
Wind and Wave Auditory Icons
for Monitoring Continuous Processes

Stéphane Conversy
Laboratoire de Recherche en Informatique - URA 410 du CNRS

LRI - Bâtiment 490 - Université de Paris-Sud
91405 Orsay Cedex, France

conversy@lri.fr http://www-ihm.lri.fr/~conversy

ABSTRACT
This article presents the design and the use of two new
auditory icons: the sounds of waves and wind. A synthesis
algorithm is described to compute and control these sounds
with high-level parameters in real-time. These auditory
icons can be used effectively to monitor background
activities, in particular when there is a need for continuous
monitoring or when there is a need to prevent problems
rather than to address them. They are a first step in the
realization of controllable cohesive sound ecologies.

Keywords
Non-speech audio, auditory icons, background activities,
continuous monitoring.

INTRODUCTION
Sound has a number of advantages over visual displays for
presenting information: it does not take up any screen
space; we can focus on a sound while hearing another one
simultaneously; we can forget a sound and be aware of it
again when it changes. These features allow us to monitor a
background task with sound while in the midst of another
activity.
Monitoring background activities with sound is effective
only if it minimizes explicit queries for information by the
user. This can be achieved by playing sounds either
intermittently, such as ShareMon [2,3], or continuously,
such as in the Arkola bottling plant simulation [4] or
Gaver's machine sounds [5]. Intermittent sounds can act as
a reminder that something is going on in the background.
They are also useful because it can provide serendipitous
information [7], i.e. information we find relevant later, or
information we have not explicitly queried. With
continuous notification, information is available
immediately, by focusing on the sound providing it. Thus,
continuous notification allows prevention as opposed to
cure: when a sound changes, it may be a harbinger of an
impending issue that we can address before it happens. For
example, it is more interesting to know that the paper tray
is about to run out of paper than to be notified that it is
empty.
Since we often need to monitor a task continuously, audio

interfaces have to use non-intrusive, varied and informative
sounds. Gaver's theory of auditory perception [6] states that
humans hear non-musical sounds as cues of what is going
on around them: they analyze these sounds as auditory
events with high-level attributes, such as the material of a
door slamming. This has led Gaver to introduce auditory
icons, i.e. everyday sounds for use in the interface that can
be described with high-level parameters. This article
introduces two new auditory icons imitating natural
environments: wind and waves. These sounds and their
behaviours are well known to humans, and they do not
disturb them as long as they have a low level. We have
developed two algorithms to synthesize and control these
sounds in real-time and have used them in several
applications.

SYNTHESIZING WIND AND WAVES
Although sampling natural sounds gives higher quality
results than synthesizing them, we have chosen synthesis
to get better control over the sounds. We do not need
sounds that imitate a real sound perfectly. Sounds only
need to be recognized as the result of actual events, from
which high-level parameters can be extracted and evaluated.
Both algorithms are based on dynamic filtering of a white
noise. The filter is an IIR (infinite impulse response) filter,
whose main effect is to emphasize a set of frequencies. Its
parameters are the center frequency it emphasizes and the
bandwitdth of the main lobe. Both parameters evolve with
time envelopes controlled by high-level attributes.

Wind sound
The wind sound is a noise gliding up and down
continuously, according to a rate that depends on its
strength. The higher the strength, the smaller the rate and
the higher the mean pitch. Thus, a strength parameter
controls the domain over which the frequencies of the filter
are randomly chosen, and the domain over which the times
of change of the gliding direction are randomly chosen. The
next frequency to reach is f=100+rand × strength × 10 and
the next time (in ms) is t=rand × (110-strength) × 50.
Rand returns a random value in the range [0, 1[and
strength is in the range [1, 100]. The bandwidth of the
filter is 60 Hz.

