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Abstract. Graphical rendering must be fast enough so as to avoid hindering the 
user perception/action loop. Traditionally, programmers interleave descriptions 
and optimizations to achieve such performances, thus compromising modular-
ity. In this paper, we consider graphic rendering as a compilation chain: we de-
signed a static and dynamic graphical compiler that enables a designer to 
clearly separate the description of an interactive scene from its implementation 
and optimization. In order to express dependencies during run-time, the com-
piler builds a dataflow that can handle user input and data. We successfully 
used this approach on both a WIMP application and on a demanding one in 
terms of computing power: description is completely separated from implemen-
tation and optimizations while performances are comparable to manually opti-
mized applications. 

Keywords: interactive software, computer graphics, compiler, dataflow,  
modularity. 

1   Introduction 

Interactive systems have to be efficient. In particular, graphical rendering must be fast 
enough so as to avoid hindering the user perception/action loop. In addition, as any 
other software, interactive systems have to be modular, in order to maximize main-
tainability and reliability. The need for modularity is even more important with inter-
active systems. Making software modular minimizes the cost of modification. As  
designing good interactive systems requires designers to implement, test, and tweak a 
large set of alternative solutions iteratively, modular software maximizes the quality. 
Traditionally, programmers implement graphic rendering in interactive software using 
an imperative paradigm. They use graphical libraries, and often introduce optimiza-
tion during the first stages of development so as to maximize performances. This 
leads to code in which description and optimization are interleaved, which hinders 
designers' ability to rapidly test new designs. It can even harm safety, as manual  
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optimization may change the graphical semantics and introduce bugs that are notice-
able only with precise situations.  

Computer science literature contains solutions for these kinds of problem. Re-
searchers have designed compilers, i.e. systems that transform a high-level language 
to a low-level one. They enable programmers to focus on description, while leaving 
low-level optimization to the compiler. In order to address the problems encountered 
by interactive systems programmers, we introduce in this paper a new approach to 
graphical rendering implementation. We consider the transformation from input de-
vices and data to graphics as a compilation chain. We design a static and dynamic 
graphical compiler: it enables a designer to clearly separate the description of an in-
teractive scene from its implementation and optimization. 

We first describe three scenarios illustrating how today's designers implement 
graphical rendering and cope with description, efficiency and modularity. Based on 
these examples, we explain why graphical rendering implementation can be consid-
ered as a compilation chain. We describe the principles of the graphical compiler, and 
report on the results we obtained with two examples. 

2    User Interface Development Scenarios 

In this section, we present three scenarios concerning the development of user inter-
faces. These scenarios are the basis of our reflexion. 

Using Graphic Toolkits 

Since the rise of the WIMP (Window Icon Menu Pointer) paradigm, most program-
mers use User Interface toolkits, such as Motif or Qt. UI Toolkits allow programmers 
to rapidly construct an interface by juxtaposing widgets, i.e. independent units of 
graphics and behaviour, on the interface. However, the widget model is not suitable 
for the implementation of post-WIMP interactions. WIMP interfaces implicitly use a 
model where widgets are juxtaposed, and they can not be used in scene where graph-
ics lay on top of each other.  For example, programmers can not use widgets to im-
plement a radar image that contains flight elements on top of sectors. In addition, pro-
grammers do not have access to the inner mechanisms of the toolkit. Hiding 
implementation details eases use and prevents misuse, but it also prevents some of the 
optimizations that may speed up the rendering process [15] [10]. There exists a few 
post-WIMP toolkits [3], but they are internally optimized for a specific part of the 
rendering process (e.g. culling small or out-of-screen ZUI items). 

