
Designing, developing and verifying interactive
components iteratively with djnn
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ABSTRACT
Introducing iterative user interface design methods into the
development processes of safety-critical software creates
technical and methodological challenges. This article de-
scribes a new programming paradigm aimed at addressing
some of these challenges: interaction-oriented programming.
In this paradigm any piece of software consists of a hierarchi-
cal collection of components that can interact among them-
selves and with their environment, and its execution con-
sists in propagating activation through interactions between
components. We first describe the principles of interaction-
oriented programming, and illustrate them by describing the
basic components provided by the djnn programming frame-
work to create interactive software. We then show how in-
teractive programming provides a basis for formulating and
checking properties that capture requirements on interactive
components. The rest of the article is dedicated to example
design and development scenarios that illustrate how develop-
ment environments could leverage interactive programming
in the future so as to jointly address the requirements of mod-
ern user interface design and safety-critical software develop-
ment.
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ing: Design Tools and Techniques; D3.3 Programming Lan-
guages: Language Constructs and Features.

Author keywords: interactive software, design process, de-
velopment process, interactive component, software verifica-
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INTRODUCTION
There are well established methods for developing safety crit-
ical software, such as those prescribed in the DO178 stan-
dards. In some domains, solutions have been developed to
apply these methods to user interfaces as well. For instance,
in aeronautics the ARINC 661 standard defines a collection
of well known interactive components (or widgets), such as
lists and menus. The protocol of these components is defined
in such a way that they can be developed and certified indi-
vidually, then reused at will. Industrial tools have even been
introduced to assemble them graphically, then generate the
corresponding code.

However, with ongoing plans to introduce more modern user
interfaces in these safety critical settings, new questions ap-
pear. Not only are the envisaged interactive components often
more complex and more difficult to specify than their pre-
decessors, there is also a trend toward interface customiza-
tion. Each aircraft or car manufacturer wants to have its
own distinctive signature, in terms of interaction and not only
graphical appearance. Consequently, they expect equipment
providers to deliver products whose behavior and appearance
can be modified. This means that one cannot rely solely on
industry standards that define interactive components, and
that methods must be proposed for designing and develop-
ing custom components, usually as a collaboration between
an equipement provider and an integrator.

The user interface industry has developed and validated meth-
ods for designing custom interactive software, and recent
R&T projects have shown that they can be applied success-
fully by the aeronautics industry. However these methods
involve various actors, including human factors experts and
designers, and are iterative by nature. Integrating them in
industrial development processes brings new challenges, and
appropriate tool chains are not yet available to support this. In
addition, the state of the art in interactive software develop-
ment has not yet reached the same level of maturity as other
branches of computer science. Interactive software is still
complex and costly to produce [18, 19], and model driven
engineering methods are not yet widely used. This does not
provide a favorable context for developing and validating cus-
tom components on a repeated basis. In particular, validating
interactive software that contains code written in a traditional
programming language is very costly.

In this article, we propose a theoretical and practical contri-
bution towards the resolution of these two issues: the conver-
gence of user interface design methods and critical software
development processes, and the validation of custom interac-
tive software. This contribution consists of a software execu-
tion model and a software architecture, whose combination
provides the basis of what we call interaction-oriented pro-
gramming. This allows to organize interactive software as a
collection of components whose execution can be analyzed
and whose definition can be incrementally refined. The pro-
posed execution model and component architecture are im-
plemented in a development framework named djnn, that
has been used successfully in various projects.



We first analyze reasons why it is important to account for
interactive software design methods. Doing so, we outline
requirements for future design processes and tools that would
combine the needs of interactive and safety critical systems.
We then stress the key role of software architecture and exe-
cution models in fulfilling these requirements. After review-
ing the state of the art on these topics, we introduce a theoret-
ical framework for interactive components that defines a soft-
ware architecture and an execution model. We then describe
the djnn framework and use a simple aeronautical component
(a primary flight display) and a series of idealized develop-
ment scenarios to illustrate how new processes and tools for
designing interactive software can be derived from this work.

ANALYSIS: WHY IS INTERACTIVE SOFTWARE SPECIAL?

