hypothetical explanations of the phenomena.
Though the explanations are hypothetical, they are the re-
sult of applying an existing framework that has been used
successfully in other contexts.

As illustrated in the ScanVis section, assessing a particu-
lar visual representation of code requires identifying the set
of reading tasks performed by the programmer. In the fol-
lowing sections, we discuss a number of visual represen-
tations together with code reading tasks and sub-tasks: vi-
sually structuring the code (sub-tasks: assimilate expression
boundaries, figure out the hierarchy of expressions), under-
standing control flow (sub-tasks: given an instruction find
next instruction, given a state find the out/in transition). We
have devised the tasks with reference to some assumed as-
sets of each representation. We believe that the tasks are ap-
propriate but we do not claim completeness or perfect valid-
ity. In order to help the reader assess the significance of the
proposed framework, we first describe its modeling power
(what are the phenomena that the framework may capture?).
We then describe its comparative power (how may it help
assess or compare particular code representations?) and its
generative power (how may it help explore the design space
of code representation?) to illustrate possible uses.

5. Modeling Code Perception
The goal of this section is to show how a number of phenom-
ena may be appropriately captured with the concepts and vo-
cabulary (in italics) of the framework. For this work, we used
an abductive mode of inference (as opposed to an inductive
or deductive mode). Abductions propose plausible explana-
tions to observations [26, 27]. A presentation of abductions
selects both the set of observations and the set of explana-
tions to demonstrate correctness and completeness: ”one can
test the theory against as many specific situations and exam-
ples as possible, looking for adequacy of explanation. It is
best if these examples are generated from external sources,
as of course you tend to think of those that are already cov-
ered by your own theories” [28] (emphasis is ours).

We present the phenomena with popular and sometimes
ambiguous external [28] sayings about code. By nature some
of those sayings do not have a precise origin, but one can find
them in scientific (referenced in the bibliography) and non-
scientific texts (in footnotes). We chose these sayings and
examples according to their variety and their ability to con-
vey the explanations we devised. Though we do not claim
that they are exhaustive, we argue that the number of ex-
amples suggests that the scope of the framework is signi-
ficative, and that the difference between them suggests that
the framework unifies a broad variety of representations. We
then translate (i.e. model) those observations into adequate
[28] concepts of the framework. If correct and comprehen-
sive, a translation of ambiguous sayings into precise con-
cepts is the first step toward the validation of the significance
of the framework. Such a translation allows us to discuss in
a precise manner the degree of truth of the sayings and the
relationships between them.

5.1 Visually structuring the code
• “Lots of Irritating Superfluous Parenthesis1” LISP uses
parentheses to structure code. Lists are designated with
spaced expressions surrounded by opening and closing
parentheses. Function composition uses compound paren-
thesizing.

(defun fac (n) (if (<= n 1) 1 (* n (fac (- n 1)))))

(defun fac (n) (if (<= n 1) 1 (* n (fac (- n 1)))))

Figure 7. Top: Parentheses as expression delimiters Bot-
tom: ScanVis operations required to match an opening
parenthesis.

LISP is reputedly difficult to read ([29] p65). The dif-
ficulty comes partly from the fact that list boundaries are
depicted with two shapes (opening and closing parentheses,
see fig. 7, top) which prevents fulfilling the task “figure out
the [lisp] expressions” efficiently. This may be explained by
the selectivity concept: since shape is non-selective within

1 en.wikipedia.org/wiki/Lisp (programming language)

more than two variants, the use of parentheses prevents the
perception of expression boundaries among all other letters
and signs at a single glance and forces the programmer to
scan the code linearly to discover them (fig. 7, bottom). Fur-
thermore, the user is required to maintain a count of opening
and closing parentheses during the scanning operation and
verify the predicate “this symbol is a closing parenthesis and
count is 0”.

(defun
 fac (n)
 (if
 (<= n 1)
 1
 (*
 n
 (fac
 (- n 1)))))
(fac 5)

(defun
 fac
 (n
)
 (if
 (<=
 n
 1
)
 1
 (*
 n
 (fac
 (-
 n
 1
)
)
)
)
)

(fac 5)

(defun
 fac (n)
 (if
 (<= n 1)
 1
 (*
 n
 (fac
 (- n 1)))))
(fac 5)

(c)

(d)

(defun
 fac
 (n
)
 (if
 (<=
 n
 1
)
 1
 (*
 n
 (fac
 (-
 n
 1
)
)
)
)
)

(fac 5)

(a)

(b)

Figure 8. Delimiters varying in Xpos and Ypos, which are
both selective visual variables.(b) A smaller difference be-
tween Xpos values hinders selection. (c) Improving Xpos
selectiveness by shortening spatial distances in Ypos or (d)
with a larger indentation, at the expense of visual scanning,
depicted with circles and arrows.

• “Indentation makes structure obvious [14]” In fig. 8 (a)
the level of nesting depth is mapped to the Xpos visual vari-
able. Matching parentheses are “vertically aligned”, which
is another way of expressing an assimilation of Xpos val-
ues. Since Xpos is selective in this case, the perception of
expression boundaries is better than when using a shape. Se-
lectivity depends on the amount of difference between val-
ues: shrinking the size of the indentation lowers the selective
ability of Xpos (b). Reserving a line for a closing parenthesis
alone lengthens the Ypos spatial distance with the matching
opening parenthesis and weakens the selective property of
the Xpos visual variable (i.e., it is difficult to perceive ver-
tical alignment) (a and b); ignoring the parenthesis match-
ing problem altogether shortens the distances and improves
Xpos selectivity (c) [14]; more indentation improves selec-
tive perception of Xpos (d). However, the assumed improve-
ment is supposedly accomplished at the expense of longer
scanning from the beginning of a block to its first instruction,
as experimentally assessed in [14]. Note that since Xpos is
an ordered visual variable, such a representation may also
facilitate the task “figure out the hierarchy of expressions”.