 

Fig. 1. The chain used in the model of ARINC 661 by [2] 
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Model-Based Approach 

Conversy et al. in [8] present a model-based approach to separate behaviour from 
rendering. The idea is to describe the behaviour of the application with Petri Nets to-
gether with a conceptual model of the interactive elements, and the rendering with an 
SVG scene (Scalable Vector Graphics [22]). When user input occurs, the Petri Net 
modifies the conceptual model, which in turn is transformed into a new SVG scene 
through an XSLT stylesheet (Extensible Stylesheet Language Family Transformations 
[23]). The SVG scene is then redrawn on the screen (Fig. 1). This model-based ap-
proach allows the designer to clearly separate descriptions of appearance and behav-
iour (look and feel), to use models based on formalism, and to use SVG, which is an 
exchange format between coders and graphic designers ([7]). However, the execution 
process of this chain is costly in terms of performance: each time a change occurs; the 
whole transformation chain is triggered, and slows down the system. Moreover, the 
system is based on completely separated stages: each intermediate data structure is 
completely rebuilt, and does not benefit from invariant behaviour of the front stages. 
Since there can be seven stages between the Petri Nets and the final pixels, perform-
ances are extremely low. Thus, the system is completely modular, but not reactive 
enough to be used in real-time. 

Working With the Graphic Device to Optimize Performance 

One solution to render fast interactive applications is to work at a low level of pro-
gramming, with the help of libraries close to the hardware, such as OpenGL (Open 
Graphic Library1). At this level, programmers can use optimizations that mainly 
consist in caching a maximum amount of data or commands on the graphic device. 
For instance, the programmer can use display lists - a record of a list of OpenGL 
commands that can be called at once - or memoization of a computed image into a 
texture.  

However, working at such a low level forces the programmer to interleave descrip-
tion of the graphical scene and optimizations. Moreover such optimizations need to be 
known by the programmer and programmed by hand, and influence his way of writ-
ing the application at the cost of readability. These optimizations speed up the whole 
application but as they are too tightly linked with the rest of the code, it is hard to 
change either the description or the optimization. 

Discussion 

These three scenarios show that with the available tools and methods, a programmer 
has to do the job of a compiler to build non-standard modular and efficient user inter-
faces. He has to allocate registers (OpenGL texture or display list), to manage caches 
of data (render into textures), and to reorganize his optimizations in order to have the 
fastest code possible. He can even implement parts of a Just In Time compiler (JIT), 
by designing optimizations triggered at the run-time (such as display lists).  

                                                           
1 OpenGL, The Industry's Foundation for High Performance Graphics: http://www.opengl.org 
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3    Graphical Rendering = Compilation Chain 

In this section, we explain why the graphical rendering process can be considered as a 
compilation chain. Then we define the notion of a graphical compiler (GC2) and of 
intermediate graphical languages. 

 

Fig. 2. The “classical” rendering process 

Why it Is a Compiler Problem 

Writing an interactive scene needs several steps to produce the final application. Fig. 2 
shows what most programmers do: before trying to display something, some data are 
needed; then, these data are transformed into a high-level description; if the rendering 
process needs it, this high-level language is usually displayed and a loop analyzes this 
language in order to apply changes that occur between two frames (this is the case of 
scenario number 2). When high performances are needed, the programmer converts 
by hand the high-level description into a lower-level one, which in turn is rendered to 
the screen (scenario number 3). This requires the programmer to implement a scheme 
in which the programmer has to take care of the synchronization between a high-level 
API and a lower level one. This figure also shows the different refresh loops that are 
used in graphic rendering. The solid loop to the right symbolizes the video controller 
that scans the video memory at each refresh of the screen. The two dotted loops sym-
bolize the fact that the loop can be either on the high level, or on the low level. Thus, 
in scenario number 2 (the model-based one), the loop is placed on the high-level de-
scription, and in the scenario number 3 (the OpenGL one) the loop stands on the low-
level description. 