Managing hidden requirements
One of the keys to successfully developing complex systems
is the management of requirements. Gathering requirements,
analyzing them, and tracing them in products represent an im-
portant part of the development effort. Various development
methods and tools have been proposed for this purpose, and
for supporting certification processes. Unfortunately, user in-
terfaces suffer from a fatal flaw with this regard: requirements
are impossible to gather in advance. There are hidden re-
quirements that keep appearing during design and develop-
ment processes, or even during the use of the final systems.
As an example, consider an equipment in which two critical
information fields are shown side by side. The two graphi-
cal representations may work perfectly when tested indepen-
dently, and when using them together visual interferences or
perceived inconsistencies between them can lead users to er-
rors in reading them. It can also be discovered later that one
of these representations does not work well when users are
in particular mental conditions that had not been anticipated.
Some of these emerging requirements, when not caught early
enough, can be palliated by operational procedures or user
training. Others can lead to safety flaws, or to outright rejec-
tion of the system by its intended users.

A day might come when cognitive sciences provide us with
enough knowledge that requirements can actually be gathered
in advance, but this is at best a long time goal. Until then,
the best known solution for securing requirements is iterative
design, a flavor of agile methods developed specifically for
interactive software. Users are presented prototypes created
by designers and usability experts, new requirements emerge
from the confrontation, and new prototypes can be designed.
During this process, two collections are incrementally cre-
ated: a collection of design elements, and a collection of re-
quirements. It is only after a number of iterations that the two
collections can be considered sufficient.

This iterative process is not intrinsically incompatible with
the processes used in safety-critical developments. Neverthe-
less, not only does it require dedicated tools for the initial
phases of design, it also interferes with further development
phases. In theory, user interface design could be done prior
to actual software development, so that the two processes are
independent. In practice however, design generally continues

in parallel with development, if only because hidden require-
ments keep showing up. This means that solutions must be
proposed to manage how the two processes interact with each
other.

Architecture of interactive software
The above provides a first set of requirements for tools dedi-
cated to user interface design in critical systems: an architec-
ture that allows the incremental refinement of design elements
and their execution, as well as the incremental definition of
requirements and their checking. The desire to create cus-
tomizable user interfaces highlights additional requirements:
the ability to separately define the behaviors of given compo-
nents, and check that the resulting user interfaces still meets
the requirements.

Interoperability and interchangeability of software compo-
nents is actually a universal concern, and it is the essence of
software architecture. There are various situations in which
programmers need to change how components are combined
in their software. This includes early design phases, in which
prototypes are developed. And this also includes various
refactoring phases, whether during initial development or
when the software is reused to create new products. Each pro-
gramming paradigm provides support for the interoperability
of a certain type of components, and therefore for software
architecture. For instance, functional programming makes it
easier to refactor software that performs computations. Simi-
larly process algebra makes it easier to refactor software that
reacts to input.

However, interactive software brings its own class of refactor-
ing. There are many different ways to design a user interface
for a given task. Take for instance the single pressing of a
button to activate a function. The button can just change state
visually, for instance by changing color. This atomic change
can be expressed through an assignment, either of the color
itself or of a symbolic state of the button. Alternatively, the
button can change with an animation. This would require the
state assignment to be replaced with a process that repeatedly
modifies the visual state, and that can continues in parallel
with further interactions. These two options are profoundly
different in existing programming paradigms, and this makes
refactoring costly. To compound matters further, user inter-
faces can make use of various interaction modalities such as
graphics, sound, touch input, speech input, eye tracking, etc.
Not only is each modality different from the others, they can
also be combined in ways that require to manage interaction
state, time intervals, and other complex execution patterns.

Various architecture patterns have been proposed to support
the interoperability of components in interactive software. As
exemplified above, some situations are easily expressed by
simple constructs in existing programming languages, such as
function calls, assignments or loops. Others require specific
solutions such as events, data-flows, state machines. This di-
versity of control structures and component interconnection
mechanisms, if not derived from a reduced set of primitives,
hampers interoperability. It also limits the formulation of an
execution semantics for programs, and therefore the ability to
formulate and check properties on software components.



