

Augmenting the Scope of Interactions with
Implicit and Explicit Graphical Structures
Raphaël Hoarau

Université de Toulouse, ENAC, IRIT
7 av. Edouard Belin, Toulouse, France

raphael.hoarau@enac.fr

Stéphane Conversy
Université de Toulouse, ENAC, IRIT
7 av. Edouard Belin, Toulouse, France

stephane.conversy@enac.fr

ABSTRACT
When using interactive graphical tools, users often have to
manage a structure, i.e. the arrangement of and relations
between the parts or elements of the content. However,
interaction with structures may be complex and not well
integrated with interaction with the content. Based on
contextual inquiries and past work, we have identified a
number of requirements for the interaction with graphical
structures. We have designed and explored two interactive
tools that rely on implicit and explicit structures:
ManySpector, an inspector for multiple objects that help
visualize and interact with used values; and links that users
can draw between object properties to provide a
dependency. The interactions with the tools augment the
scope of interactions to multiple objects. A study showed
that users understood the interactions and could use them to
perform complex graphical tasks.

Author Keywords
Graphical Interaction Design, Instrumental interaction,
Exploratory Design.

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User
Interfaces: Graphical user interfaces - Interaction Styles.

General Terms
Design, Human Factors.

INTRODUCTION
When using computerized tools such as real-time editors,
presentation software, GUI builders, etc. users create and
manipulate graphical objects on the screen. They can edit
them individually, e.g. change their color or their stroke
width. Users can also consider and interact with sets of
objects as opposed to individual objects. To do so, they may
be required to structure the scene, by relying on concepts
such as groups, styles, or masters. According to the Oxford
dictionary, a structure is “the arrangement of and relations
between the parts or elements of something complex”.

Using a structure may have multiple assets, such as helping
users conceptualize the scene they are creating (“the back-
ground of the slide includes this drawing and this text”,
“this set of slides is a subpart of the presentation” etc.), and
think better about the problem at hand. Here, we are
interested in structures as means to interact with the
content: since structuring involves sets of objects, the
actions done on an element of the structure may have an
effect on several objects at once.

In current interactive systems, the use and the management
of structures may be complex. Users have to create and
maintain them. Depending on the kind of structure, some
operations may be cumbersome or impossible to do, which
prevents users to explore the design space of their particular
problem. Furthermore, systems that provide structuring do
not leverage off the structures fully to provide users with
new ways of interacting with the content.

Interactions with structure and with multiple objects
through a structure have not been studied extensively in the
past. Of course, a number of past works have identified the
problem [6], but few concepts or properties targeted it
explicitly [2,12]. For example, what are the interactions that
enable users to define sets of objects? What are the
available means to augment the scope of interaction i.e.
apply an interaction to several targets? What are the
concepts that may guide the design of such interactions?

The work presented in this paper aims at improving the
management of structures as means to augment the scope of
interactions. Based on contextual inquires and related work,
we present a number of requirements pertaining to the
interactions with structures. We then present two interactive
tools that aim at fulfilling those requirements. The first one
is ManySpector, an inspector for multiple objects.
ManySpector displays all used values for a property given a
set of differing objects, whereas a traditional inspector
displays no value. This reveals an implicit structure of
graphics (the sets of objects that share a graphical property)
and offers new interaction means. The second one is based
on links that users can draw between object properties to
provide a dependency. The resulting property delegation
graph is a means for users to provide an explicit structure.
We then report on a user study involving those tools.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2012, May 5-10, 2012, Austin, TX, USA.
Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

CONTEXTUAL INQUIRIES AND SCENARIO
We have based our work on concrete and realistic case
studies. We have conducted five contextual inquiries with
“designers”, the design activity being taken in its broadest
sense: edition of graphics (Illustrator and OmniGraffle),
courses schedule (iCal), architecture (Auto-CAD), or
lecture presentation (PowerPoint). We have written a dozen
scenarios that describe accurately the activities.

In order to introduce the problem, we present one of the
scenarios. This scenario illustrates a number of
requirements pertaining to interactions on several objects,
with or without a structure. The scenario is real but adapted
slightly for illustration purpose: some interactions that are
deemed as impossible (e.g. with Inkscape) might be
possible with other tools (e.g. with Illustrator and vice-
versa). The steps are annotated in italic to characterize
them. We detail the annotations later in this section.

Elodie is a designer tasked with creating the graphics of a
custom software keyboard for a tablet computer. Using a
graphical editor, she creates a first key. She draws a
rounded rectangle with a solid white fill and a surrounding
stroke. She adds a rectangle inside the previous one, with a
blue gradient fill (no stroke). She selects both rectangles
with a selection lasso (designation) and groups them with a
command in a menu (structuring). She then adds a soft
shadow effect on the group. She overlays a label with a text
‘A’ on the group of rectangles and centers the label and the
group by invoking a ‘center’ command on a toolbox. She
then forms another group with the label and the groups of
rectangles, and names it “key” in the tree view of the
graphical scene provided by the application (structuring).
This first key serves as a model to create other keys: she
duplicates the key, and applies a horizontal translation to
the copy. She proceeds with this action several times in
order to get a row of keys (Figure 1). She then modifies the
text of each key one by one (Figure 2).

