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ABSTRACT 
When using interactive graphical tools, users often have to 
manage a structure, i.e. the arrangement of and relations 
between the parts or elements of the content. However, 
interaction with structures may be complex and not well 
integrated with interaction with the content. Based on 
contextual inquiries and past work, we have identified a 
number of requirements for the interaction with graphical 
structures. We have designed and explored two interactive 
tools that rely on implicit and explicit structures: 
ManySpector, an inspector for multiple objects that help 
visualize and interact with used values; and links that users 
can draw between object properties to provide a 
dependency. The interactions with the tools augment the 
scope of interactions to multiple objects. A study showed 
that users understood the interactions and could use them to 
perform complex graphical tasks. 
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INTRODUCTION 
When using computerized tools such as real-time editors, 
presentation software, GUI builders, etc. users create and 
manipulate graphical objects on the screen. They can edit 
them individually, e.g. change their color or their stroke 
width. Users can also consider and interact with sets of 
objects as opposed to individual objects. To do so, they may 
be required to structure the scene, by relying on concepts 
such as groups, styles, or masters. According to the Oxford 
dictionary, a structure is “the arrangement of and relations 
between the parts or elements of something complex”. 

Using a structure may have multiple assets, such as helping 
users conceptualize the scene they are creating (“the back-
ground of the slide includes this drawing and this text”, 
“this set of slides is a subpart of the presentation” etc.), and 
think better about the problem at hand. Here, we are 
interested in structures as means to interact with the 
content: since structuring involves sets of objects, the 
actions done on an element of the structure may have an 
effect on several objects at once.  

In current interactive systems, the use and the management 
of structures may be complex. Users have to create and 
maintain them. Depending on the kind of structure, some 
operations may be cumbersome or impossible to do, which 
prevents users to explore the design space of their particular 
problem. Furthermore, systems that provide structuring do 
not leverage off the structures fully to provide users with 
new ways of interacting with the content. 

Interactions with structure and with multiple objects 
through a structure have not been studied extensively in the 
past. Of course, a number of past works have identified the 
problem [6], but few concepts or properties targeted it 
explicitly [2,12]. For example, what are the interactions that 
enable users to define sets of objects? What are the 
available means to augment the scope of interaction i.e. 
apply an interaction to several targets? What are the 
concepts that may guide the design of such interactions? 

The work presented in this paper aims at improving the 
management of structures as means to augment the scope of 
interactions. Based on contextual inquires and related work, 
we present a number of requirements pertaining to the 
interactions with structures. We then present two interactive 
tools that aim at fulfilling those requirements. The first one 
is ManySpector, an inspector for multiple objects. 
ManySpector displays all used values for a property given a 
set of differing objects, whereas a traditional inspector 
displays no value. This reveals an implicit structure of 
graphics (the sets of objects that share a graphical property) 
and offers new interaction means. The second one is based 
on links that users can draw between object properties to 
provide a dependency. The resulting property delegation 
graph is a means for users to provide an explicit structure. 
We then report on a user study involving those tools. 
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CONTEXTUAL INQUIRIES AND SCENARIO 
We have based our work on concrete and realistic case 
studies. We have conducted five contextual inquiries with 
“designers”, the design activity being taken in its broadest 
sense: edition of graphics (Illustrator and OmniGraffle), 
courses schedule (iCal), architecture (Auto-CAD), or 
lecture presentation (PowerPoint). We have written a dozen 
scenarios that describe accurately the activities. 

In order to introduce the problem, we present one of the 
scenarios. This scenario illustrates a number of 
requirements pertaining to interactions on several objects, 
with or without a structure. The scenario is real but adapted 
slightly for illustration purpose: some interactions that are 
deemed as impossible (e.g. with Inkscape) might be 
possible with other tools (e.g. with Illustrator and vice-
versa). The steps are annotated in italic to characterize 
them. We detail the annotations later in this section. 

Elodie is a designer tasked with creating the graphics of a 
custom software keyboard for a tablet computer. Using a 
graphical editor, she creates a first key. She draws a 
rounded rectangle with a solid white fill and a surrounding 
stroke. She adds a rectangle inside the previous one, with a 
blue gradient fill (no stroke). She selects both rectangles 
with a selection lasso (designation) and groups them with a 
command in a menu (structuring). She then adds a soft 
shadow effect on the group. She overlays a label with a text 
‘A’ on the group of rectangles and centers the label and the 
group by invoking a ‘center’ command on a toolbox. She 
then forms another group with the label and the groups of 
rectangles, and names it “key” in the tree view of the 
graphical scene provided by the application (structuring). 
This first key serves as a model to create other keys: she 
duplicates the key, and applies a horizontal translation to 
the copy. She proceeds with this action several times in 
order to get a row of keys (Figure 1). She then modifies the 
text of each key one by one (Figure 2). 

 
Figure 1. The user creates a key, and duplicates it. 

 
Figure 2. The text of the ‘I’ key is not centered. 