Another consequence is in the complexity for programmers.
Each individual solution alleviates one source of complexity,
for instance state machines make it easy to manage state de-
pendencies. But as soon as several solutions are mixed, new
sources of complexity appear. For instance, languages such
are QML must be combined with traditional languages such
as C++ to produce full applications, thus reintroducing in pro-
grams the traditional architecture patterns and control struc-
tures. Similarly, combining state machines with dataflows
can rarely be performed without writing additional code in
a traditional programming language. Programmers therefore
end up manipulating independent concepts that each describe
part of the program execution, and that do not have a clear
common base.

Therefore, defining a minimal set of primitives from which
the behavior of interactive software can be derived is required
both for raising interactive software to the same level of man-
ageability as other types of software, and for supporting de-
velopment processes that rely on software refactoring.

STATE OF THE ART

Complexity
Various methods have been proposed over the last decades
to make interactive software development less complex. The
initial approach, mostly in the 1980s and 1990s, consisted
in creating User Interface Management Systems and user in-
terface toolkits on top of traditional programming languages.
This approach evolved into two areas of research. On the
one hand were collections of reusable interactive components
such as dialogue boxes and buttons, that evolved into special-
ized languages and standards such as XAML, XUL, QML
and ARINC 661.

On the other hand were software patterns aimed at managing
the architecture requirements of interactive software, that dif-
fer significantly from those of computation-oriented software.
Some of these patterns were aimed at separating the inter-
active code from the computation-oriented and data-oriented
code. This includes the Seeheim and ARCH architecture, and
the MVC, PAC and MVVM patterns. Other patterns were
aimed at providing better support for the execution and con-
trol patterns encountered in interactive software. This starts
with callback functions and the Inversion of Control pattern
that account for the prevalence of external control in interac-
tive software. But this also includes more complex patterns to
support state management (state machines, hierarchical state
machines, Statecharts) and dataflow (one-way constraints,
functional reactive programming [11], dataflow bricks [6]).
However, as mentioned previously, these solutions provide
only local complexity relief: they make some parts of the be-
havior easier to formulate, but the overall complexity remains
high because of how heterogeneous constructs are combined.

Development process
Historically, two approaches have been taken to develop
graphical user interfaces. The first consists in giving a func-
tional specification to programmers, and rely on their graph-
ical skills. The second, used when visual quality is desir-
able, consists in asking graphical designers to produce visu-

als then asking programmers to reproduce them in their pro-
grams. Having programmers recode the graphics like this is
both a waste of time and a cause of errors.

In contrast with this, traditional programmers can split their
tasks and work in parallel, relying on well supported inte-
gration techniques such as separate compilation and linking.
Interactive software developers could take advantage of sim-
ilar solutions. First, they could to split their tasks and work
in parallel with graphical designers. Then, they could also
split tasks during iterative design phases with users and hu-
man factors specialists. Solutions have been proposed for
this, leveraging on the similarities between the visual and log-
ical structure of a user interface and the abstract syntax tree
in traditional programming [7]. Considering graphics and in-
teractive behaviors as nodes of a tree allows to produce them
independently, then build the tree during a loading phase at
compilation or execution time, and execute the resulting tree.
This has been shown to yield significant improvements both
in terms of effort and development time span[?]. However,
this is only feasible for those parts of the software that can
be consistently modeled as nodes in the execution tree. To be
fully operational, this approach requires that 1OO% of pro-
grams can be modeled in the same framework.

Another approach consists in applying model-driven engi-
neering methods to interactive software. In this approach,
domain experts produce an abstract model of the task to be
carried out by users, then all or part of the software is de-
rived from this abstract model. However this only work for
some classes of user activities, and the resulting user inter-
faces are stereotyped and of limited usability. More practical
variants of this approach have also been tested, where the user
interface is expressed using a theoretical model, but it is pro-
duced through a design process rather than generated from a
task model. This allows to take advantage of the benefits of
model-driven architectures without losing the interface qual-
ity brought by the design process. For instance in the Pet-
Shop system, applications are created by combining Object
Petri Net models with Java code [20]. However, like above
this approach will reach its full potential only when 100% of
the user interface can be expressed in the model.