Hence, writing an interactive interface consists in a chain of transformations, 
which can be handled by a compiler: 
 

A compiler is a computer program, or set of programs, that translates 
text written in a computer language - the source language - into another 
computer language - the target language. [1] 

In the problem of rendering graphical scene, the data can be considered as an input 
language and the drawing commands as the target language (Fig. 2). In order to ex-
plain the structure of the GC (Fig. 4), we will compare it to the structure of the Java 
programming environment (Fig. 3). The graphical compiler chain consists in the  
 
                                                           
2 In Computer Science, GC traditionally stands for Garbage Collector, but in the rest of the 

article, we will abbreviate graphical compiler by GC. 
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Fig. 3. The compilation chain used in Java when starting from UML... 

 

Fig. 4. ...and its equivalent when rendering applications 

different transformations between languages. The high-level description of the 
graphical scene - through an SVG-like syntax - is equivalent to Java code written by 
the programmer. The low-level description which is strongly linked with the hardware 
we used at the end (abstracted with OpenGL) is the equivalent of the bytecode pro-
duced by the Javac compiler. At the end of the chain, a backend either interprets 
(JVM) or generates (a native Javac compiler) the instructions that are executed on the 
hardware. 

In addition, the GC includes another front-end, the conceptual model and the rules 
needed to transform it into SVG. This stage is equivalent to recent environments that 
generates Java code from UML description. We will see that it allows the GC to han-
dle in a uniform way all the transformations, so that optimizations are applied in the 
whole program.  

By considering the process of rendering graphical scene as a compiler chain, we 
expect the following benefits: this architecture makes it possible to separate the de-
scription of the graphics and the optimizations; concepts such as optimizations that 
have been well-studied in the compiler problem can be transposed to the problem of 
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rendering graphics; the high-level description can be abstracted enough to be inde-
pendent of the final renderer used; the semantics of the transformations used will be 
clear enough to be able to check rendering. 

Transformations and Languages 

The Conceptual Model. The first language of the graphical compilation chain is an 
abstraction of the data. It allows the programmer to separate the presentation and the 
other parts of the application, i.e. the interaction part and the dialog controller. This 
part contains elements such as the value used to describe a model of a slider in a 
WIMP application, or the string of characters of a text field [8]. 

Once the conceptual model of the elements to be drawn is available, the next step 
is to transform it in terms of graphical shapes. As said before, we extend the standard 
model of a compiler by adding a stage on the front: the conceptual model. However, 
as the GC does not know this specific language used by the programmer, the latter has 
to give to the GC both the front-end language and the transformation rules to convert 
his specific language into the high-level language of the GC. 
 
The High-level Description of Graphics. This description contains a subset of SVG 
elements such as rectangles, ellipses, path, groups, etc. The scene is described with a 
graph, with nodes containing geometrical and style transforms. SVG was designed 
with two purposes: it is a high level language, i.e. it makes it possible to describe 
complex scenes with a short description; it is also an exchange format between appli-
cations and designers. Another advantage of using a SVG-like language is that its 
structure (a graph) is highly adapted to an implementation in OpenGL. 

 

Fig. 5. A shape with a fill and a stroke can be divided into two elementary shapes 

Before the low-level description, the GC inserts another stage which consists in 
converting every shape into a path and the direct cyclic graph into a tree. Thus, a 
shape made up of a fill and a stroke is divided into two elementary shapes with the 
same semantic as a group of shapes (Fig. 5). This reduces the language to a kernel, i.e. 
the minimum set of primitives needed to express the semantics of SVG. It thus mini-
mizes the complexity of the subsequent transformations. Such stages are also included 
in most standard compilers: they convert the input source into an intermediate repre-
sentation. This step also allows the compiler to produce an optimized code. 
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The Low-level Description. The GC converts high-level primitives into primitives suit-
able for the hardware: the low-level description. The previous language is thus converted 
into a tree containing the instructions needed to render the scene: the display graph. As 
the current renderer used is OpenGL, this part contains the instructions such as glPush-
Matrix, glTranslate or the instructions needed to tessellate and render a path.  