• “LabView’s G language is intuitive2” G combines large
boxes that enclose other objects to specify a hierarchical
structure (fig. 9), and links that connect the components in-

2 Editor’s white paper http://www.ni.com/white-paper/14556/en

side and outside boxes (see [30] for more details). Enclo-
sures may be “intuitive”, but a more appropriate qualifica-
tion is that they are selective in this case: one may grasp in a
single glance which elements are part of a parent. Enclosure
is also ordered and may help perception of a containment
hierarchy.

Figure 9. G language from LabView.

• “Syntax highlighting improves readability3” Fig. 10
shows a ‘syntax-colored’ textual representation of Java code
in the NetBeans editor. Blue glyphs correspond to reserved
keywords of the Java language and gray ones to comments.
A yellow background corresponds to a variable to which the
mouse pointer points.

until they find the right, and find and seek all transitions from
this state. With circles and arrows, one can consider that large
white circles are selective compared to other marks (because of
their size and luminosity). With SwingStates code, the
indentation is also selective. Hence both representations help
seek a subset of marks. Finding ‘out’ transition is more
efficient in SwingStates code since all transitions are out
transitions. With circle-and-arrows, one has to differentiate
between links with and without arrowhead laid around the
circles. Links without arrowhead may be more difficult to
differentiate than other marks.

Figure 14. ScanVis for the task: “what are the out transitions for state ‘hyst’?”

Figure 15. ScanVis for the task: “what are the in transitions of state ‘hyst’?”

Figure 15. illustrates the visual operations required for the task
“what are the in transitions for a particular state?” For the
circle-and-arrows representation, the operations are almost
similar to the operations required in the previous task. Finding
the ‘in’ transition may be facilitated by the fact that arrowheads
are dark and thus selective. With the SwingState code, the
visual operations are very different: one has to find the name of
the states inside a transition. Most of those names are on the
right part of the code, which helps seek and find them. Still,
since they are texts, it may be difficult to navigate without any
risk of missing one.

Figure 16. ScanVis for task: “go to the state following a transition ‘Drag’ on

state ‘Hyst.’”

Figure 16. illustrates the visual operations required for the
task “go to the state following a transition ‘Drag’ on a
particular ‘Hyst.’”. One has to find the first state, find the
transition, and go to the state following this transition. After
having found the transition, it may be easier to follow a link in
the case of circle-and-arrows than find a text (the name of the
next state) in the case of the SwingState code.

VI. GENERATING NEW DESIGNS
This section introduces a number of design principles to make
new designs emerge and illustrates them with a number of
examples. I devised the design principles by examining how
existing designs improve over former ones.

Seek selectivity. Figure 17. shows a ‘syntax-colored’
textual representation of Java code with the NetBeans editor.
Blue glyphs correspond to reserved keyword of the Java
language, and gray ones to comments. A yellow background
corresponds to a variable at which the mouse pointer points.
// replicable pseudo random generator
Random rpos = new Random(456);
Random r = new Random(321);
double[] sizes = new double[6];
double a = 10, b = 5;
for (int i = 0; i < sizes.length; ++i) {
 sizes[i] = a * i + b;
}
float[] tricol = new float[3], rgb, lch;
lch = tricol;
lch[0] = 40;
lch[1] = 100;
lch[2] = 45;
Color c1 = srgb.fromLCHtoColor(lch);
[…]
System.out.println(“[debug] color is”+c1);
// compute each symbol hue
for (int i=0; i<hue_symbol.length(); ++i) {
 lch[2] = (float)(i*360./hue_symbol.length());
 colors[i] = srgb.fromLCHtoColor(lch);
 hue_shapes.add(buildShape(g, hue_symbol.substring(i,i+1), w, h));
}|||

Figure 17. Colored editor

Coloring all appearances of a variable the mouse is pointing
at does make sense as a programming task point of view: this
enables the programmer to efficiently grasp all occurrences of
this variable thanks to selectivity. Similarly, adding a colored
background to a brace enables the programmer to quickly see
where the corresponding one is and assess the scope of a block.
The gray color is lighter than the other ones. Luminosity is
selective and enables user to rapidly assimilate and
differentiate code from comments, and rapidly navigate
between sections of the code. Hence this removes the need to
scan the first letters of a line to check if it begins with two
slashes, a much more demanding visual task since shape (‘//’)
is not selective. In addition, the order of luminosity indicates
an order of importance between code, comments, and
background.

Identify the task and seek selectivity only if needed. Using
color for keyword is not related to any task the programmer
should accomplish. Of course, one can argue that it helps
assess that a keyword has been recognized as the user types it,
and that no lexical error has been made. Nonetheless, fulfilling
this task does not require a selective variable such as color.
One should fall down to elementary reading instead, by using a
non-selective variable such as a shape, or a typeface e.g.
‘unrecognized’ in ‘italic’, ‘recognized’ in ‘regular’. This would
reserve color, a scarce resource, for a more efficient use.

