
What programming languages
for interactive systems designers?

Stéphane Chatty
Université de Toulouse - ENAC

7 avenue E. Belin, 31055 Toulouse, France
chatty@enac.fr

Stéphane Conversy
Université de Toulouse - ENAC

7 avenue E. Belin, 31055 Toulouse, France
conversy@enac.fr

ABSTRACT
We highlight the role of programming in the engineering of
interactive systems, in the long term perspective of creating
general theories of interaction to support engineers. We out-
line a research roadmap aimed at both providing designers
with appropriate programming languages and understanding
the nature of interactive programs.

Author Keywords
interactive software, programming languages, notations, en-
gineering, design, theory

ACM Classification Keywords
H.5.2 Information Interfaces and presentation: User Inter-
faces; D.3.3 Programming Languages: Language Constructs
and Features

INTRODUCTION
For the computing industry and the world in general, this has
been the decade of interactive systems. Long announced by
researchers, natural user interfaces have reached the indus-
trial stage and found their way to our pockets and our bedside
tables. This has changed the computing industry by giving
a more central role to individual programmers and to design
professionals. This also has bolstered the public awareness
about software programming, with the popularization of sen-
tences such as “programming is the new literacy” or “program
or be programmed” [25].

However, there is a paradox: what makes computers so in-
teresting is their interactivity, and still the programming tech-
niques that are proposed to the eager masses are the old tech-
niques, invented for designing algorithms and not interaction!
This might create some disillusionment with computer sci-
ence, and we indeed are observing its first signs in engineer-
ing students. We contend not only that addressing this para-
dox is our responsibility, but that creating programming lan-
guages for interactivity would bring benefits to engineers.

In this article we discuss three statements and their conse-
quences for research on engineering interactive systems:

• engineers need general theories of interaction

• designing interactive systems is programming

• programming languages are user interfaces.

We elaborate on these statements and why they should be im-
portant to our research community, then we outline possible
areas of research aimed at exploring their consequences.

WE NEED GENERAL THEORIES OF INTERACTION
Engineering has been defined by the Engineers Council for
Professional Development, in the United States, as [1, em-
phasis ours]:

The creative application of scientific principles to design
or develop structures, machines, apparatus, or manufac-
turing processes [...] or to forecast their behaviour under
specific operating conditions [...].

Let us first note the central role of scientific principles in this
definition: engineers need scientific theories, and progress in
engineering is often triggered by theoretical progress. What
is less intuitive is the combination of roles assigned to engi-
neers: to design (with an emphasis on creativity) or to fore-
cast. We derive two lessons from this:

• designing is a major component of engineering

• scientific theories are used both to design and to forecast

Indeed, examples abound of theories that are used to both
design and forecast. Mechanical engineers use the same
concepts of forces and pressures to forecast the behavior of
bedrock and to design a bridge built on it. The same holds for
chemical engineering, for bio-engineering, and even for tra-
ditional software engineering. Theories of computation allow
to describe computation systems (even natural ones) and to
predict their behavior. Through programming languages de-
rived from them, they also allow to design computation soft-
ware and to forecast its behavior. What allows these theories
to support both design and forecast activities is their gener-
ality: they encompass all the relevant aspects of the system
being designed and its environment. We contend that this
should be an explicit goal in the field of interactive systems
too.

Engineering interactive systems involves, before designing
and developing a software system, the analysis of the human
and physical environment in which it will operate. This re-
quires the ability to model software, human cognition and
perception, activities and tasks, application domains, and
even physical interaction. Currently, there are specialized
theories for each of these, and we spend considerable efforts
developing empirical methods that help engineers combine

1



these theories. But this focus on methods should only last
as long as we feel compelled to teach separate theories in
our engineering courses. The ultimate goal should remain
the elicitation of general theories that encompass all these as-
pects, as attempted for instance by Palanque et al. when using
Petri nets to model the behavior of both the user and the soft-
ware [22].