4    Expressing Dependencies with a Dataflow 

The static compiler produces the equivalent of a “binary” program written in the 
low-level description. Executing the program consists in interpreting the display 
graph at “run-time”. However, the dynamic compiler executed at run-time needs to 
know the dependencies of the different variables. We chose to express the depend-
encies with a dataflow. The GC statically compiles this dataflow. The dynamic 
graphical compiler does not need to recompile the scene when a change occurs be-
tween two frames. For example, if the change consists in the modification of the 
position of an element, the produced code is the same, except the part concerning 
the changed variables (Fig. 6). 

The programmer needs to specify which variables are input so as to help the com-
piler to know which parts will change during run-time, and to optimize the produced 
code. The GC caches all the static data during the static compilation.  

 

Fig. 6. Changes in the produced code when moving one object 

Implementation 

Language. The language used for the dataflow is a mathematical one. The designer 
specifies it by expressing formulas. Our compiler overloads operators in Python3 to 
build the parser. For instance, we can write: 

x0 = var('x0',5) 
y0 = var('y0',10) 
x1 = var('x1',x0+200) 
y1 = var('y1',y0+250) 

                                                           
3 Python Programming Language - Official Website: http://www.python.org 
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This code builds two inputs x0 and y0 and two dependent variables x1 and y1. 
Building and naming variables allow further references in the description of the scene. 
For instance, x0 and y0 may be the anchor of a shape and x1 and y1 the anchor of 
another shape that has to be moved (200,250) relative to the first one: 
rect0 = rect(-5, -5, w=10, h=10, fill=(1.0,0.0,0.0), 
transform=transform(x0,y0)) 

rect1 = rect(-5, -5, w=10, h=100, fill=(1.0,0.0,0.0), 
transform=transform(x1,y1)) 

Execution. Dataflow can have two modes of execution. The first one is interpretation 
and the second one is compilation. Interpretation is very useful when one wants to 
debug and test one's design. It allows new variables and formulas to be created at run-
time. The counterpart of this flexibility is that it is very costly when it comes to 
execution, as it requires a tree traversal and the interpretation of each node each time 
a value has to be computed. 

The second possibility, when formulas do not change often at run-time, is to use 
compilation. The GC implement dataflow compilation by attaching to each variable 
the function that contains the formula. The execution speeds up but this scheme forces 
the programmer to do a static compilation of the application. 

In the previous example, the GC transforms the declarative description into a list of 
OpenGL commands. The list of commands contains the two following lines: 

glTranslate3f(5.0f, 10.0f, 0.0f); 
(…) 
glTranslate3f(205.0f, 260.0f, 0.0f); 

The GC remembers the dependences between the input variable (‘x0’ for example) 
and the produced memory case (‘5.0f’ here). At run-time, when a change occurs, the 
executive part of the GC propagates directly the modification towards the memory 
that is used to render the scene. Such principle avoids the tests needed to know 
whether a variable has changed. 

Optimizations 

As dataflow is a mathematical language and also a functional one, we can apply two 
types of optimizations. Optimizations can be relevant to the semantic of the functions 
themselves. For example, writing 'x+x+x+x+x+x' can be transformed into '6*x', thus 
reducing the number of operations from five to one (if there is no cache implemented, 
the access to a variable is costly and the overall cost is then reduced). The GC can 
also find optimizations more relevant to the implementation, as in all languages, so as 
to accelerate the time spend inside the propagation of the data. 

5    Implementation and Optimizations of the Graphical Compiler 

Implementation 

We wrote the compiler in the Python language as it allows quick development. Never-
theless, in order to achieve good performances with OpenGL, we wrote the run-time 
of the graphics in a C module of Python. 
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The production of the low-level description of the scene follows standard trans-
formation rules. For each element in the graph, the GC produces the corresponding 
elements. Optimizations are made during the productions by testing whether we 
should add decorators or not, as seen before. 