Figure 10. Colored editor and ScanVis for task “find a par-
ticular section of the code by reading comments”

Coloring all appearances of a variable the mouse is point-
ing at does make sense from a programming task point of
view: this enables the programmer to efficiently identify all
occurrences of this variable thanks to selectivity which in
turn facilitates seeking and navigation among a subset of
marks (here the subset of yellow marks). Similarly, adding
a colored background to a brace enables the programmer

3 en.wikipedia.org/wiki/Syntax highlighting

to quickly locate where the corresponding brace is and as-
sess the scope of a block. The gray color is lighter than the
other ones: since luminosity is selective, this enables the user
to rapidly assimilate and differentiate code from comments,
and rapidly seek and navigate among grey marks e.g. to ful-
fill the task “find a particular section of the code by read-
ing comments”. This removes the need to scan the begin-
ning of a line to check whether it begins with two slashes, a
much more demanding visual operation since shape (‘//’) is
not selective. In addition, the order of luminosity indicates
an order of importance between code, comments, and back-
ground.

5.2 Understanding control flow
• “Arrows make the instruction flow explicit [31]” Fig. 1-
left, shows a circle-and-arrow description of a Drag’n’Drop
interaction with hysteresis [32]. There are three states (‘start’,
‘hyst’ and ‘drag’), one transition from the state ‘start’, and
two each from states ‘hyst’ and ‘drag’. The instruction flow
is depicted with marks: arrows. To fulfill the task “find the
next instruction”, a reader must seek a subset of marks (links)
and navigate visually by following arrows. Similarly, Code
Bubbles is an IDE that presents code with function snippets
inside individual windows resembling ‘bubbles’ [33]. Users
can juxtapose bubbles that contain related code. One use is
to display the code of a callee in a bubble to the right of a
bubble containing the caller, and display a link between the
callee and the caller (fig. 11) to help find the next instruction
after a call.

Figure 11. Code Bubble

• “The control flow in C is implicit” In a block of C in-
structions, a sequence of texts separated by semicolons de-
notes a sequence of instructions (fig. 10 for a C-like exam-
ple). Often, programmers organize instructions one per line
i.e., the Ypos visual variable maps the ordered sequence of
the program counter: this helps the programmer visualize the
evolution of the program counter path by scanning the tex-
tual instructions vertically. Thus, the task “given a particular
instruction, what is the next instruction to be executed?” is
efficiently supported by the representation since it uses a se-
lective, ordered variable.

As mentioned above, arrows are supposed to make the
instruction flow explicit [31], as opposed to the assumed im-
plicitness of the flow of instructions of C. The framework

enables us to be more precise: arrows are an explicit repre-
sentation of the sequence direction, which is implicit in C
with Ypos. However, links and arrows are no more explicit
on the sequence of instructions than Ypos, since the ordered
visual variable Ypos explicitly shows sequence already.

Indeed, a number of different representations can be uni-
fied with the same underlying principles. As seen above, in-
struction flow can be depicted using Ypos or links and ar-
rows. Links and arrows are not selective visual variables: the
reader is forced to follow the chain of links to understand the
flow (fig. 12-a). The problem is similar with semicolons in
C: as a shape, semicolons are not selective, and do not help
discriminate between instructions. Links and arrows can be
supplemented with so-called “alignment cues”, e.g., using
the selective property of Ypos. In this case, the visualization
is equivalent to indented code in a C program (fig. 12-b).
It is not necessary to show the arrows between successive
instructions as this is redundant with the Ypos-aligned rep-
resentation (fig. 12-c). However, keeping an arrow for the
loop helps the reader scan up to the beginning of a loop,
similar to box-and-arrow languages. Scratch [34] is a visual
language with connectors on blocks which suggest how the
latter should be put together (fig. 12-d). The connectors are
similar to the arrows: they indicate the direction of the in-
struction sequence. The start of the loop can be perceived
selectively with color and containment.

int fact(int n) {

 int res=1;

 while (n) {

 res *= n;

 n-=1;

 }

 return res;

}

int fact(int n) {

 int res=1;

 while (n) {

 res *= n;

 n-=1;

 }

 return res;

}

(a) (b) (c) (d)

int fact(int n)

int res=1;

while (n)

res *= n;
n-=1;

return res;

Figure 12. Arrows could have been used in C (b), as in
box-and-arrow languages (a). Since arrows are redundant
with the ordered Ypos visual variable, they can be removed,
except for loops (c). Scratch uses similar visual variables (d).

• “Spaghetti code [35]” Reading code with links may
be slow especially when arrows are numerous and entangled
like spaghetti, which prevents arrows from being selective.
In CodeBubble, hovering over a bubble highlights the con-
nections and code lines that lead to it by changing the color
or luminosity of the links. This turns a non-selective vari-
able selective (from a link to a colored link) and helps read-
ers comprehend the flow and navigate between instructions
across functions.

• “Befunge is an esoteric language4” Befunge is a 2D
textual language in which the flow is indicated by the four
shapes <, >, ˆ, and v, which resemble arrows pointing in the
four cardinal directions. Branching is specified by - (equiv-
alent to < if the condition is true and to > otherwise) and —
(equivalent to ˆ if the condition is true and to v otherwise).