DESIGNING INTERACTIVE SYSTEMS IS PROGRAMMING
Programs are a central concept in theories of computation,
and in the whole field of software engineering. At the oppo-
site, in the field of interactive software engineering they are
often relegated to the status of mere by-products. But pro-
grams are nevertheless a major part of interactive systems,
and any general theory of interaction will need to clarify their
status and the role of programming. This section aims at
demonstrating that the activity of designing interactive sys-
tems can be considered as programming.

Generalized programming
In the following, we consider programs as descriptions of the
behavior of an entity when an execution device runs them,
and programming as an act performed by a human to design
the description. It is possible to picture the activity of pro-
gramming as carried out by professionals trained in computer
science and software engineering, who write algorithms in
C, Java or C#. We contend that this picture is harmful to our
ability to support engineers who design or need to forecast the
behavior of interactive systems. Both the design of systems,
that is the definition of their structure and their behavior, and
the analysis of their environment are closer to programming
than it seems.

To start with, programming does not only consist in writing.
It also involves reading, understanding, checking, designing,
forecasting the behavior of code. It is an engineering activity,
and cannot be distinguished from the engineering of interac-
tive systems on purely methodological grounds.

Then programming has ceased to be a task reserved to com-
puter scientists and software engineers. More and more
graphical designers, web designers and communication pro-
fessionals learn programming languages for producing parts
of interactive systems [7, 20]. For them, programming is part
of their activity just like drawing sketches. Languages and
environments such as Processing [24] have been created ex-
plicitly for designers.

Programming should also not be restricted to the engineer-
ing of algorithms. When designing an interactive system, a
number of entities that must be analyzed or designed can be
modelled as programs. The most obvious is the interactive be-
havior of visual components: it is now commonplace that in-
teraction designers program them. The same holds for anima-
tion, and even for graphics themselves: sometimes, graphical
designers want to produce effects that are best described as
programs [7]. Operational procedures, often present in safety
critical systems, are programs. Even user tasks are similar to
programs, as illustrated by the conceptual similitude between
CTT [19] operators and parallel programming languages con-
trol structures.

Programming algorithms, programming interaction
Overall, designing interactive systems and programming are
much closer than usually advertised. We suggest that the tra-
ditional view of programming is biased. Turing and the gen-
erations that came after him have created such a consistent
body of theories and programming languages that the the-
ory of computation is used ubiquitously for analyzing sys-
tems, for designing algorithms, and even as a natural sci-
ence [3]. This success sometimes obscures the existence
(even the prevalence!) of other kinds of programs.

In this context, two courses of actions are possible for re-
searchers. The first option is to design languages that help
user interface designers assimilate concepts from the theory
of computation. The second option, that we suggest is more
promising, would be to acknowledge the difference and de-
sign adequate languages and theories. Then, over the years,
reaching the ability to consider interactive programs, human
procedures and tasks as manifestations of the same theoretical
principles could lead to a more balanced situation, with two
kinds of programs and two bodies of knowledge: algorithms,
and interaction.

PROGRAMMING LANGUAGES ARE USER INTERFACES
Software programming is an act performed by a user through
a machine. As such, it is like any other computer-supported
activity and requires usable tools, i.e. tools that enable their
users to accomplish a task with a minimum amount of re-
sources and in a delightful way. A review and classification
of the usability requirements expected of interactive develop-
ment tools has been made in [15].

When thinking about support for interactive software pro-
grammers, integrated development environments (IDE), user
interface management systems (UIMS) and user interface
builders are the first tools that come to mind. But program-
ming languages play a more central role because they ulti-
mately condition how programmers think about programs. To
analyze the role of programming languages, and more gener-
ally, of any notation, we use Norman’s theory of action [21]
and study three aspects of interaction with them: evaluation,
conceptual model and execution.

Evaluation
Programming languages allow programmers to express pro-
grams through a notation. Whether textual or so-called “vi-
sual”, notations employ various graphical “features”: texts,
shapes, alignments, colors, arrows, etc, to encode informa-
tion. The representation of a program is called “the code”.

An implicit but important aspect of programming languages
is that they must support the production of readable code, for
oneself and for others [23]: “Programs must be written for
people to read, and only incidentally for machines to execute
[2]”. In this regard, the readbility of code is like the readbility
of any visual representation: the first step toward forming a
mental model and acting.