After the production of the low-level description, the renderer can be executed 
asynchronously. We designed our toolkit to be asynchronous so as not to penalize all 
the parts of the process if one is slow. The toolkit uses threads and buffers to imple-
ment this mechanism. The list of calls from Python to the run-time uses a strategy 
similar to the OpenGL double-buffering mechanism. There are two lists available: the 
first is the one which is executed, and is protected from any changes except local 
changes coming from the dataflow. The second one allows the compiler to allocate 
and free the memory needed and is allowed to be modified by other processes. 

Optimizations 

The low-level description is what we call a display graph, an abstract tree that repre-
sents the graphical code that will be executed eventually. 
 
Static Optimizations. We have written our low-level language with the help of de-
sign patterns. The help of the design pattern decorator allows the GC to construct the 
tree so as to avoid tests while walking through it. For example, if the element does not 
contain any scale transformations, the compiler simply does not include the decorator 
scale over the element. The produced tree contains the minimum elements needed to 
render the scene. 

The second possibility offered by this approach is that the compiler can factorize 
elements by detecting common subexpressions. For instance, if the same transforma-
tions occur between two groups, it can factorize them into a bigger group containing 
the common transformation. 

 
Dynamic Optimizations. Working with a tree allows the GC to make optimizations 
during run-time, to implement a Just In Time compiler (JIT). Nevertheless, walking 
through the tree has a significant cost in term of instructions to be executed. The time 
spent to evaluate the display graph, plus the time needed to transform it into graphic 
call, plus the time of execution has to be inferior to a minimum refresh-time rate 
(maximum 0.04 seconds per frame to achieve 25 frames per second). To achieve such 
performance, the run-time transforms this tree into a list of OpenGL calls. This trans-
formation allows caching of operations that have to be executed. It also puts in cache 
all the tests that need to be done. For instance, the programmer can activate or deacti-
vate a part of the tree through a variable. The produced code is empty if the condition 
is set to false. By transforming the tree into a list of really executed code, the run-time 
of the GC avoids a re-evaluation of this test. If the condition changes the run-time re-
parses the tree in order to execute the right code. This optimization is known as dead-
code elimination. 

When a change in the inputs that occurs does not imply a rebuilding of the list of 
OpenGL calls, the dataflow propagates the change by modifying the previously pro-
duced code. 
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Other Optimizations. As we have seen, a graphical compiler can make optimizations 
over the display graph. The GC can produce both local optimizations and cross-
procedural optimizations as it knows the entire display graph. Because of the lack of 
room, we list other techniques that are available in the GC to speed up the rendering 
in the light of compiling techniques: 

− Common subexpressions: the optimizer can detect such graphical common 
subexpressions and factorize them. 

− Propagation of the constants corresponds in the graphic field to the operation of 
caching a maximum amount of data, most of the time on the graphic device. 

− Programmer's hints: the programmer can specify that a non-trivial or non-
detectable optimization concerning his own problem (this optimization corre-
sponds to aliasing or the keyword register in the C language). 

− Other JIT optimizations: a Just In Time compiler (JIT) can handle other optimiza-
tions that the static compiler can not discover. 

6    Results 

We assessed the approach by writing two different applications with the GC. The first 
consists in a demonstration of the use of standard widgets to build a WIMP interface 
(Fig. 7). This application illustrates scenario number 2. The programmer specifies the 
conceptual model by specifying the abstraction of the different elements, and then 
gives to the system the transformations needed to compile the elements to SVG. The 
GC statically compiles the dependencies and produces the final application. The re-
sulting program contains no interpretation of SVG constructs, as much as a binary 
does not contain C constructs. As such, it is closed to the minimum program needed 
to implement this sysytem in the C language with OpenGL. 