4 as qualified by its designer catseye.tc/node/Befunge-93.html

However, not only is the flow not comprenhensible at once,
but directional shapes are not selective and cannot be per-
ceived instantaneously. As such, perhaps Befunge is not so
esoteric since it may be considered as a missing link between
textual and visual languages. This illustrates the unifying as-
pect of the framework.

0&>:1-:v v *_$.@
 ^ _$>\:^

0&>:1-:v v *_$.@
 ^ _$>\:^

Figure 13. Factorial in befunge (l.); ScanVis operations (r.)

5.3 Understanding functionality
• “Icons are easier to use than text [36]” Icons are often
considered easier to interpret than text [36]. Fig. 9 illustrates
the use of an ‘analog’ [21] iconic vocabulary in LabView’s
control-flow structures. In this case, icons are differentiated
with shapes (arrowheads, page corners, spirals, ‘N’ and ‘I’).
When icons vary according to shape only (a non-selective
variable), one can only perform a slow elementary reading
of a scene. In other visual languages, icons vary in shape
but also along other visual variables, which may turn them
selective (e.g. colored icons, or those that vary in luminosity
like the asterisk-like shapes in fig. 14).

6. Application 1: Comparing Representations
The primary goal of the previous section was to show how
various phenomena of code perception may be captured by
the proposed framework concepts, and how the framework
may provide plausible explanations to those phenomena.
The present section is a first practical application of the mod-
eling and shows how the framework may help compare code
representations with respect to tasks by providing plausible
explanations of their assets or weaknesses.

6.1 Visually structuring the code
This section reuses the LISP example in fig. 7, but the dis-
cussion also applies to any language that relies on character
to delimit expressions or blocks such as C (parentheses or
braces). Fig. 14 shows delimiters varying in shape, hue, lu-
minosity and hue. As we have seen in the previous section,
visually structuring the code may be related to two low-level
tasks: “assimilate expression boundaries” and “figure out the
hierarchy of expressions”.

The second line of fig. 14 uses a unique boundary shape
according to the level of depth of enclosure. The task “assim-
ilate expression boundaries” may be easier to perform than
with parentheses: since each level corresponds to a unique
shape, there is no need to maintain a count anymore and it
suffices to find the similar shape. However, finding a shape
among other multiple different shapes may still be a diffi-
cult visual operation, since the non-selectiveness of symbols
prevents matching at a single glance e.g. finding the diamond
which closes the multiply expression is difficult and requires

a careful horizontal scan. One may disagree and argue that
we are able to see the right corresponding shape at once. Ac-
tually, shape can be selective but only when there are very
few different marks (a dozen) with very few different shapes
(two) [6]. If not convinced the reader is invited to refer to fig.
2. A longer, deeper nesting of expressions that requires more
marks and more types of shape would exceed those numbers
and inhibit selectivity.

(defun fac �n▷ �if ♢<= n 1♢ 1 ♢* n ♡fac ☞- n 1☜♡♢▷)
(defun fac (n) (if (<= n 1) 1 (* n (fac (- n 1)))))

(defun fac �n� �if ✳<= n 1✳ 1 ✳* n ✴fac ✷- n 1✷✴✳�)

(defun fac (n) (if (<= n 1) 1 (* n (fac (- n 1)))))
(defun fac (n) (if (<= n 1) 1 (* n (fac (- n 1)))))

(defun fac (n) (if (<= n 1) 1 (* n (fac (- n 1)))))

1
2
3
4
5
6

Figure 14. Delimiters varying in shape (1:parentheses,
2:unique symbols), 3:hue, 4:lum, 5:shape+lum, 6:size.

In fig. 14, the third line maps depth of nesting to unique
colors. Since color is selective with few marks and few color
values, this may enable the reader to assimilate at one glance
all parentheses with the same level of depth. The fourth line
maps luminosity to depth of nesting, while the sixth line
maps the size of shapes to depth of nesting. In both cases, the
difference of values (luminosity and size) may be too low to
foster selectiveness and to help match parentheses.

However, it is questionable whether the task “assimilate
expression boundaries” is worth facilitating: even if a reader
correctly detects each opening and closing parenthesis, one
must remember the discovered structure to make sense of it.
If an appropriate visual variable was used instead to “figure
out the hierarchy of expressions”, the programmer could use
that as an externalization of memory to recall the structure
by accessing it immediately, in one glance. For instance,
luminosity is ordered and may help perceive relative depth
and thus help comprehend the hierarchy (line 4). The same
statement holds for size, but not for shape (line 1 and 2) nor
color (line 3) since shape is not ordered nor color in this case.
The fifth line of fig. 14 uses a set of asterisk-like shapes with
which selection and ordering seem to be effective: this is
because they do not contain the same number of pixels and
exhibit different levels of luminosity, a selective variable.
This makes the delimiters ordered and selective.

6.2 Understanding control flow
Code representations are used to fulfill multiple reading
tasks. The following examples show how the framework
may reveal differences when comparing two representations
with respect to two different tasks.