Figure 1. The user creates a key, and duplicates it.

Figure 2. The text of the ‘I’ key is not centered.

When she changes the letter ‘A’ for ‘I’, she realizes that the
‘I’ text is not centered with regards to the rectangles (Figure
2). The first object was specified incorrectly: if the three
objects (label, gradient rectangle, rectangle) are correctly
aligned, the text of the label is not centered. The problem
was not noticeable with the first letters (AZERTYU) since
their widths are similar. Each label being in a
heterogeneous group (containing object types other than
label), the system does not provide a text center command

that can be applied to a selection of objects. She has to click
multiple times on an object to reach the label and apply the
‘text centered’ command. Therefore, she estimates that it is
more efficient to start over: she deletes all copies, ungroups
the first key, centers the text, groups the objects again,
copies and moves the copies, and modifies each letter one
by one.

Figure 3. The entire keyboard with the double keys.

Elodie has finished the entire keyboard. Some of the keys
are double keys that contain two smaller labels at the top
and the bottom of the key (Figure 3). She wonders whether
the double key labels are too small and she wants to explore
new sizes (exploratory design). First she has to find each
double key in her design (searching). To do so, she zooms
out to make the keyboard entirely visible. This allows her to
identify each double key. Again, she has to change the size
of the labels one by one.

The scenario illustrates several requirements.

Structuring Elodie relied on the ability of the system to
allow creation, modification, and management of sets. For
example, she created a single group with two rectangles,
then another group with the previous one and the label.

Designation Elodie designated objects, properties and
actions. For example, she changed the “alignment” property
of the label to “centered”.

Scope of actions Elodie acted on multiple objects at once.
For example, she grouped objects because she wanted to
consider them as a single entity that keeps the relative
positions between subparts, but also because she wanted to
apply a single translation on three objects at once.
Conversely, she was not able to apply the command ‘set
alignment’ to several objects at once.

Seeking Elodie needed to retrieve objects: she had to search
objects whose content is similar to other ones. The search
action requires visually scanning the graphical objects and
seeking candidate objects, at the risk of forgetting some of
them. The more the objects, the more difficult it is to find
out particular ones, especially if the features to search for
are not pre-attentive [4]. As the number of keys increases,
each modification gets more costly, not only because of the
number of actions to repeat, but also because of the
required visual search effort.

Exploratory Design Elodie explored parts of possible
solutions, and modified existing parts of solutions. By
combining action, visualization of intermediate results and
thinking, she co-discovered the problem and the solution. In

doing so, she was pursuing an exploratory design activity.
This phenomenon is important for activities in which the
expected result is not known in advance: graphics edition
activities, slides design, or class hierarchy design [8][24].

RELATED WORK
Past works have tackled the problems of managing
structures, and interacting with multiple objects, either
explicitly or implicitly. We present them along three axes:
interactions for structuring the content provided by
interactive systems, design and evaluation of interactions
for structuring, and structuring in programming.

Structuring for users
Groups Traditional graphical editors allow users to create
groups from a set of objects previously selected by the user,
and to act on those groups. The only operation available for
a group is ‘ungroup’, which removes the group entity and
selects all objects that were part of the groups (no
modification, addition, or subtraction). Selection can be
seen as a transient group, with ‘add’ and ’remove’
operations by holding the shift key and selecting several
elements, or holding the ctrl key and clicking on individual
elements. Some tools support heterogeneous settings, but
with specific properties only e.g. translation, scale and
rotation: all elements in the group are transformed
accordingly. Conversely, some operations (e.g. ‘set color’)
cannot be applied to groups, supposedly because some
elements inside the group do not “understand” them. This
forces the user to ungroup and apply the command on each
object. In this case, interaction with the structure is not well
integrated with interaction with the content.

Trees Groups can be part of a surrounding group, turning
them into trees or hierarchies. Support for management of
such hierarchy ranges from no support at all, to navigation
in the hierarchy of parents [18], and tree views in structured
graphics editors (e.g. Inkscape or Illustrator). A tree view
enables users to reparent elements with a drag and drop.
However, there is no support for other operations, such as
applying a color to a node in order to change all children.

Masters A Master is an element used as a “model” for other
elements. For example, PowerPoint enables users to define
in a master slide the appearance that other slides would
inherit. Sketchpad introduced masters as shareable objects
that could be used in multiple locations in the scene [22].
Changing a property of the master would modify all objects
that depend on this master. This was a way to reduce the
number of actions required from the user when something
must be changed.

Properties Presto is a document management system that
enables users to tag documents with properties, e.g.
year=2012 [5]. Properties provide a uniform mechanism for
managing, coding, searching, retrieving and interacting
with documents. For example, users can define directories
(i.e. a set) of documents using properties: either by

extension (by putting elements into the directory), or by
intension (with a query such as size >500k). Conversely to
purely hierarchical structures, properties enable objects to
be part of several overlapping sets.