%volume

80
15

19 25

b2
b1

400
50

1000

77
19 1936 36

%time36

%time %time

amplitude

bandwidth frequenc
y

Figure 1: Envelopes for the wave sound

Wave sound
A breaking wave can be divided into three parts: the wave
breaks (high volume), it rumbles (lower volume, low pitch)
until it reaches the beach (more noise and higher pitch).
High-level parameters for a wave sound are the size which
controls the length of the sound, the shape which makes
the wave spread widely on the beach or break onto itself,
and the beach, which makes the wave sound as if it breaks
on a different kind of beach, e.g. sand or rocks.
Figure 1 shows the envelopes for the overall amplitude of
the sound and the center frequency and bandwidth of the
filter. The control points have their abscissas expressed as a
percentage of the total length of the sound. The size
controls the total length of the sound (typically 2 to 5
seconds), and thus, the abscissas of the control points. The
beach acts as a gate for the noise : instead of choosing a
value for each sample, we pick a new value every one, two,
three or four samples. This makes the wave sound more or
less noisy. The shape (in the range [1, 100]) controls the
end of the envelope of the bandwidth. The higher the
shape, the higher the bn values: b1 = 400+rand × 1000 ×
shape/30, and b2=b1 + rand × 1000 × shape/20.

Implementation
With careful coding, the algorithms can be implemented
efficiently. The wind sound requires three multiplies, one
add and one look-up in a table per sample. The wave sound
requires seven multiplies, four adds, and two look-ups in a
table per sample. The sounds have been incorporated
within the ENO audio server [1]. By using a filtered noise,
slow attacks and random values, we avoid high pitched,
high volume recurrent sounds, making them suitable for a
long play without annoyance.

APPLICATION
These sounds correspond to natural phenomena that have
no obvious mapping with computing concepts, unlike,
e.g., folders in the desktop metaphor. In order to take
advantage of the users' knowledge of these sounds, the
processes being monitored with these sounds should have a
behavior that matches as closely as possible that of the
natural events. Since the natural phenomena evolve slowly,
using these sounds to reflect a fast-changing activity would

confuse the user. Furthermore, perceiving a perturbation in
environment should lead the user to infer that something is
going wrong. Thus, using the wind sound to monitor a
network flow is inappropriate, since a strong wind would
mean a high throughput, which means that the network is
performing well. Instead, the strength of the wind should be
bound for example to the number of lost packets.
Our current application for these sounds is a process
monitor for a network of workstations. We are
experimenting with various mappings for the sounds and
their parameters. The main idea is that the sound should be
noticed when something goes wrong, e.g. overloaded
network or workstation, broken hardware. This requires the
use of additional sounds for events (as opposed to
continuous processes) and a spatial layout of the sounds to
help monitor several of them at once.

CONCLUSION
We have introduced two new auditory icons: wind and
waves. The synthesis algorithms producing them are cheap
enough to synthesize them in real-time. They follow the
auditory icon paradigm and they can be controlled in real
time with high-level parameters. Informal tests showed that
users recognize them easily, and can track changes in the
parameters.
The wind and wave sounds are a new step in providing a
sound toolkit for interface designers. Future works should
produce more sounds, as well as tools to design them.

REFERENCES
1. Beaudouin-Lafon, M., and Gaver, W. W. ENO:

Synthesizing Structured Sound Spaces. In Proc.
Symposium on User Interface Software Technology,
UIST'94, ACM, 49-57.

2. Cohen, J. Monitoring Background Activities. In
Proc.International Conference on Auditory Display,
ICAD'92, 499-531.

3. Cohen, J. "Kirk Here:" Using Genre Sounds To
Monitor Background Activity. In Adjunct Proc. Human
Factors in Computing Systems, INTERCHI'93, ACM,
63-64.

4. Gaver, W. W., Smith, R. B. Auditory Icons in Large-
Scale Collaborative Environments. In Proc. Human-
Computer Interaction, Interact'90, ACM, 735-740,
1990.

5. Gaver, W. W. Synthesizing Auditory Icons. In Proc.
Human Factors In Computing Systems, INTERCHI'93,
ACM.

6. Gaver, W. W. What In The World Do We Hear ? An
Ecological Approach To Auditory Event Perception. In
Ecological Psychology (5) 1 (1993).

7. Mynatt, E. D., Back, M., Want, R., Baer, M., Ellis, J.
B. Designing Audio Aura. In Proc. Human Factors in
Computing Systems, CHI'98, ACM.