When she changes the letter ‘A’ for ‘I’, she realizes that the 
‘I’ text is not centered with regards to the rectangles (Figure 
2). The first object was specified incorrectly: if the three 
objects (label, gradient rectangle, rectangle) are correctly 
aligned, the text of the label is not centered. The problem 
was not noticeable with the first letters (AZERTYU) since 
their widths are similar. Each label being in a 
heterogeneous group (containing object types other than 
label), the system does not provide a text center command 

that can be applied to a selection of objects. She has to click 
multiple times on an object to reach the label and apply the 
‘text centered’ command. Therefore, she estimates that it is 
more efficient to start over: she deletes all copies, ungroups 
the first key, centers the text, groups the objects again, 
copies and moves the copies, and modifies each letter one 
by one. 

 
Figure 3. The entire keyboard with the double keys. 

Elodie has finished the entire keyboard. Some of the keys 
are double keys that contain two smaller labels at the top 
and the bottom of the key (Figure 3). She wonders whether 
the double key labels are too small and she wants to explore 
new sizes (exploratory design). First she has to find each 
double key in her design (searching). To do so, she zooms 
out to make the keyboard entirely visible. This allows her to 
identify each double key. Again, she has to change the size 
of the labels one by one. 

The scenario illustrates several requirements. 

Structuring Elodie relied on the ability of the system to 
allow creation, modification, and management of sets. For 
example, she created a single group with two rectangles, 
then another group with the previous one and the label. 

Designation Elodie designated objects, properties and 
actions. For example, she changed the “alignment” property 
of the label to “centered”. 

Scope of actions Elodie acted on multiple objects at once. 
For example, she grouped objects because she wanted to 
consider them as a single entity that keeps the relative 
positions between subparts, but also because she wanted to 
apply a single translation on three objects at once. 
Conversely, she was not able to apply the command ‘set 
alignment’ to several objects at once. 

Seeking Elodie needed to retrieve objects: she had to search 
objects whose content is similar to other ones. The search 
action requires visually scanning the graphical objects and 
seeking candidate objects, at the risk of forgetting some of 
them. The more the objects, the more difficult it is to find 
out particular ones, especially if the features to search for 
are not pre-attentive [4]. As the number of keys increases, 
each modification gets more costly, not only because of the 
number of actions to repeat, but also because of the 
required visual search effort. 

Exploratory Design Elodie explored parts of possible 
solutions, and modified existing parts of solutions. By 
combining action, visualization of intermediate results and 
thinking, she co-discovered the problem and the solution. In 



 

doing so, she was pursuing an exploratory design activity. 
This phenomenon is important for activities in which the 
expected result is not known in advance: graphics edition 
activities, slides design, or class hierarchy design [8][24]. 

RELATED WORK 
Past works have tackled the problems of managing 
structures, and interacting with multiple objects, either 
explicitly or implicitly. We present them along three axes: 
interactions for structuring the content provided by 
interactive systems, design and evaluation of interactions 
for structuring, and structuring in programming. 

Structuring for users 
Groups Traditional graphical editors allow users to create 
groups from a set of objects previously selected by the user, 
and to act on those groups. The only operation available for 
a group is ‘ungroup’, which removes the group entity and 
selects all objects that were part of the groups (no 
modification, addition, or subtraction). Selection can be 
seen as a transient group, with ‘add’ and ’remove’ 
operations by holding the shift key and selecting several 
elements, or holding the ctrl key and clicking on individual 
elements. Some tools support heterogeneous settings, but 
with specific properties only e.g. translation, scale and 
rotation: all elements in the group are transformed 
accordingly. Conversely, some operations (e.g. ‘set color’) 
cannot be applied to groups, supposedly because some 
elements inside the group do not “understand” them. This 
forces the user to ungroup and apply the command on each 
object. In this case, interaction with the structure is not well 
integrated with interaction with the content. 

Trees Groups can be part of a surrounding group, turning 
them into trees or hierarchies. Support for management of 
such hierarchy ranges from no support at all, to navigation 
in the hierarchy of parents [18], and tree views in structured 
graphics editors (e.g. Inkscape or Illustrator). A tree view 
enables users to reparent elements with a drag and drop. 
However, there is no support for other operations, such as 
applying a color to a node in order to change all children. 

Masters A Master is an element used as a “model” for other 
elements. For example, PowerPoint enables users to define 
in a master slide the appearance that other slides would 
inherit. Sketchpad introduced masters as shareable objects 
that could be used in multiple locations in the scene [22]. 
Changing a property of the master would modify all objects 
that depend on this master. This was a way to reduce the 
number of actions required from the user when something 
must be changed. 

Properties Presto is a document management system that 
enables users to tag documents with properties, e.g. 
year=2012 [5]. Properties provide a uniform mechanism for 
managing, coding, searching, retrieving and interacting 
with documents. For example, users can define directories 
(i.e. a set) of documents using properties: either by 

extension (by putting elements into the directory), or by 
intension (with a query such as size >500k). Conversely to 
purely hierarchical structures, properties enable objects to 
be part of several overlapping sets. 