Graphical search Graphical Search & Replace [13] allows
users to search for elements based on their graphical
properties (designation) and change at once a particular
property for all found objects (multiple scopes).
Applications like Illustrator provide such a tool but through
a dialog box, not by direct manipulation.

Surrogates Surrogates are specialized interactors that allow
users to interact with the surrogate instead of the domain
object [12]. Similarly to classical inspectors, surrogates
expose attributes that are common to objects, by
automatically narrowing the surrogate to the lowest
common ancestor. This enables users to interact with those
values and modify several objects at once.

User-defined macros and Programming by example User-
defined macros allow for automation of repetitive tasks
[15]. The user proceeds with an example of the task to re-
peat, and an algorithm abstracts the actions, so as to enable
application on other objects.

Structuring for exploratory design Some structuring
techniques have been designed to support exploratory
design. The list of reversible actions is an implicit
mechanism to help users not to fear possible damages [23].
Side Views display previews of interactive commands [25].
Parallel Paths support alternative exploration by relying on
an arborescence of creations instead of a linear history, and
on the simultaneous views of parallel results (comparison)
[26]. Acting on a node of the creation path enables users to
manipulate the subsequent designs at once (scope).

Structuring for designers
Interaction designers have already identified the need for
many modifications with a low number of actions.

Cognitive dimensions In the cognitive dimensions of
notation framework [8], the problem described in the
software keyboard scenario is identified as “viscosity”. It
exhibits when the structure of the information contains a lot
of dependencies between parts, which implies that a small
change leads to numerous adjustments from the user.
Viscosity is a hurdle to modification and exploratory design
[9]. Since it may be costly to apply the changes, the user
refrains from exploring alternatives. A solution to viscosity
consists in creating an “abstraction”, a “power command”
that would act on several objects [9]. An abstraction is a
class of entities, or a grouping of elements that users will
handle as a single unit e.g. styles in a text document.

Abstraction can be costly. Learning, creating and modifying
them require time and effort that should be balanced with
investment in repeating a small sequence of actions to solve
a small problem. Besides, abstractions can be a hurdle to
exploratory design if they are required before any other

simple actions. Finally, abstraction may introduce hidden
dependencies: some parts of the scene may depend on
others in an invisible way, which makes it hard for the user
to predict the effect of a change.

Instrumental interaction and design principles Direct [23]
and instrumental [2] interaction techniques are efficient
with a single object: they lower the number of required
actions compared to other techniques, such as command
lines, conversational dialogue, or modal interactions.
Design principles related to instrumental interaction, such
as reification (turning an object into a thing), polymorphism
(applying the same change to different class of objects) and
reuse (of past selection and interactions result) extend the
scope of actions to multiple objects [2].

Cost of interaction techniques A particular technique is only
better than another with respect to the task to accomplish:
copy, modification, or problem solving (equivalent to
exploratory design) [16]. CIS is a model that helps describe
an interaction technique, analyze it, and predict its
efficiency in the context of use [1]. CIS defines four
properties for interaction techniques. Among them, Fusion
is the ability of a technique to modify several work objects
by defining multiple manipulations at once (scope), and
Development corresponds to the ability offered to the user
to create copies of tools with different attribute values.

Structuring for programmers
The problems raised so far can also occur during
development activities. For example, refactoring tools in
IDEs is an answer to the need for multiple scopes of action:
if the user changes the name of a method, the system
applies this change on each call of the method, possibly in
many classes or files. Styles can be implemented in a style
language (e.g. CSS), with a hierarchical structuring.
Changing a parameter in an intermediate node has an effect
on its children. Tags in the Tk toolkit allow the programmer
to structure objects in overlapping sets [21]. Changes can be
applied to graphical shapes or to a tag, and thus to the set of
objects that hold this tag (scope). Tags can be defined by
extension (with designated objects) or by intension (with a
predicate e.g. all blue objects) [21].

Prototype-based languages offer an alternative to class-
based languages for object-oriented programming [14][20].
They offer a flexible creation model that allows sharing of
properties and behaviors. Such mechanisms allow users to
structure a hierarchy of prototypes and to act on several
clones by manipulating a prototype in the delegation
hierarchy. Morphic reifies prototypes and clones into
graphic objects (called Morphs), and allows for their
construction and edition with direct manipulation [18].
Tools have been designed to help structure a prototype
hierarchy. For example, Guru is an algorithm that
automatically creates a well-organized graph of prototypes,
by factoring shared properties into new prototypes [19].

REQUIREMENTS
In this section, we synthesize the requirements for the
manipulation of objects through structures (Table 1). The
synthesis is derived from the contextual inquiries we ran,
and our analysis of the related work. Notably, the
requirements are related to the set of tasks identified in [6]
that are known to be difficult to perform with direct
manipulation techniques. We have expanded and refined
them in this section. We present 3 subsets of requirements:
managing sets of objects (R1), managing actions (R2),
fostering exploratory design (R3).