The graphical appearance of the code has been shown to have
an impact on understanding. For example, indentation length

2



has been experimentally shown to have an impact on the com-
prehension of code: 2- and 4-space indentation makes read-
ers better at understanding the code than 6-space indentation,
for both novice and expert readers [17]. More surprisingly,
Green et al. found that textual representations outperformed
LabView’s graphical representations for each and every sub-
ject [11].

Conceptual model
Interacting with a tool is more than just its look and feel. One
of the essential aspects is the underlying conceptual model,
that is an explanation, usually highly simplified, of how a sys-
tem works [21]. For example, the conceptual model of a file
system relies on the concepts of File and Directory and the
related operations. It can be represented either as icons, or as
lists of names in a command line user interface. Conceptual
models are considered essential to usability by HCI special-
ists: a badly designed conceptual model is often at the root of
poor usability.

Programming languages are no exception to this rule: they
can be analyzed as a visual representation that reflects an un-
derlying conceptual model. For example, LISP code with its
parentheses is one possible representation of the underlying
hierarchy of expressions. Another representation of the same
program would be a graphical tree that shows the hierarchy
in 2D.

A conceptual model shapes the way their users think about
their problem at hand and the ways to solve it. In the case
of programming languages, it must be usable enough to help
programmers think about, design, write and read programs.
The conceptual model of a programming language is often
derived from a general theory. Consequently, it does not only
support the production of code, but the analysis of programs
and their environment, to the extent of what the theory can de-
scribe. For example, the “functional” conceptual model[14]
is well-adapted to the description of computation, while the
“reactive” conceptual model is well-adapted to interactive be-
haviors. This brings us back to the aforementioned general
theory of interaction: to produce usable programming lan-
guages for interactive systems designers, theories that encom-
pass the appropriate concerns must be available.

Execution
When programming, execution consists in writing code or
modifying it. This involves actions such as creating enti-
ties and referring to existing entities. IDEs are often con-
sidered as instrumentation of these tasks, designed to make
programming with a given language more usable. For exam-
ple, refactoring tools in current IDEs such as Eclipse enable
programmers using functional or object-oriented languages
to efficiently modify the names of functions or object meth-
ods. But, prior to IDEs, the evolution of languages can also
be considered as a process to offer better support for these
actions. For example, method inheritance is a way to factor
common code in a single place, thus facilitating the evolution
of behavior in multiple parts of the code (“mass updating”
[12]). Similarly, aspects offer programmers the possibility to
express cross-cutting concerns in a single place.

Moreover, some of the properties associated to “good soft-
ware” can be related to usability concerns. For example, the
goal of modularity is related to action and interaction: it is
supposed to facilitate the maintenance of code since with
well-modularized software a modification of a component
performed by a programmer requires minimal adaptation and
rewriting on other components.

RESEARCH DIRECTIONS
Our three statements and their discussion can be translated in
a long term goal: provide interactive systems engineers with
usable languages and notations for designing, developing and
analyzing systems, grounded in theories that they can apply
to forecast their behavior. How can this be turned into practi-
cable research directions? The state of the art in the extended
field of user interface engineering, as well as the history of
traditional computer science, provide many possibilities. We
list a few here:

Eliciting functionality
Programming language designers have spent decades to iden-
tify the functions of programming languages that best support
traditional programmers, alone or in groups. Which of these
functions are relevant for interactive systems designers, what
requirements are not covered and how can they be addressed?
Some authors have started to address this question [7, 20, 15]
but this is only a start.

Conceptual unification
A number of concepts have been proposed to describe the be-
havior of interactive systems. The design of programming
languages, as much as the design of theories, traditionally re-
quires that the relationships between concepts are defined.
This usually involves the definition of primitives concepts
from which other concepts are derived. Such unification has
been attempted in the past [5, 13] and should be pursued.

Formal definition of concepts
Little effort is devoted in our domain to establish consensual
definitions of concepts such as task, activity, event, compo-
nent, interface, animation, etc. Actually, it would be difficult
to negotiate any solid consensus without more formal candi-
date definitions: it is easy to agree with different interpreta-
tions in mind. Progress toward more general theories could
include collective work on formal definitions.