The second one, a radar view displaying planes (Fig. 8), is demanding in terms of 
computing power. This application has to display up to 500 planes, each of them 
made up of 10 elementary shapes. In fact, this proof of concept can display more than 
10000 triangles and handle user events with a very low system load: the framerate is 
up to 500 frames per second. A previous version with a run-time in the Python lan-
guage with a JIT enabled only reached 140 frames per seconds. The same code with-
out the dynamic compiler and the programmer hints achieved around 4 frames per 
seconds. 

 

   

Fig. 7. Example of a WIMP application rendered with the help of our GC 
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Fig. 8. Example of a radar display application rendered with the help of our GC 

The GC weighs in 4000 lines of code in Python and the run-time in C is 4000 lines. 
Applications using the GC are small: the radar view application is made up of only 
500 lines and consists only in the description, as expected. Though more feature com-
plete, a previous radar application written in C++ and OpenGL weighs in 85 000 
lines. 

7    Related Work 

The use of transformations starting from a high-level description has been studied in 
the Indigo Project [4]. Contrary to the X11 server, both rendering and interaction are 
in charge of the Servir, the server of the Indigo architecture. This idea of transforma-
tions was then extended with the implementation of the set of widgets ARINC 661 [2] 
and later by the MDPC model [8]. 

 

Fig. 9. Dataflow span in different toolkits 
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Many researchers used dataflow language to describe interactive applications  
(Fig. 9). Some of these dataflows handle data from the inputs to the application (In-
putConfigurator [11] or Magglite [14]) while others express graphical constraints 
(Garnet/Amulet [18], [20]). In the GC, the dataflow can manage the transformations 
from the data and the inputs down to the screen. In [19], the researchers present a way 
to reduce the storage of the dataflow, which can be a problem in large applications.  

The notion of compilation in graphics was introduced by Nitrous, a compiler gen-
erator for interactive graphics [12]. However, as in [17], the compiler is only pixel-
based, and does not handle the inputs coming from physical devices or from the ap-
plication. LLVM [16], with its OpenGL stack developed by Apple, can efficiently 
abstract the description of the interface from the hardware. The JIT included in 
LLVM can optimize the different shaders available in order to have the most efficient 
implementation. 

Finally, dynamic compilation has been studied with languages such as Smalltalk 
[9], Self [13], or Java. LLVM can also be executed with a JIT and can do interproce-
dural optimizations [5]. 

8    Conclusion 

In this paper, we have proposed a new approach to graphical rendering, in order to 
make it both modular and efficient. We show that an interactive application is a list of 
transformations of intermediate graphical languages, which can be considered as a 
compilation process. We described how a graphical compiler can help designers and 
programmers to implement efficient rendering code. The programmer writes a front-
end of a language describing the objects to be interacted on, and a transformation 
function to a high-level graphical API. The graphical compiler can then generate low-
level code that implements the application. During the different transformations, the 
GC detects and applies optimizations in order to generate efficient code. Thanks to 
the dataflow which is produced at compile time, the dynamic compiler avoids unnec-
essary recompilation at run-time. The latter can take time to optimize the produced 
code on the fly. 

The architecture we have presented has some limitations. It can not handle dynamic 
changes of the structure of the conceptual model. With the radar view, flights are fil-
tered out when they are not visible, and the conceptual model elements are recycled for 
new flights. However, implementing a vector graphic editor is not possible with such 
description, because it is not possible to know in advance the number of shapes.  

Furthermore, the graphical compiler does not handle UI control. Dataflows can 
simulate control with tests, but a more general approach is needed, such as state ma-
chines switching dataflow configurations [6]. 

However, we showed with two examples that the graphical compilation approach 
is suitable for a range of applications: static ones, such as WIMP interfaces now found 
in cockpits, or semi-dynamic, data-bounded ones, such as radar view. Future work 
includes finding a common language to describe intermediate languages and trans-
formations. This approach leads to verifiable semantics of transforms and languages. 
We plan to enhance the compiler so as to produce verified code, and make critical 
systems safer. 
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