Code verification
During the last decades, various methods dedicated to the
verification of interactive system properties have been pro-
posed. The widely used approach relies on the test of the
final system (or a prototype of it) where end-users accom-
plish selected tasks in a dedicated environment. Observations
and measurements performed during the execution are used
to assess whether the system fulfills the expected properties
or not. The main drawback of this approach lies in its lack of
exhaustivity because properties cannot be checked against all
possible executions of the system. Moreover, this approach
can only be used after the development (the system must be
available) which constitutes another negative point: bugs are
way more expensive to locate and correct at this development
stage.

Model-based methods have been proposed to minimize these
issues: at design time, a model of the future system is built



and properties are verified by studies performed on the model
rather than on the final system itself. The underlying logic
behind this approach is that if a property holds on the model,
and if the final system is built according to the model, then
the property holds on the final system. Model checking aims
at verifying properties on the state-transition structure built
during the simulation of the model [20]. This is very similar
to methods used for safety-critical software (eg. Esterel: [4],
Scade: [12]). Alternatively, proof-based methods consist in
mathematically proving the preservation of properties (invari-
ants, pre-conditions and / or post-conditions) during succes-
sive refinements of the model (VDM: [10], Z: [16] or B: [2]).

Although they have been shown to be very effective, such
model-checking approaches suffer from their impossibility to
encompass systems with infinite number of states or transi-
tions which is a major limitation in the context of interactive
systems. Moreover, the assumption that ”the final system is
built according to the model” is hard to reach for reasons ex-
plained previously: no available model describes 100% of a
user interface. To palliate this, some authors introduce a sim-
plified model called the abstract user interface, in which the
totality of a user interface can be described. Properties can
be checked on this model. However, the process of convert-
ing this into a concrete user interface by adding code to the
abstract user interface limits the benefits that can be obtained
from the model based approach.

Abstract interpretation ( [9]) is a verification method based
on static analysis of the software code. An abstract semantic
is extracted from the code and can be used to verify proper-
ties and perform optimisations 1. This approach has histor-
ically been used for the verification of various properties of
programs. For instance, the static analyzer Astrée is able to
prove the absence of some types of run time errors on C pro-
grams ( [5]), and has been used in safety-critical projects. For
interactive properties, [17] first proposed this approach with
the objective of providing a unification canvas for verifica-
tion techniques. [14] described the verification of interactive
Web pages through the static analysis of the user interface
with ergonomic rules, encoded in UsiXML. [21] proposed
to build and exploit a graph-oriented semantics of an inter-
active device to support the verification of properties. In this
work, an existing device was analyzed and modeled with a
graph whose arcs represent user actions and nodes observ-
able states. It was then possible to compute some interactive
properties on the graph that can be interpreted at the device
level.

Abstract interpretation is an efficient application of the model
checking approach: work is performed directly at the low-
est level, that is the code of a concrete user interface, and
therefore avoids the limitations of using an abstract model.
Paradoxically, its main drawback for interactive systems lies
in the impossibility to access to higher levels of description of

1Concrete semantics are mathematically well defined objects that
explicit the meaning and the possible behaviors of the program.
Concrete semantics are generally not computable, which makes all
non-trivial properties undecidable. To avoid this, abstract semantics
are introduced as computable approximations of concrete semantics
in which more properties are decidable.

the interface, such as those contained in the abstract user in-
terface, because they usually have disappeared during imple-
mentation and compilation. It becomes impossible to check
properties that would be expressed at these higher levels, such
as “is this rectangle red when this button is pressed?”. When
the software is built with languages that do not capture the
appropriate level of information (e.g. C ot Java), the miss-
ing information must be introduced by producing a model by
hand.

Analysis and positioning
Most limitations of the state of the art derive from the same
cause: the limited power of expression of the patterns, lan-
guages and models available. Each of the available solutions
for expressing parts of interactive software have focused on
a given requirement that was not fulfilled by traditional pro-
gramming languages: supporting external control, or provid-
ing reusable dialogue boxes, or managing state, etc. Each
alleviates one source of complexity in interactive software,
but none provides a complete solution like modern program-
ming languages do for computation-oriented software. This
has consequences on software complexity, on development
processes, and on the ability to verify code properties.