Fig. 1-right shows the SwingState code describing the
same Drag’n’drop interaction as in Fig. 1-left [32]. SwingStates
is a textual language for describing state machines [37]. It
relies on Java’s anonymous class facility to be embedded
seamlessly in regular Java code. The code is indented to
facilitate perception of the states, the transitions from each
state, and the clauses associated with the transitions. Fig. 15

compares the visual operations required for the task “what
are the ‘out’ transitions for a particular state?” in the circles-
and-arrows and SwingStates representations. In both, read-
ers need to seek and navigate among states until they find
the state of interest, then seek all transitions leaving this
state. With circles-and-arrows, one may consider that large
white circles are selective compared to other marks because
of their size and luminosity. In the SwingStates code, in-
dentation is also selective. Hence both representations help
seek a subset of marks. Finding ‘out’ transition is more effi-
cient in SwingStates code since all transitions are out tran-
sitions. With circle-and-arrows, one has to differentiate be-
tween links with and without arrowheads, laid around the
circles. Links without arrowheads may be more difficult to
differentiate than other marks.

start
hyst

drag

Press

Release Drag > d

Drag

Release

CStateMachine sm = new CStateMachine(canvas) {
 CElement toMove = null;
 Point2D lastPoint = null;

 public State start = State() {
 Transition press = PressOnShape(">> hyst")};

 public State hyst = State() {
 Transition drag = Drag(">> drag");
 Transition release = Release(">> start")};

 public State drag = State() {
 Transition stop = Release(">> start")}};

M "hyst"M "hyst"

Figure 15. ScanVis for task “find the ‘out’ transitions of
state ‘hyst”’.

CStateMachine sm = new CStateMachine(canvas) {
 CElement toMove = null;
 Point2D lastPoint = null;

 public State start = State() {
 Transition press = PressOnShape(">> hyst")};

 public State hyst = State() {
 Transition drag = Drag(">> drag");
 Transition release = Release(">> start")};

 public State drag = State() {
 Transition stop = Release(">> start");
 Transition move = new Drag(BUTTON1)}};

start
hyst

drag

Press

Release Drag > d

Drag

Release

M "hyst" M "hyst"

Figure 16. ScanVis for task “find the ‘in’ transitions of state
‘hyst”’.

Fig. 16 illustrates the visual operations required for the
task “what are the ‘in’ transitions for a particular state?”
For the circle-and-arrows representation, the operations are
almost identical to the operations required in the previous
task. Finding the ‘in’ transition may be facilitated by the
fact that arrowheads are dark and thus selective. With the
SwingState code, the visual operations are very different:
one has to find the name of the target states inside the
transitions. Most of those names are on the right edge of
the code, which helps seek and find them. Still, since they
are textual, it may be difficult to navigate without risk of
missing a name.

7. Application 2: Generating Representations
The present section is a second practical application of the
modeling and shows how the framework may help generate
representations with respect to tasks by providing plausible

explanations of their assets or weaknesses. This section in-
troduces a set of design principles that may be used to make
new code representations emerge. We illustrate the design
principles with a number of examples. We devised the de-
sign principles by providing plausible explanations on the
assumed improvement.

Identify the task and apply selectivity only where needed.
In the colored code fig. 10, using color for all keywords
may not be related to any task the programmer needs to
accomplish (e.g., find all ‘for’ loops). Of course, one may
argue that the distinction helps assess that a keyword has
been recognized as the programmer types it and that no
lexical error has been made. However, fulfilling this task
does not require a selective variable such as color. Instead,
elementary reading with a non-selective variable such as a
shape, or a typeface (e.g., ‘unrecognized’ in ‘courier’) is
sufficient. This would reserve color, a scarce resource, for
a more important use.

Try swapping visual variables. One way to generate rep-
resentations is to explore the design space of code represen-
tation by swapping visual variables for unused ones. Fig. 17
illustrates an alternative representation with Ypos as visual
variables instead of Xpos, color or luminosity. Since Ypos is
selective and ordered, it may help the reader visualize the
structure of the code, similarly to the more traditional use of
the Xpos visual variable (indentation).

(defun fac)(n) (if 1)(<= n 1) (* n)(fac)(- n 1)

Figure 17. Using Ypos as visual variables.

Shorten spatial distance. As mentioned previously, re-
ducing spatial distance may improve selectivity. Fig. 8(c)
shows a representation that shortens spatial distance, but
does not support parenthesis matching, which may be an-
noying when trying to add a missing parenthesis. Fig. 18 is
a representation that shortens the spatial distance while en-
abling easier parenthesis matching. Remarkably, while the
parentheses match perceptually according to the Xpos vi-
sual variable, they do not match conceptually: for example,
the opening parenthesis at the beginning of the ‘defun’ func-
tion conceptually matches the rightmost closing parenthesis
on the penultimate line of the code, but is aligned with the
closing parenthesis of the call to factorial. This illustrates
that perception may prevail over the conceptual model, as
long as semantics is preserved.

Another representation that reduces distance is shown in
Fig. 18. With a debugger, the user can step inside the call of
a function. This can be performed with a toggle arrow: when
toggled, the code of the function unfolds under the call of the
function. A similar feature could be used for static code; this
would help understand how functions compose without the
need to memorize the code surrounding the call of a function
and to switch visually between the distant representations of
the two functions.

(defun
 factorial (n)
 (if
 (<= n 1)
 1
 (*
 n
 (factorial
 (- n 1)
))))

(factorial 5)

(defun
 factorial (n)
 (if
 (<= n 1)
 1
 (*
 n
 (factorial (- n 1)))))
 (if
 (<= n 1)
 1
 (*
 n
 (factorial (- n 1)))))

(factorial 5)

▶
▶

Figure 18. Shortening spatial distance: parentheses match
perceptually, but do not match conceptually (left); ‘Debug-
ger view’ of code (right).