Designing language concepts
If we consider that interactive systems programming is not
well supported enough by existing programming languages,
we should design new ones: programming languages for pro-
fessional programmers and for interaction designers, nota-
tions for analysis, etc. There already are many research ef-
forts in this direction. However, the goal of producing general
theories that encompass all engineering activities requires
that the concepts used by all languages be compatible, even if
the notations are different. Our own research suggests that the
conceptual models of traditional programming languages are
not sufficient to fully describe interactions and that new, more
comprehensive and unifying models of execution should be
used instead. More research should be conducted to assess

3



this aspect of the usability of programming languages, in or-
der to identify the relevant properties and to design appropri-
ate evaluation methods.

Designing language notations
We have already started to study the design of language nota-
tions. We notably have analyzed and modeled the process of
perceiving a program using a framework based on the Semi-
otics of Graphics [8]. This work shows that code representa-
tion is not about aesthetics but performance, and should not
be an art [10] but a science following principles from visual
perception. It also suggests that there may be no substantial
difference in terms of graphical perception between textual
and visual languages. The Physics of Notations framework
focuses on the properties of notations [18]. It adresses nu-
merous aspects of graphical properties and defines several
principles for the design of notations e.g., semiotic clarity,
perceptual discriminability, semantic transparency, visual ex-
pressiveness, etc. In addition, designing a programming lan-
guage should use a “programmer-centered design” approach:
it should emphasize the act of designing representations tar-
geted at tasks meaningful for end-programmers, and not de-
signing the representation in isolation. Such work should be
of interest for software engineers who often use various UML
diagrams (another notation) to document their software.

Consolidating available results
A number of available results in user interface engineering
have limited impact or are only used as general guidelines
because they cannot be used directly by programmers and
designers: architecture patterns, language constructs imple-
mented in toolkits, dedicated algorithms, etc. A require-
ment for the design of new languages should be that these
results can be checked against the proposed languages, so
that they can be reused more directly. Reciprocally, effort
should be spent on identifying available results and assess-
ing against the proposed designs. For instance we have car-
ried out an assessment of software adaptation against reactive
programming [16] and it would now be useful to determine
how architecture patterns proposed for plasticity translate in
this framework. As another example, we are working on how
the MDPC pattern [9] fits in an interaction-oriented language.
Interestingly, some of the available results currently are im-
plemented in operating systems [4, 6] and this is reminiscent
of the relationships that existed in the past between new lan-
guages and new operating systems.

CONCLUSION
In this article, we have highlighted the role of programming
in the engineering of interactive systems, in the long term per-
pective of creating general theories of interaction to support
engineers. We have outlined a research roadmap aimed at
both providing designers with appropriate programming lan-
guages and understanding the nature of interactive programs.

As researchers on engineering, one of our roles is to provide
engineers with better theoretical tools, including languages
and notations. As researchers on human-computer interac-
tion, we have tools and methods that no other scientific com-
munity has for designing new theories, languages and nota-
tions. What about eating our own dog food?

REFERENCES
1. Encyclopaedia Britannica, vol. 8. 1972.

2. Abelson, H., and Sussman, G. J. Structure and
Interpretation of Computer Programs, 2nd ed. MIT
Press, Cambridge, MA, USA, 1996.

3. Arrighi, P., and Dowek, G. The physical Church-Turing
thesis and the principles of quantum theory.
International Journal of Foundations of Computer
Science 23, 5 (2012).

4. Chapuis, O., and Roussel, N. Metisse is not a 3d
desktop! In Proceedings of the ACM UIST’05
conference (2005), 13–22.

5. Chatty, S. Extending a graphical toolkit for two-handed
interaction. In Proceedings of the ACM UIST’94
conference (Nov. 1994), 195–204.

6. Chatty, S., Boulabiar, M.-I., and Tissoires, B.
L’évolution de linux vers les nouvelles formes
d’ordinateurs personnels. In Proceedings of the 6th
International Conference on the Sciences of Electronics,
Technologies of Information and Telecommunications
(SETIT 2012) (2012).