Search (R1.1)
Designate (R1.2)
Modify (R1.3)

Manage sets of
objects (R1)

Identify sets (R1.4)
Specify their nature (R2.1)
Specify their parameters (R2.2)
Specify the scope (R2.3) Manage actions (R2)

Perceive consequences (R2.4)
Try (R3.1)
Evaluate (R3.2)
Short-term exploration (R3.3)
Compare versions (R3.4)

Foster exploratory
design (R3)

A posteriori structuring (R3.5)

Table 1: Requirements

Managing sets consists in searching (R1.1), and
designating (R1.2) the objects that are part of a set. It is also
necessary to modify (R1.3) the sets (add, remove elements).
Finally, users must be able to identify (R1.4) the objects that
belong to a particular set, or determine the sets a particular
object belongs to.

Managing actions consists in specifying their nature (e.g.
by clicking on an ‘alignment” icon, or a menu) (R2.1), their
parameters (“vertical” or “horizontal”) (R2.2) and their
scope (R2.3). Perceiving their consequences (R2.4) with
appropriate feedback enables the user to realize the effects
of its action after, and even before it is triggered [23].

In order to support exploratory design, it is important to
provide users with tools that enable them to try (R3.1) and
evaluate (R3.2) solutions during short-term exploration
(R3.3), and compare different versions during middle-term
exploration (R3.4) [24]. When satisfied with the results,
users must be able to extend the modifications to other
objects. If the system does not support this task efficiently,
users will have to repeat the same actions to propagate
changes (viscosity). Finally, if structuring is a solution to
the viscosity problem, it is a hurdle to exploration if
required a priori. Therefore, structuring should be made a
posteriori (R3.5) i.e. when actions have already been done.

INTERACTIVE TOOLS
We have explored a number of interaction techniques to
offer new ways of interacting with multiple objects through
structures. To design them, we involved the users we
interviewed in a participatory design process, with 2
brainstorming and sketching sessions, and 5 evaluation
sessions, as demonstrated in [17]. In the following, we cite
the requirements that each feature is supposed to address.
Requirements serve both as rationale to explain the design,
and to help readers determine whether they are satisfied by
our claims that the design fulfills the requirements.

Figure 4. Overview of the application. Center: workspace, top-

right: samples; bottom right: inspector.

Overview
To illustrate the interactive tools, we have designed a
graphical drawing application. There are four parts: a tool
palette on the left side, a workspace in the middle, a sample
panel on the top right corner, and an inspector on the
bottom right corner (see Figure 4). The workspace is the
main view, where users can create a new object by clicking
and resizing. Selection is performed by clicking on an
object or by drawing a rubber rectangle to encompass
several items, as implemented in usual graphics editors. A
bounding box with handles surrounds selected items.

The samples panel contains a set of values for shape
(square, oval, T for text), fill color (represented by a
colored square), stroke color (stroked-only colored square)
and stroke thickness (stroked-only circle). In order to
modify a property of an object in the main view, users can
drag a sample and drop it onto the object. Feedback is
shown as soon as the sample hovers over the object, in
order for the user to understand the action and to assess the
change before effectively applying it by releasing the
mouse button. This enables the user to cancel the action, by
releasing the button outside of any object (R3.1 try, R3.2
evaluate, R3.3 short term, R3.4 compare, R2.4 perceiving
consequences). Drag and drop of samples also applies to a
selection of objects. The interactions described so far are
not entirely novel. The next sections present two tools with
novel interactions.

Figure 5. The user’s selection contains objects with varying

shapes, fill colors, width, and height. A classical inspector (left)
displays a blank fill for those properties, whereas

ManySpector (at right) displays all different values.

Implicit structure: ManySpector, an enhanced inspector
An inspector (or property sheet [11]) is a window
containing a vertical list of pairs of property name and
value (e.g. shape: rectangle, color: green, thickness: 3). An
inspector offers two services to the user: visualizing values
with progressive disclosure and modifying them [11]. If
multiple objects are selected, a classical inspector only
displays values shared by all selected objects (e.g. stroke
color in Figure 5, left). Users can change such a value, and
the system reflects the change to all selected objects. The
inspector does not display any value for properties for
which there are multiples values (e.g. fill color in Figure 5,
left). Users are thus not informed about those values, and
sometimes cannot modify them through the inspector.

We have designed ManySpector, an inspector that displays
all used values for a property given a set of differing
objects. For example, in Figure 5-right, the Fill property
displays all colors used by objects in the selection. Used
values reveal an implicit structure of graphics, the sets of
objects that share a value for a given property. Though not
explicitly defined by the user, we think that such sets may
be useful, since users sometimes think about objects with a
graphical predicate (“all red objects”). We relied on the
display of used values to design a set of interactions that
offer new services for exploratory design and structure-
based interaction: query and selection of objects with
graphic examples, selection refinement, and properties
modification on multiple objects.

The representation of a shared value in ManySpector
actually reifies [3] both the value per se, and the set of
selected objects that exhibits this property value. As a value
per se, and similarly to the interaction with the sample
panel, users can drag the shared value (considered as a
value) from ManySpector onto (a selection of) objects in
the main view to modify a property. If the shared value is
numerical, users can hover over it and rotate the mouse
wheel to increment or decrement it (scope and specify
actions). Together with immediate feedback, this enables
both exploration and precise adjustment of properties, thus
reducing temporal offset [2] between action and feedback.