One asset of such a ‘tree-view’ is that it shortens the
distance between instructions before the call and instructions
at the beginning of the function being called. However, it
also expands the distance between the instructions before
the call and after the call, especially when multiple functions
are deployed. A ‘browser’ view ala SmallTalk can help show
details and contexts of the call and shorten both distances
(Fig. 19). Code Bubbles may be seen as a similar attempt to
shorten the distance between calling and called code.

(defun
 factorial (n)
 (if
 (<= n 1)
 1
 (*
 n
 (factorial (- n 1)))))

(factorial 5)

▶

(if
 (<= n 1)
 1
 (*
 n
 (factorial (- n 1)))))

▶

Figure 19. Browser view of the ‘factorial’ function.

start

aaa

aaa

aaa

aaa

sync1
aaa
aaa
aaa
sync2

aaa

aaa

aaa

end

start
bbb
bbb
bbb
bbb
bbb
bbb
bbb
sync1

bbb

sync2
bbb
bbb
bbb
bbb
bbb
bbb
end

thread a thread b

start

aaaaa

aaaaa

aaaaa

sync1

aaaaa

aaaaa

sync2

aaaaa

aaaaa

aaaaa

enddd

start

bbbbb
bbbbb
bbbbb
bbbbb
bbbbb

sync1

bbbbb

sync2

bbbbb
bbbbb
bbbbb
bbbbb
bbbbb
bbbbb

enddd

thread a thread b

Figure 20. Left: Ypos used as a selective variable: instruc-
tions are aligned when synchronized, and misaligned when
not synchronized. Right: Ypos used as a quantitative vari-
able: the number of cycles is mapped to the distance between
instructions (aaaaa: 2 cycles, bbbbb: 1 cycle).

Explore and leverage properties of visual variables. In a
typical textual language, Ypos is used in an ordered but not
quantitative manner. Since the distance between instructions
has no meaning, a representation could vary distances to
misalign statements and align synchronized statements only.
In Fig. 20-left, the selectivity of the Ypos variable may help
show at a glance the synchronization points and may remove
false information conveyed by perfectly aligned statements.
Distance can also be used to convey quantity. Fig. 20-right
illustrates a representation that uses Ypos as a quantitative
variable to depict two concurrent sequences of instructions.
The number of cycles required by each instruction is mapped
to the Ypos dimension. The larger the space after an instruc-
tion, the larger the number of cycles it takes to execute it.
This gives a sense of the time spent on some parts of code,
and may help balance the instructions in order to minimize
wasted cycles while waiting for the concurrent process when
synchronization is needed.

8. Threats To Validity
As stated previously, our goal is the production of knowl-
edge about the phenomenon of code perception, but the ex-
planations given in the paper are hypothetical and their va-
lidity may be questioned. We argue that the value of the pa-
per lies elsewhere. For this work, we have used an abductive
mode of knowledge inference [27]. Abduction consists in
observing a phenomenon (b) then inferring hypothetical ex-
planations (a and a → b). For example, we have seen that the
observation “Lisp parentheses are difficult to read” (b) may
be explained by the fact that “parentheses are marks differ-
ing in shape only” (a) and “shape is not selective in this con-
text” (a → b or if marks differ in shape only, then marks are
not selective). Requalifying and explaining selected obser-
vations is the essence of abduction [27] and is a recognized
scientific method of knowledge production. Compared to de-
duction and induction, abduction is the most fertile mode of
inference to foster discovery [26](in 5.172): though it is es-
sential to the advancement of knowledge, the elicitation of
explanations (and thus hypotheses to be tested) is often over-
looked.

If abductions are the most fertile mode of inference to
foster discovery, they are also the least secure and as such
need to have practical implications leading at least to mental
tests. An explanation is worth testing if it has instinctive
plausibility or reasoned objective probability [26](in 6.452).
Since SoG has been used in other contexts successfully and
has been experimentally assessed to some extent (see [38]
for a review), we argue that its application to explain PL-
related phenomena is plausible ([14] supports this claim).

The proposed framework relies on models, and as such is
a simplification of reality. Even if the framework allows us to
describe a number of the perceptual phenomena underlying
the perception of code, some important phenomena may not
have been identified because of the limited capability of the

framework, or because their explanation or cause is differ-
ent. Visual perception is complex and some visual operations
may be bypassed because of specific conditions such as lay-
out or the number of items involved. Furthermore, code rep-
resentation is not the only factor that contributes to program
understanding. Other cognitive factors, such as learning, ex-
pertise, API usability and documentation [13] contribute to
our understanding of a program, and may influence the way
the user perceives or scans the code.

The reader might disagree with the author’s application
and might be willing to offer alternative explanations using
the concepts described here. Such discussions about expla-
nation, qualification, performance prediction and task elici-
tation are enabled thanks to the framework. This is one of
the results of this work: to provide language specialists with
a commonly agreed set of concepts so that they may be able
to agree and disagree on their respective analysis, or to agree
on their disagreement.

The tasks that we elicited (finding a parenthesis, under-
standing the structure of the code, finding the location of
states...) might be considered simplistic. However, they are
related to the considered level of analysis i.e. the percep-
tion of code. At this level, we argue that they are realistic
and important: higher-level cognitive tasks are influenced by
lower-level ones as previously demonstrated [14].