In this article, we describe an alternative solution that over-
comes these limitations using an approach similar to Lustre
or Esterel [15, 4]: adopting an execution model dedicated to
the category of software that is being developed, and using it
to develop the totality of the concerned software. Like Lus-
tre and Esterel, the proposed model represents concurrency
with the concept of process; it can be seen as a third point
of view on interactive systems, more adapted to the need of
user interfaces and making interaction its core concept. In
contrast with them, its design integrates software engineering
concerns and particularly the need of strong conceptual unifi-
cation so as to support flexible development processes. More-
over, our work extends the approach followed by SCADE
Display concerning the verification capabilities of interactive
applications: when SCADE adresses low-level related prop-
erties (related to the concrete user interface: graphics, code
design) our approach also encompasses upstream user inter-
face design phases.

THE DJNN FRAMEWORK
djnn (available at http://djnn.net) is a programming
framework that relies on a model of interactive software in
which any program can be described as a tree of interactive
components [7]. Basic components such as variables, con-
trol structures, and graphical objects are assembled to pro-
duce bigger components, themselves assembled until produc-
ing the desired application.

The execution of a program is described by the interactions
between its components, and between them and the external
environment: components react to events detected in their en-
vironment, and may themselves trigger events. For instance,
a simple “fire alarm” program can be described with three
components. The first is activated when the temperature is
higher than a threshold, the second produces a sound when



activated and the third binds the two others by propagating
the activation of the first one to the second one.

Such a component model applies to input and output devices.
This allows djnn to provide support for a wide range of de-
vices, thus fostering the exploration of wide design spaces.
But djnn has also the expressive potential of a general pro-
gramming language. This contrasts with most user interface
programming frameworks, which provide reusable compo-
nents and architecture patterns that programmers combine
with code written in a traditional programming language. Not
only does djnn aim at covering 100% of the user interface
code, it also has the potential of describing the functional core
as well, thus covering whole interactive applications.

Theoretical foundation: interactive processes
Like functional programming languages, the conceptual
model of djnn relies on a very reduced set of basic concepts
from which all other language concepts and programmer-
defined concepts are derived. In functional languages the ba-
sic concepts are functions, arguments and function calls, all
rooted in the theoretical concept of lambda term from lambda
calculus. In djnn the basic concepts are components, names
and activation, all rooted in the theoretical concept of process
from process algebras [3].

While computations can be described as the evaluation of
lambda expressions, interactions can be described as the acti-
vation of interconnected processes: activation signals, called
events, propagate from one process to another according to
how they are coupled, thus producing the reactive behavior
of the system. This concept of interaction differs from that of
communication used in most process algebras, but it is never-
theless possible to express formal models of component acti-
vation in existing process calculi.

Process-based theories are general enough to model both
interaction-oriented software and computation-oriented soft-
ware [13]. But they can also model hardware devices, and
more generally the environment in which software applica-
tions run. This allows to model both the software and its di-
rect environment using processes, so that no special provision
has to be made for those part of the software that interact with
the environment and the user. Whole interactive applications
can therefore be described in the same language.

Core interactive components
Components are man-made embodiment of processes: engi-
neers build systems by assembling components, and the the-
oretical model of the resulting systems can be deduced from
those of the individual components and how they are assem-
bled. Programmers create interactive programs by instanti-
ating and assembling software components, and connecting
them to hardware components. The djnn environment pro-
vides them with basic software components to this effect:

• input components represent input devices, sensors, or ele-
ments of the execution context. Their activation is coupled
to external events. For instance, a mouse is an input com-
ponent made of smaller input components such as a buttons

and a position tracker. The position tracker itself has two
smaller input components named X and Y.

• output components represent output devices or abstractions
used to manipulate output devices. Their activation is cou-
pled to actions performed by the output devices. For ex-
ample, a graphical object is an output component and any
activation of it or of its sub-components triggers changes
in the display.

• data components represent the computer memory. The
smaller data components are named properties, and corre-
spond to the basic types. Properties have sub-components
named READ and WRITE, but like in traditional lan-
guages the usual practice is to reserve their use to specific
components such as operations as assignments. The activa-
tion of the WRITE sub-component is the basis of dataflow:
modifying a value can be used to trigger actions such as
copying the value to another.

• operation components represent the operations provided by
the execution platform, usually the CPU.