ManySpector limits the number of used values to half a
dozen. If the number of used values is larger, a scrollbar
enables the user to browse through all values. When the
cursor hovers over a property placeholder, an animation
enlarges it smoothly to reveal other used values.

Figure 6. The cursor is over the blue shared value of the fill

property. Because they don’t have this shared value, the green
rectangle, the pink circle and the two yellow shapes are dim.

Figure 7. Starting from Figure 5, a) the user drags a “stroke
thickness: 6pt” sample over the “fill: yellow” shared value.
Immediate feedback turns the stroke thickness of all yellow

items to 6pt. b) the user has dropped the sample, the
modification is applied.

Since a shared value also reifies a set of objects, hovering
over a shared value highlights the relevant objects while
blurring others with a short animation (Figure 6). This
makes it easy to figure out which set is made of what
(identify sets R1.4), and to detect outliers and fix them.
Users can drag a sample (a value) from the sample panel
onto a shared value (considered as a set of objects) to
modify at once a property for multiple objects (R2.3 scope)
(Figure 7). Users can also drag a shared value (value) onto
another shared value (set) (Figure 8).

To select objects, users can click on them in the workspace,
or draw a selection rectangle. In order to refine the
selection, users can use three meta-instruments (i.e.
instruments that control instruments, here the selection):
Remover, Keeper and Extender. The interaction consists in
a drag and drop of the representation of the instrument onto
a shared value. Remover throws out of the selection all

objects that have this shared value (Figure 9). Keeper keeps
in the selection the objects that have this shared value, and
throws away the others. Extender adds to the selection all
objects that are not selected but that possess this shared
value. The instruments can also be dropped onto an object
of the scene to add or remove it from the selection. These
interactions extend the set of example-based queries
introduced above (R1.3 modify sets).

Figure 8. The user drags the “width: 280” shared value and

drops it on the “shape: circle” shared value. All circles in the
selection now have a width set to 280.

Figure 9. The user drags the Remove tool onto the “fill: blue”

shared value. Blue objects are removed from the selection.

Explicit structure: the property delegation graph
Besides ManySpector, we have explored an interactive tool
that enables users to structure the content explicitly. Users
can specify that a property of an object (the clone) depend
on the property of another object (the prototype). A
prototype is similar to a master in Sketchpad: when users
change a property of a prototype by dropping a sample from
ManySpector onto the prototype, all dependent clones are
changed accordingly (R1.3 modify sets, R2.3 scope).

The interaction to specify a dependency is as follows
(Figure 10): by clicking on an object, users can toggle the
display of the properties around it. They can press on a
property, draw an elastic link, and drop it onto another
object as if they were dropping a sample. The clone object
appearance reflects immediately the appearance of the
clone for that property. Users can remove a link by pressing
the mouse button in the blank space, drawing across the
links to be deleted, and release the button.

The system proposes two ways of creating new objects
from existing ones: either by copying it or by cloning it
(R1.3 modify sets). Copying is the regular copy operation:
properties from the copy are independent from the
properties of the source. Cloning enables users to get a
clone, whose properties are entirely delegated to the copied
object (the prototype) (Figure 11). By creating a clone,
users minimize the number of actions required to specify a
single difference with the prototype: if they copied instead
of cloned, they would have to link all shared properties.

Explicit structuring is supposed to bring more action power,
at the expense of increasing viscosity and hindering
exploratory design since users have to manage a structure.
We have lowered these drawbacks with a posteriori
structuring and by leveraging off ManySpector. For
example, choosing to clone or to copy may be premature at
the moment of the creation of a new object from an existing
one. To solve this problem, users can decide to change them
to a copy or a clone after the creation of the object (R1.3
modify sets, R3.5 a posteriori structuring). This is made
possible by tracing the history of objects, and how they
were created. Toggling between copy and clone only affects
the properties that were not set explicitly by the user.
Another problem is to interact with similar objects in order
to make them depend on a prototype. A viscous solution
would be to interact with each object and making it a clone
of the prototype. A more efficient solution consists in
selecting the objects that are to be clones, and in dropping
the property of the prototype onto an object of the selection
(R1.3 modify sets, R3.5 a posteriori structuring). Users can
also drop the property onto a shared value in ManySpector
(Figure 12), which links all objects sharing that value to the
prototype.

The property delegation graph is an extension of the
delegation tree found in prototype-based languages [14].
However, with a tree, objects cannot have multiple parents.
For example, the scene tree available in illustrator may be
helpful to conceptualize the scene, but is unable to help
specify cross-branches relationships. Conversely to a tree, a
node in our graph of properties can have multiple parents.
This enables users to be more specific about the parent that
holds a particular property: a node can delegate ‘fill’ to a
prototype A, and ‘stroke-width’ to a prototype B.

Discussion about the design
The interactions are consistent: they all use modeless
interaction based on drag and drop, be it from or on an
object on the scene, a shared value, or a prototype. With
immediate feedback and a posteriori structuring, they also
support exploratory design. The properties are immediately
visible (no need to devise a query): users can try and test by
hovering over and off the used values, and assess the results
thanks to immediate feedback without applying the change
(button still pressed).