9. Conclusion and Perspectives
Our contribution consists of new and plausible explanations
about phenomena pertaining to the perception of code repre-
sentation. We have captured a significant set of phenomena
pertaining to code representation at the level of “the page
of code” with ScanVis and SoG. For a framework to model
and corroborate existing phenomena is a first level of vali-
dation. We also showed how the framework may enable one
to compare the representations with respect to reading tasks.
Furthermore, the generative aspect of the framework may
enable language designers to find new ways of representing
the code. The examples and the provided design principles
may help explore the design space of code representation.

This work shows that code representation is not about
aesthetics but performance, and should not be an art [4]
but a science following principles of visual perception. To
foster understanding of a program, a representation of code
that follows those principles is not accessory, but mandatory.
Therefore the account presented in this paper may extend
the set of important aspects underlying programming lan-
guages: lexical (what concepts are), syntactical (how con-
cepts articulate), semantic (what concepts mean), but also
perceptual (how efficiently concepts are represented, with
respect to programming tasks). This should be a concern for
all computer scientists and programmers, be they academic
or practitioner, as much as basic knowledge about program-
ming such as “functional and imperative programming”, or
“static and dynamic typing”.

The explanations we produced with an abductive mode
of inference should also lend themselves to scientific tests
[26]-6.452. Indeed, even if the present analysis is reason-
able, it has not been assessed with user experiments in the
context of programming languages. Some analyses in other
contexts have been substantiated by controlled experiments
[24, 25]. One of the works cited in the paper offers evidence
of the impact of the spatial distance between marks on pro-
gram understanding [14]. Thanks to the modeling of phe-
nomena, and the process of task elicitation fostered by the
application of the framework, we believe that our work can
provide researchers with new material to better formulate the
hypotheses regarding performance predictions, and to better
design experimental methods to test those hypotheses.

Another perspective opened by this work is the unifica-
tion of existing concepts. Unifying concepts has been a tra-
ditional goal in science (e.g., Maxwell’s equations unify-
ing electricity and magnetism, or the Curry-Howard corre-
spondance between types and proofs) because this may lead
to important discoveries and insights. Here the framework
brings together many aspects of visual layout and appear-
ance of programming languages and contradicts the tradi-
tional opposition between visual and textual languages. It
also contradicts the usual wisdom that visual languages are
by essence better than textual languages: most textual lan-
guages are displayed using positional variables and thus may
use the perceptual system efficiently, while some so-called
visual languages may use visual variables (icons (shapes),
links) quite inefficiently. This should be of interest for any
computer scientist, including software engineers who often
use various UML diagrams (another visual language) to doc-
ument their software.

Even if a complete and detailed design method is still
missing, what the framework suggests is that such a method
should use a “Programmer-Centered Design” approach: it
should emphasize the act of designing representations tar-
geted at tasks meaningful for end-programmers, and not de-
signing the representation in isolation. Meanwhile, the fact
that the framework may be used to compare representation
should encourage programmers to expect justifications from
language and IDE designers. They should be compelled to
explain why and how the language designed is better than
another with respect to objective criteria. This should dimin-
ish the risk of “religious wars”[1], since using a shared, con-
sistent set of reference concepts would make the compar-
isons and justifications claims better supported.

Acknowledgments
We thank the members of ENAC LII and especially Stéphane
Chatty for the numerous discussions we had on this work.

References
[1] Raymond, D. 1991. Reading source code. In Proc. of the

1991 conference of the Centre for Advanced Studies on
Collaborative research (CASCON ’91). IBM Press 3-16.

[2] Abelson, H. and Sussman, G. 1996. Structure and Interpreta-
tion of Computer Programs (2nd ed.). MIT Press.

[3] Moody, D. 2009. The ‘Physics’ of Notations: Toward a
Scientific Basis for Constructing Visual Notations in Software
Engineering. IEEE Trans. Softw. Eng. 35(6), 756-779.

[4] Green, R. and Ledgard, H. 2011. Coding guidelines: finding
the art in the science. Comm. ACM, 54(12), 57-63.

[5] Conversy, S., Chatty, S., Hurter, C. Visual Scanning as a
Reference Framework for Interactive Representation Design.
In Information Visualization, 10, pages 196-211. Sage, 2011.

[6] Bertin, J. (1967) Sémiologie Graphique - Les diagrammes -
les réseaux - les cartes. Gauthier-Villars et Mouton & Cie,
Paris.

[7] Alan F. Blackwell and Thomas R.G. Green. (2003) Notational
Systems - the Cognitive Dimensions of Notations framework.
In HCI Models, Theories, and Frameworks, Morgan Kauf-
mann, pp. 103-134.

[8] P. J. Landin. 1966. The next 700 programming languages.
Commun. ACM 9, 3 (March 1966), 157-166.

[9] McConnell, S. 2004. Code Complete, 2nd edition. Microsoft
Press.

[10] Clifton, M. 1978. A technique for making structured programs
more readable. SIGPLAN Not. 13, 4, 58-63.

[11] Crider, J. 1978. Structured formatting of Pascal programs.
SIGPLAN Not. 13, 11 (November 1978), 15-22.

[12] Ramsdell, J. 1979. Prettyprinting structured programs with
connector lines. SIGPLAN Not. 14, 9, 74-75

[13] T. Tenny. 1988. Program Readability: Procedures Versus
Comments. IEEE Trans. Softw. Eng. 14, 9, 1271-1279.

[14] Miara, R., Musselman, J., Navarro, J. and Shneiderman, B.
1983. Program indentation and comprehensibility. CACM
26(11), 861-867.