• control structure components represent the various ways
in which the activation of components can be controlled.
A control structure is a component that creates couplings
between other components when it is activated. Control
structures are the key to supporting the diversity of con-
trol patterns used in interactive software. Standard control
structures range from the binding, which creates a simple
coupling when it is activated, or the connector, which cre-
ates a coupling between a source and a copy instruction, to
finite state machines and Statecharts. Other control struc-
tures can be created at will by combining existing compo-
nents.

Assembling components
Complete applications and reusable components can be cre-
ated from the basic components described above. Basic com-
ponents are assembled to create large components that imple-
ment small interactors. These interactors can be assembled to
create larger interactors, and so on.

A simple button, for example, can be built from few graphical
shapes (rectangles, gradient, color, text, etc.) associated with
a switch and a finite state machine that control the appearance
of the button on mouse or touch events.
component button (posX, posY, label) {
component click
switch sw {
component released {
color c1 (200, 200, 200)

}
component pressed {
color c2 (100, 100, 100)
}

}
rectangle rec (posX, posY, 60, 30)
text t (posX + 15, posY + 15, label)
FSM fsm {
state released
state pressed
transition (released, press, rec, "press", 0)
transition (press, released, rec, "release", click)

}
connector (fsm, "state", sw, "state")

}



The button can then be inserted in a more complex component
to trigger a specific process through a simple binding.
component alarm {
button b1 (50, 50, "alarm")
beep fire_alarm
binding (b1, "click", fire_alarm, "start")

}

Verifying properties
The djnn framework gives a central role to the tree structure
of programs. In particular, mimicking graphical scene graphs
introduced a few decades ago, the tree structure is used to
express execution control. As a consequence it becomes pos-
sible to evaluate some properties by a static analysis of the
tree through pattern matching techniques such as XPath re-
quests. For example, the position of a graphical object in
the tree tells its relative position to other graphical objects
in the same component. Thus, a component situated on the
right of another one in the tree will be displayed on top of it
if their coordinates overlap. In the same way, djnn imple-
ments a flavor of graphical scene graphs in which graphical
style components such as color, opacity and stroke width can
be placed in the tree and act as context modifiers that affect
all the shapes that follow see Figure 1).

Figure 1. The order in the tree determines the graphical result

Pattern matching over the tree structure also enables the ver-
ification of component signature. This is a strong require-
ment in the context of the parallel development of complex
graphical user interfaces where it is needed to ensure that
a component respect a contract. Suppose for example that
one creates a new widget for a WIMP toolkit. It must then
be checked that this widget has a width and a height chil-
dren to ensure that it will be possible to connect them to the
layout system. Such a verification can be made by check-
ing that the XPath expressions expr=(/widget/width) and
expr=(/widget/height) over the component do not return a
null result.

Finally, the combination of Xpath queries to select elements
and simple algorithms over their results allows to address
more complex case such as the verification of the control flow
connecting a sensor to an alarm through various computation
units [8].

The djnn platform
djnn is currently available as a collection of libraries and as
an interpreter. The core djnn library manages the execution
model and the component system. The other libraries each
bring a collection of components dedicated to an interaction
modality: graphics, input, gesture, sound, etc. Programmers
can use these libraries like they would use any programming
framework, by writing programs that use the djnn API to
create components. The main difference with programming

frameworks is that they can create entire applications with
component-creation instructions only.

The core djnn library also implements parsers for external
component formats, currently XML and Json. Therefore, it
can be turned into a component interpretor that reads com-
ponents from files and executes them. Components can be
stored in multiple files in order to support various software
engineering processes. In particular, user interface design
teams like to store their graphical components in separate
files, so that they can be managed independently by graph-
ical designers and merged with the rest of the application at
run time only.

APPLICATION SCENARIOS
As an example development process based on djnn, con-
sider an aircraft manufacturer who wants to add new inter-
action functionalities on a particular cockpit subsystem. This
translates into various engineering phases at growing technol-
ogy readiness levels, from initial exploration to final system
development and validation. At lower TRLs, the design pro-
cesses will ideally reflect the state of the art of user interface
design. At higher TRLs, they must reflect the state of the art
of requirements engineering and code validation.