The interactions we devised can be considered as a kind of
surrogates [12]. We have expanded them by explicitly
taking into account the interaction to manage the selection
and explicit structuring. Furthermore, our version exposes
not only common properties but also all used values, which
makes direct the access to more subsets and expands
notably the scope of interactions. Of course, existing
systems enable users to obtain the same final results, and
even by relying on similar concepts (flash, sketchpad).
Those systems actually provide the same functionalities, but
not the same interactions. For example, existing tools do
enable users to perform a graphical search, but with an
indirect manipulation (through a menu and a dialog box).
This prevents users from quickly trying and testing changes
and hinders exploratory design. In addition, interactions are
not well integrated e.g. in Illustrator, there is a tree view,
but users can use it only to select a branch then apply a
limited set of changes on the selection.

As such, the prototypes have issues. For example, more
work needs to be done with respect to scalability:
ManySpector is not able to handle very large sets of used
values. The solution with a scrollbar and progressive
disclosure may not be sufficient. The prototype/clone view
also needs more work: if the links are numerous, the scene
may result in a mess of tangled links. Again, progressive
disclosure is a possible solution but we are also exploring
other representations and interactions [10]. Furthermore, the
system does not check for cycle when the user tries to link
two properties. Appropriate feedback is necessary to
prevent it, such as displaying the links to show a potential
cycle when hovering over a property.

Figure 10. The user draws a link between the fill property
of the green object (the prototype) into the blue object (the
clone) to specify a dependency. The fill color of the clone

turns to the color of the prototype (green).

Figure 11. The user has
selected the clone to see the

dependency.

Figure 12. The fill property is
dragged onto a used value to

specify that the fill property of a set
of objects depend on the prototype.

USER STUDY
We have argued in the previous sections that our tools are
novel, consistent and effective for performing structure-
based interaction. Assessing those claims is not a
straightforward task. We were especially concerned with
the understandability of the used values concept, and the
fact that they refer either to a value or the set of objects that
share this value. Would it be too difficult for users to grasp
the shared value concept and linked properties? Even if
users understand them, how would they struggle when
trying to use them to interact with multiple objects? Finally,
can users translate high-level problems into graphical
interactions with used values and linked properties?

Figure 13. The scene containing many objects.

Tasks
The evaluation session was divided into three parts, each
dedicated to one of the three questions above. The first part
was devoted to a tutorial that teaches users about used
values and links, and how to interact with them in the
graphical editor. The two other parts are scenarios that were
designed so that they implement the requirements.

In the tutorial, we instructed users to create a few objects,
link them, change their color or stroke thickness, with a
single object or a set of objects. The tutorial lasted 10min
and included 15 simple tasks. Users were actually
manipulating the mouse and performed interactions while
they were listening to our instructions. The goal of this
tutorial was not only to instruct users, but also to see if they
understood the design. We assessed their understanding by
observing them perform small tasks with no instructions
and by asking them if they were confident in their
understanding. We did not assess discoverability since we
began with a tutorial. This aspect is left for future work.

The second part of the session was an actual test. The test
was still using the graphical editor, but this time with a
scene containing multiple (50) differing objects (see Figure
13). We asked users to perform more complex tasks such as
‘change the thickness of all yellow circles to the maximum
of all thicknesses’. We did not give any instructions, and
left users perform the tasks by themselves. One of the
expected benefits of used values is to help users select a set
of objects with minimal interactions. Hence, we designed

the tasks to make traditional selection (i.e. a selection
rectangle, or adding shapes to the selection by shift-clicking
on them) more and more difficult either because they
involve multiple objects (scope R2.3), or because they
involve graphical properties that are not perceptually pre-
attentive (search R1.1, identify sets R1.4). For examples,
the task “change all circles’ color” is difficult because users
need to find all circles in a scene, a visual task known to be
non pre-attentive and that requires a cumbersome one-by-
one scan of graphical objects (try on Figure 13). Users were
free to carry out the tasks the way they want, either by
selecting shapes with the traditional way or using
ManySpector (designate R1.2). The goal of this second part
was to assess the extent to which users would rely
voluntarily on used values and links, whether they would be
able to perform non-trivial graphical tasks (specify action
R2.1 and parameters) R2.2), and how well they could
interact with used values and links.

Figure 14. The calendar view.

The third part involved a calendar application. Users were
manipulating events on a week view (see Figure 14). Events
are represented with rectangles with a title text and a start
hour text. They are placed horizontally according to day of
occurrence in the week and vertically according to the time
in the day. The screen is filled with seven columns, one per
day in the week. Instead of graphical properties, the
ManySpector window contained calendar-related properties
such as start, duration, title etc. as in the iCal inspector.
Conversely to iCal, ManySpector displays used values. This
allows for modification of unrelated events, while iCal
allows for modification of multiple repeated (i.e. recurring)
events only. We provided a partially filled schedule and we
asked users to act as if they were teachers trying to schedule
lecture sessions during the week with a schedule “manager”
(the role we played). For example, we asked them to place a
2-hour long lecture Wednesday afternoon. Then we told
them that when we said “place a lecture at 10am”, we
actually meant “10:15am”, so they had to change all
“10am” lecture events to “10:15am” (a posteriori
structuring R3.5). The goal of this third part was to assess
whether users could translate higher-level tasks to graphical
interactions with our tools. The tasks were high-level, and
required users to try R3.1, perceive the consequences R2.4,
evaluate R3.2 and perform short-term exploration R3.3.