[15] Bednarik, R. and Tukiainen, M. 2006. An eye-tracking
methodology for characterizing program comprehension
processes. In Proc. of the 2006 symp. on Eye tracking research
& applications (ETRA ’06). ACM, 125-132.

[16] Sharif, B. and Maletic, J.I. 2010. An Eye Tracking Study
on camelCase and under score Identifier Styles. In Proc. of
International Conference on Program Comprehension, IEEE,
196-205.

[17] Feigenspan, J., Kästner, C., Apel, S., Liebig, J., Schulze, M.,
Dachselt, R., Papendieck, M., Leich T. and Saake, G. 2013.
Do Background Colors Improve Program Comprehension in
the #ifdef Hell? In ESE 18(4), Springer, 699-745.

[18] Moher, T.G., Mak, D.C., Blumenthal, B., and Leventhal,
L.M. 1993. Comparing the comprehensibility of textual and
graphical programs: The case of Petri nets. In Empir. Studies
of Programmers: 5th Workshop. Ablex, 137-161.

[19] T. R. G. Green & M. Petre (1992) When visual programs
are harder to read than textual programs. Proc. of the 6th
European Conference on Cognitive Ergonomics (ECCE 6),
pp. 167-180.

[20] Whitley, K. and Blackwell, A. Visual Programming in the
Wild: A Survey of LabVIEW Programmers’, J. of Visual
Languages & Computing, 12(4), 2001, 435-472.

[21] Petre, M. 1995. Why looking isn’t always seeing: readership
skills and graphical programming. Commun. ACM 38, 6 (June
1995), 33-44.

[22] Buse, R. and Weimer, W. 2008. A metric for software
readability. In Proc. of ISSTA ’08. ACM, 121-130.

[23] Treisman, A. (1982). Perceptual grouping and attention in
visual search for features and for objects. Journal of Experi-
mental Psychology Human Perception and Performance, 8(2),
194-214.

[24] Card, S.K., Mackinlay, J.D., Shneiderman, B., Readings
in Information Visualization: Using Vision to Think. San
Francisco, California: Morgan-Kaufmann, (1999).

[25] Cleveland, W., McGill, R., Graphical Perception and Graph-
ical Methods for Analyzing Scientific Data. Science, New
Series, 229(4716) (Aug. 30, 1985), pp. 828-833.

[26] Peirce, C. S. Collected Papers of Charles Sanders Peirce,
edited by C. Hartshorne, P. Weiss, and A. Burks, 19311958,
Cambridge MA: Harvard University Press.

[27] Douven, I. Abduction. The Stanford Encyclopedia of Philos-
ophy (Spring 2011 Edition), Edward N. Zalta (ed.)

[28] Dix, A. Theoretical analysis and theory creation. In Research
Methods for Human-Computer Interaction. Cambridge
University Press, pp.175195.

[29] Steele, G. and Gabriel, R. 1996. The evolution of Lisp. In
History of programming languages II. ACM, 233-330.

[30] Whitley, K., Novick, L. and Fisher, D. 2006. Evidence in
favor of visual representation for the dataflow paradigm:
An experiment testing LabVIEW’s comprehensibility. Int. J.
Hum.-Cmp. Stud. 64(4), 281-303.

[31] Burnett, M. Visual Programming. In Encyc. of Electrical and
Electronics Engineering, 275-283. Wiley, 1999.

[32] Conversy, S. Improving Usability of Interactive Graphics
Specification and Implementation with Picking Views and
Inverse Transformations. In Proc. of VL/HCC, pages 153-
160. IEEE, 2011.

[33] Bragdon, A., Zeleznik, R., Reiss, S., Karumuri, S., Cheung,
W., Kaplan, J., Coleman, C., Adeputra, F. and LaViola, J.
2010. Code bubbles: a working set-based interface for code
understanding and maintenance. In Proc. of CHI’10, ACM,
2503-2512.

[34] Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk,
N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum,
E., Silver, J., Silverman, B. and Kafai, Y. 2009. Scratch:
programming for all. CACM, 52, 11, 60-67.

[35] Myers, B.A. 1991. Separating application code from toolkits:
eliminating the spaghetti of call-backs. In Proc. of UIST’91.
ACM, New York, NY, USA, 211-220.

[36] Wiedenbeck, S. The use of icons and labels in an end user
application program: an empirical study of learning and
retention. Behaviour & Information Technology, 1999, (18)2,
68-82.

[37] C. Appert and M. Beaudouin-Lafon. (2008). SwingStates:
Adding state machines to Java and the Swing toolkit. Journal
Software Practice and Experience. 38, 11 (Sept), 1149-1182.

[38] MacEachren, A. M. How maps work: representation, visual-
ization, and design. Guilford Press, 2004.

	1 Introduction
	2 Related Work
	2.1 Formatting and pretty-printing
	2.2 Performance in reading programming languages
	2.3 Differences between textual and visual languages
	2.4 Analysis frameworks

	3 Framework
	3.1 Semiology of Graphics
	3.2 ScanVis
	3.3 Comparison with other frameworks

	4 Contribution
	5 Modeling Code Perception
	5.1 Visually structuring the code
	5.2 Understanding control flow
	5.3 Understanding functionality

	6 Application 1: Comparing Representations
	6.1 Visually structuring the code
	6.2 Understanding control flow

	7 Application 2: Generating Representations
	8 Threats To Validity
	9 Conclusion and Perspectives