7. Chatty, S., Sire, S., Vinot, J., Lecoanet, P., Mertz, C.,
and Lemort, A. Revisiting visual interface
programming: Creating GUI tools for designers and
programmers. In Proceedings of UIST’04,
Addison-Wesley (Oct. 2004), 267–276.

8. Conversy, S. Unifying textual and visual: a theoretical
account of the visual perception of programming
languages. In Proceedings of the 2014 ACM
International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and
Software, Splash Onward! ’14, ACM Press (New York,
NY, USA, apr 2014), (to be published).

9. Conversy, S., Barboni, E., Navarre, D., and Palanque, P.
Improving modularity of interactive software with the
MDPC architecture. In Proceedings of EIS (Engineering
Interactive Systems) conference 2007, joint HCSE 2007,
EHCI 2007 and DSVIS 2007 conferences, Lecture Notes
in Computer Science, Springer Verlag (March 2007),
321–338.

10. Green, R., and Ledgard, H. Coding guidelines: Finding
the art in the science. Commun. ACM 54, 12 (Dec.
2011), 57–63.

11. Green, T., and Petre, M. When visual programs are
harder to read than textual programs. In Proc. of the 6th
European Conference on Cognitive Ergonomics (ECCE
6) (1992), 167–180.

12. Green, T. R. G., Borning, A., O’Shea, T., Minoughan,
M., and Smith, R. B. The Stripetalk papers:
Understandability as a language design issue in
object-oriented programming systems. In
Prototype-Based Programming: Concepts, Languages
and Applications. Springer, 1999, 47–62.

4



13. Jacob, R., Deligiannidis, L., and Morrison, S. A
software model and specification language for
non-WIMP user interfaces. ACM Transactions on
Computer-Human Interaction 6, 1 (1999), 1–46.

14. Landin, P. J. The next 700 programming languages.
Commun. ACM 9, 3 (Mar. 1966), 157–166.

15. Letondal, C., Chatty, S., Phillips, G., André, F., and
Conversy, S. Usability requirements for
interaction-oriented development tools. In Proceedings
of the PPIG 2010 Workshop on the Psychology of
Programming (2010), 12–26.

16. Magnaudet, M., and Chatty, S. What should adaptation
mean to interactive software programmers? In
Proceedings of the ACM EICS 2014 conference (2014).

17. Miara, R. J., Musselman, J. A., Navarro, J. A., and
Shneiderman, B. Program indentation and
comprehensibility. Commun. ACM 26, 11 (Nov. 1983),
861–867.

18. Moody, D. The “physics” of notations: Toward a
scientific basis for constructing visual notations in
software engineering. IEEE Trans. Softw. Eng. 35, 6
(Nov. 2009), 756–779.

19. Mori, G., Paternò, F., and Santoro, C. CTTE: Support
for developing and analysing task models for interactive

system design. IEEE Transactions on Software
Engineering 28, 2 (2002), 797–813.

20. Myers, B., Park, S. Y., Nakano, Y., Mueller, G., and Ko,
A. How designers design and program interactive
behaviors. In Proceedings of IEEE VLHCC’08, IEEE
Computer Society (2008), 177–184.

21. Norman, D. A. The Design of Everyday Things, revised
and expanded edition ed. Basic Books, New York, 2013.

22. Palanque, P., Bastide, R., and Paternò, F. Formal
specification as a tool for objective assessment of safety
critical interactive systems. In Proceedings of the
Interact’97 conference (1997).

23. Raymond, D. R. Reading source code. In Proceedings of
the 1991 Conference of the Centre for Advanced Studies
on Collaborative Research, CASCON ’91, IBM Press
(1991), 3–16.

24. Reas, C., and Fry, B. Processing - A Programming
Handbook for Visual Designers and Artists. MIT Press,
2007.

25. Rushkoff, D. Program or Be Programmed: Ten
Commands for a Digital Age. Soft Skull Press, 2011.

5


	Introduction
	We need general theories of interaction
	Designing interactive systems is programming
	Generalized programming
	Programming algorithms, programming interaction

	Programming languages are user interfaces
	Evaluation
	Conceptual model
	Execution

	Research directions
	Conclusion
	REFERENCES 