Since the calendar scene contained few elements only
(~15), we were expecting that users would rely on
traditional selection. Hence we asked them to use
ManySpector instead of the traditional selection.

Subject profiles
We performed the tests with five subjects. Three of them
use calendar application in a day-to-day basis, one of them
was a graphical designer used to applications such as
Illustrator, and one was a casual user of graphical tools such
as presentation software. They were all aware about the
viscosity problem that might occur when using such tools.
Only the graphical designer was involved in the
participatory design process, hence four users discovered
the interactions for the first time.

Procedure
We asked subjects to think aloud [7] while they were
acting. We observed them and logged what they tried,
whether they struggled, made errors or succeeded. At the
end of the second and third part, we made them fill a
questionnaire to rate the difficulty and cumbersomeness of
the tasks, and the usefulness of the design with a Likert
scale from 1 (negative) to 5 (positive). Results are given in
the following, with the mean and the standard deviation.

Results
We did not notice serious understandability problems.
Users were able to manipulate shared properties and links,
and succeeded in performing simple tasks at the end of the
tutorial. When asked about their confidence, some of them
felt that they needed some learning “to do it well”. We
showed them many interactions, but even if the interactions
are well integrated, users felt that they could not get
familiar with them within such a short time. In addition,
because there were several possibilities to accomplish tasks,
users were always eager to find the best way of
accomplishing it, which adds to their feelings. Our
confidence into users’ understandability got stronger when
we witnessed that they got more capable as they were
performing the second and third part. We even observed
users trying interactions that we did not designed but that
were perfectly meaningful, such as using selection
instruments (keep, remove) directly on samples to avoid the
necessity to perform a selection of the entire scene,
dropping a value onto a property name to apply it to all
objects, or dragging a sample next to existing used values to
extend the selection. This suggests that the design was
consistent and predictable.

We did notice some difficulties when users performed more
complex graphical tasks in the second part (ease of
translation in graphic scenario: mean: 3.6, stddev: 0.5).
This can be explained by the fact that users were still
learning the interaction. They also told us that the tasks
were rather abstract. In fact, since the tasks were purposely
complex, they lacked significance (none performed ‘change

the thickness of all yellow circles to the maximum of all
thicknesses’ in real-life). They struggled to understand and
memorize them, which hindered their ability to devise a
solution. The four non-graphical designers found the
requests much less difficult in the last part with the calendar
application and meaningful tasks. Still, all subjects were
able to accomplish every tasks of the second part by
themselves. (mean of the easiness of the 9 subtasks of the
graphic scenario: 4.6; 0.5).

We were wondering about voluntary use. We observed
what we expected: with tasks that involve pre-attentive
properties (such as color-oriented one: ‘turn yellow objects
into red’), subjects were sometimes still using a traditional
selection. However, they turned by themselves to used
values with non-pre-attentive tasks, or when the number of
objects was too important. They also used links when we
asked them to repeat an interaction on the same set of
objects: after a number of repetitions, some subjects turned
a specific object into a master. This enabled them to be
more efficient than devising a selection again with the
ManySpector. All kinds of interaction were performed
(with samples, used values, links), and all combinations of
source and destination for drag and drop were witnessed.

We did not notice difficulties when users had to translate
higher-level tasks into interactions in the calendar test (ease
of translation in calendar scenario: 4.2; 0.8). We witnessed
a tendency to use traditional selection for very simple tasks.
When we forced users to employ our interactions instead,
they did not have difficulties to do so (mean of the easiness
of the 7 subtasks of the calendar scenario: 4.7; 0.5). This
suggests that the interactions can be applied to other
contexts than graphical edition.

Even if we did not plan to evaluate usability, the tests
revealed some issues such as the difficulty of interacting
with the text boxes. Users also found limits to the
interactions we proposed: in some cases, users would have
liked to keep objects based on a combination of values
instead of a single one. As expected, links lacked visibility
and legibility when numerous.

All in all, the study allowed us to answer positively to our
concerns: the tools fulfill the requirements since users were
able to understand the interactions, could perform complex
graphical tasks with them and could translate higher-level
tasks into them. Users judged ManySpector very useful
(ManySpector usefulness: 4.8; 0.4). They liked explicit
structuring with links though not as much as used values
(links usefulness: 4.4; 0.9). They also praised the fact that
there was no imposed strategy and that they could perform
tasks their way.

CONCLUSION
We have tackled the problem of interaction with structures,
and interaction with content through structures. We have
defined a set of requirements and have explored a set of
consistent interactions that provide partial answers to the

requirements: ManySpector, an inspector for multiple
objects, and explicit delegation links. A study showed that
users are able to perform complex graphical tasks with
them. The examples involved a drawing editor and a
calendar but the requirements and interactions are not
specific to these applications, and can be applied to others.