In this section, we illustrate a proof of concept experiment
where, after observing current practices and gathering re-
quirements from various actors of the aeronautical industry,
we tested the role that djnn could play in supporting work
at both lower and higher TRLs. The proposed scenarios are
very simplified and exaggerated compared to the original in-
dustrial situations. Nevertheless, they serve well to illustrate
the benefits that could be expected from a unified architecture
and execution model such as djnn’s.

Figure 2. A primary flight display



We focus here on the design process of a primary flight dis-
play (PFD) i.e. the instrument that displays the basic param-
eters of the plane. The PFD consists of six parts, as shown in
Figure 2:

• Attitude indicator: also known as artificial horizon, it gives
information about the pitch (fore and aft tilt) and roll (side
to side tilt) of the aircraft (center of the PFD)

• Altitude indicator (right side).

• Airspeed indicator (left side).

• Heading display: displays the magnetic heading of the air-
craft (bottom).

• Source selector buttons: control the display of radio mag-
netic indicators on the heading display (bottom).

• Alerts: alert messages show at the top of the display.

In this prototype, the attitude component has an additional
interactive part. Besides displaying altitude of the plane, this
component gives an indication on the target altitude for an au-
topilot. However, while in traditional cockpits, the pilot sets
the target altitude with a physical button in a distant part of
the cockpit, here the team wants to explore the direct manip-
ulation on the PFD.

In the following scenarios, a group of designers work with
test pilots to build a prototype of the graphical appearance
and the behavior of a new PFD, then the prototype is sent to
the equipment provider. There, a team of developer codes the
component and runs automated checks to verify that it has
the same behavior as the prototype, while another team runs
checks to verify properties that the component needs for in-
clusion in the existing code-base. Later, the component is re-
turned to the manufacturer, who can run automated checks to
verify its conformance with the original prototype. Through
the examination of the design process of two components, we
show here how the djnn framework supports concurrent de-
velopment and enables the verification and validation of com-
ponents.

Increasing fidelity
In the cockpit, the PFD is part of a more complex system of
sensors and physical interactors. The team needs to simulate
these subsystems in order to test and refine the behavior of
the attitude component. At low TRL, the sensors do not have
to be realistic. Therefore, the developer chooses to connect
the attitude indicator to the best compatible sensor at hand:
the motion sensor of his laptop computer. This allows him to
perform very fast development iterations. When he is satis-
fied with his work, the developer needs to send the component
to the lead developer who is in charge of integrating several
components. He dumps the component to XML format and
sends the resulting file to her. The lead developer just has to
drag and drop the XML file to her project directory, where
it will sit with the other components she has received. Run-
ning the master PFD component will load all the components
from the directory and execute them. She can use her own
motion sensor for testing the result. When the component is
mature enough, it can undergo a review process to migrate to

a higher TRL. The team in charge of this must test the com-
ponent against a more realistic environment: a simulation en-
gine controlled by a joystick. They save the component to a
directory on the test machine with the proper equipment. The
component needs to be adapted to the joystick used for pitch
and roll. If necessary, this can be done with a simple rewiring;
no modification is required in the component itself. But here,
the original developer has added an adaptive behavior to the
component: when a joystick is detected, the rewiring is per-
formed automatically, and the component can be used as is.

Concurrent development
A programmer and a graphical designer are producing a com-
ponent that displays the heading of the plane. Using the ini-
tial specification of the component structure as a contract,
they can work in parallel. While the designer is creating the
graphical skin and layout of the component, the programmer
implements the behavior. Here, she uses temporary graphics
that the graphical designer has sent earlier (Figure 3a).

When the graphical designer produces graphics, he saves
them in SVG format, an XML-based markup language sup-
ported by all major vector graphics authoring tools. In this
form, the graphics are considered as djnn components and
can be manipulated like any other component. The developer
can add them to the component he is working on, address
them by their name, and connect them to other subcompo-
nents. The names of graphical components in the SVG file
are the implementation of the contract between the graphical
designer and the developer.

When the final graphics are ready (Figure 3b) the graphical
designer can send them to the developer. Replacing the tem-
porary graphics with the new ones is as simple as replacing
the SVG file in the appropriate directory and restarting the
component. In our case, the graphical designer is late and
the component has already been sent to the project manager
who gives a demo to visitors in a few minutes. This poses
no problem: the project manager saves the file, restarts the
component, and the demo is ready.