Our interactions suffer from some problems such as
scalability (though this may not be a problem for e.g. the
calendar) and legibility. Other designs are possible: we are
currently investigating other forms of explicit structuring
with no links. We also plan to assess how well those
interactions support exploratory design.

ACKNOWLEDGMENTS
We thank all participants of the workshops, and our
colleagues for early and late feedback on the paper.

REFERENCES
1. Appert, C, Beaudoin-Lafon, M, Mackay, W. E. Context

matters: Evaluating Interaction Techniques with the CIS
Model. Proc. HCI'04, 279-295. Springer Verlag, 2004.

2. Beaudouin-Lafon, M. Instrumental Interaction: An
Interaction Model for Designing Post-WIMP User
Interfaces. In Proc. CHI 2000, ACM, 446-453.

3. Beaudouin-Lafon, M. and Mackay,AW. E. Reification,
polymorphism and reuse: three principles for designing
visual interfaces. In Proc. of ACM AVI 2000, 102-109.

4. Conversy, S., Chatty, S. and Hurter, C. Visual scanning
as a reference framework for interactive representation
design. In Information Visualization, Sage, 2011.

5. Dourish, P., Edwards W.K., LaMarca, A. and Salisbury,
M. 1999. Presto: an experimental architecture for fluid
interactive document spaces. ACM Trans. Comput.-
Hum. Interact. 6, 2 (June 1999), 133-161.

6. D. M. Frohlich. The history and future of direct
manipulation. Behaviour & Information Technology,
12(6): 315–329, 1993.

7. Ericsson, K., & Simon, H. (May 1980). Verbal reports
as data. Psychological Review, 87 (3): 215–251.

8. Green, T.R.G., Cognitive dimensions of notations,
People & Computers V, 1989, Cambridge Univ. Press,
443-460.

9. Green, T.R.G, and Blackwell, A. Cognitive dimensions
of information artifacts: a tutorial. (Version 1.2), 1998.

10. Holten, D., Isenberg, P., van Wijk, J. J., Fekete, J.-D.
2011, An extended evaluation of the readability of
tapered, animated, and textured directed-edge
representations in node-link graphs, IEEE PacificVis,
195–202.

11. Johnson J.A., Roberts T.L., Verplank W., Smith D.C.,
Irby C.H., Beard M., and Mackey K. The Xerox Star: A
retrospective. IEEE Computer, 22(9): 11–29, 1989.

12. Kwon, B., Javed, W., Elmqvist, N., and Yi, J.-S. Direct
Manipulation Through Surrogate Objects. In Proc. of
ACM CHI 2011, 627-636.

13. Kurlander, D, Bier, E.A. Graphical Search and Replace.
In Proc. of ACM SIGGRAPH '88, 113-120.

14. Lieberman, H. 1986. Using prototypical objects to
implement shared behavior in object-oriented systems.
In Proc. of OOPLSA '86. ACM, 214-223.

15. Lieberman, H. Your Wish is my command:
Programming by example. Morgan Kaufmann, 2001.

16. Mackay, W.E. Which interaction technique works
when?: floating palettes, marking menus and tool-
glasses support different task strategies. In Proc. of AVI
'02. ACM, 203-208.

17. Mackay, W.E. Using Video to Support Interaction
Design. DVD Tutorial, CHI'02, ACM.

18. Maloney, J.H. and Smith, R.B. 1995. Directness and
liveness in the morphic user interface construction
environment. In Proc. UIST '95. ACM, 21-28.

19. Moore, I. 1996. Automatic inheritance hierarchy re-
structuring and method refactoring. In Proc. of
OOPSLA'96. ACM, 235-250.

20. Myers, B. A., Giuse, D. A. and Zanden, B V.
Declarative programming in a prototype-instance sys-
tem: object-oriented programming without writing
methods. SIGPLAN Notice 27, 10 (1992), 184-200.

21. Ousterhout, J. K. Tcl & Tk Toolkit. Addison-Wesley,
1994.

22. Sutherland I.E. 1963. Sketchpad: a man-machine
graphical communication system. In Proc. of AFIPS'63.
ACM, 329-346.

23. Shneiderman, B. Direct manipulation: a step beyond
programming languages. IEEE Computer 16(8), 57–69,
1983.

24. Terry, M. and Mynatt E.D. Recognizing creative needs
in user interface design. Proc. of Creativity &
Cognition. ACM, 38-44, 2002.

25. Terry, M. and Mynatt, E. D. Side views: persistent, on-
demand previews for open-ended tasks. In Proc. of
UIST 2002.ACM, pp. 71-80.

26. Terry M, Mynatt E.D, Nakakoji K, and Yamamoto Y.
2004. Variation in element and action: supporting
simultaneous development of alternative solutions. In
Proc. of CHI '04. ACM, 711-718.

27. Ungar, D, Smith R, B. SELF: The Power of Simplicity.
In Proc. of OOPSLA '87. ACM, 227-242.