Figure 3. Heading display: (a) sketch (b) final graphics

Parallel design
The altitude component, besides displaying the altitude of the
plane, also gives an indication on the target altitude for an au-
topilot. In traditional cockpits, the pilot sets the target altitude
with a physical button in a distant part of the cockpit. For this
new design, the team wants to explore the direct manipulation
on the PFD. During design sessions, the team has identified
several interaction variants. One prototype is developed in or-
der to explore them further with final users. The first option



relies on sliding the element that represents the target altitude
(the blue element in Figure 4a). The second option is an indi-
rect interaction on a smartphone-like number picker (Figure
4b). Switching from one option to the other is just a matter
of loading one component or the other. Here, usability tests
highlight manipulation problems with the first option and pi-
lots validate the second one.

Figure 4. Altitude indicators: (a) direct manipulation and (b) indirect
interaction for setting the target altitude

Component verification and validation
The airspeed component is subcontracted to an external
provider, who delivers it through a web site. The project man-
ager can either download the component and copy it in the
component directory as described above or have it loaded dy-
namically by referencing the URL in the program. He needs
to verify that the component will work well with the rest of
the application. To do so he runs an automatic verification
against the specification of the component, made of a col-
lection of properties. This verification is made on the XML
form of the djnn component, using pattern-matching tech-
niques. In the first version of the component, the “ground
speed” property is missing and the verification process au-
tomatically notifies it. After notifying the subcontractor, the
verification is successful for the revised version received, and
the component is loaded.

After the integration of all sub-components to the PFD com-
ponent, the lead developer verifies that all the control flows
are well wired. For example, she needs to be sure that alarms
will be displayed when required. She uses a program that
checks the control flow. The program traces back the con-
trol chain from “alert terrain” up to the “altitude” property
and signals that it is not connected to any value. In the mean
time, the verification raises a warning on the attitude compo-
nent: two dataflow chains are connected to the same value.
Thanks to these warnings, she can deduce than the simulated
value of the altitude is connected by mistake to the attitude
property, correct it and be certain that the alert terrain alarm
will be displayed when needed.

CONCLUSION AND PERSPECTIVES

In this article, we proposed a general framework that pro-
vides a semantical unification of control mechanisms in in-
teractive software. This framework relies on a framework
whose basic elements are processes, names and events, from
which more complex control structures can be defined (trans-
fer of control, activation, interruption, transfer of data, de-
terministic choice, state machines, etc). On the top of these,
a large collection of components have been designed for im-
plementing the pragmatic aspects interaction: management of
display (graphics, text, color, ...), input management (mouse,
multi)touch), sound, interface with various external devices,
etc. djnn is the name of the proposed implementation of
this framework. It provides interaction designers and soft-
ware developers with a platform for developing new compo-
nents (through a dedicated language), assembling them and
running the resulting application.

One long term objective for djnn is to provide the indus-
try with a tool for development of interactive applications
adapted to their domains. For this purpose, two major axes
must be studied: for the moment, djnn is not supported by an
IDE (Integrated Development Environment) similar to Code-
block, Eclipse or TopCased. Such tools useful for djnn users
must be developed, especially a graphical editor for djnn
models. The question of certification also has to be tack-
led. In the context of aeronautic, if djnn is used to develop
and verify aircraft on-board applications, it must comply with
some normative requirements related to software tool qualifi-
cation (as specified in [1]).

The framework encompasses mechanisms dedicated to the
expression and the verification of properties specific to in-
teractive applications. Based on abstract interpretation, this
allows to directly check on the code various properties at
design- or system-level. Abstractions based on the compo-
nent graph as well as the control flow graph retrieved from
the code allow to address properties related not only to low
level abstraction (code) but also to higher level (user interac-
tion). As all necessary information describing the interaction
is available at code level, our approach does not suffer from
classical impossibilities related to absence of high level infor-
mation for verification. Even if promising results for verifica-
tion have already been obtained, a lot of research remain to be
done to explore all the possibilities enabled by this approach.
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