Graphical search Graphical Search & Replace [13] allows 
users to search for elements based on their graphical 
properties (designation) and change at once a particular 
property for all found objects (multiple scopes). 
Applications like Illustrator provide such a tool but through 
a dialog box, not by direct manipulation. 

Surrogates Surrogates are specialized interactors that allow 
users to interact with the surrogate instead of the domain 
object [12]. Similarly to classical inspectors, surrogates 
expose attributes that are common to objects, by 
automatically narrowing the surrogate to the lowest 
common ancestor. This enables users to interact with those 
values and modify several objects at once. 

User-defined macros and Programming by example User-
defined macros allow for automation of repetitive tasks 
[15]. The user proceeds with an example of the task to re-
peat, and an algorithm abstracts the actions, so as to enable 
application on other objects. 

Structuring for exploratory design Some structuring 
techniques have been designed to support exploratory 
design. The list of reversible actions is an implicit 
mechanism to help users not to fear possible damages [23]. 
Side Views display previews of interactive commands [25]. 
Parallel Paths support alternative exploration by relying on 
an arborescence of creations instead of a linear history, and 
on the simultaneous views of parallel results (comparison) 
[26]. Acting on a node of the creation path enables users to 
manipulate the subsequent designs at once (scope). 

Structuring for designers 
Interaction designers have already identified the need for 
many modifications with a low number of actions. 

Cognitive dimensions In the cognitive dimensions of 
notation framework [8], the problem described in the 
software keyboard scenario is identified as “viscosity”. It 
exhibits when the structure of the information contains a lot 
of dependencies between parts, which implies that a small 
change leads to numerous adjustments from the user. 
Viscosity is a hurdle to modification and exploratory design 
[9]. Since it may be costly to apply the changes, the user 
refrains from exploring alternatives. A solution to viscosity 
consists in creating an “abstraction”, a “power command” 
that would act on several objects [9]. An abstraction is a 
class of entities, or a grouping of elements that users will 
handle as a single unit e.g. styles in a text document. 

Abstraction can be costly. Learning, creating and modifying 
them require time and effort that should be balanced with 
investment in repeating a small sequence of actions to solve 
a small problem. Besides, abstractions can be a hurdle to 
exploratory design if they are required before any other 



 

simple actions. Finally, abstraction may introduce hidden 
dependencies: some parts of the scene may depend on 
others in an invisible way, which makes it hard for the user 
to predict the effect of a change. 

Instrumental interaction and design principles Direct [23] 
and instrumental [2] interaction techniques are efficient 
with a single object: they lower the number of required 
actions compared to other techniques, such as command 
lines, conversational dialogue, or modal interactions. 
Design principles related to instrumental interaction, such 
as reification (turning an object into a thing), polymorphism 
(applying the same change to different class of objects) and 
reuse (of past selection and interactions result) extend the 
scope of actions to multiple objects [2]. 

Cost of interaction techniques A particular technique is only 
better than another with respect to the task to accomplish: 
copy, modification, or problem solving (equivalent to 
exploratory design) [16].  CIS is a model that helps describe 
an interaction technique, analyze it, and predict its 
efficiency in the context of use [1]. CIS defines four 
properties for interaction techniques. Among them, Fusion 
is the ability of a technique to modify several work objects 
by defining multiple manipulations at once (scope), and 
Development corresponds to the ability offered to the user 
to create copies of tools with different attribute values. 

Structuring for programmers 
The problems raised so far can also occur during 
development activities. For example, refactoring tools in 
IDEs is an answer to the need for multiple scopes of action: 
if the user changes the name of a method, the system 
applies this change on each call of the method, possibly in 
many classes or files. Styles can be implemented in a style 
language (e.g. CSS), with a hierarchical structuring. 
Changing a parameter in an intermediate node has an effect 
on its children. Tags in the Tk toolkit allow the programmer 
to structure objects in overlapping sets [21]. Changes can be 
applied to graphical shapes or to a tag, and thus to the set of 
objects that hold this tag (scope). Tags can be defined by 
extension (with designated objects) or by intension (with a 
predicate e.g. all blue objects) [21]. 

Prototype-based languages offer an alternative to class-
based languages for object-oriented programming [14][20]. 
They offer a flexible creation model that allows sharing of 
properties and behaviors. Such mechanisms allow users to 
structure a hierarchy of prototypes and to act on several 
clones by manipulating a prototype in the delegation 
hierarchy. Morphic reifies prototypes and clones into 
graphic objects (called Morphs), and allows for their 
construction and edition with direct manipulation [18]. 
Tools have been designed to help structure a prototype 
hierarchy. For example, Guru is an algorithm that 
automatically creates a well-organized graph of prototypes, 
by factoring shared properties into new prototypes [19]. 

REQUIREMENTS 
In this section, we synthesize the requirements for the 
manipulation of objects through structures (Table 1). The 
synthesis is derived from the contextual inquiries we ran, 
and our analysis of the related work. Notably, the 
requirements are related to the set of tasks identified in [6] 
that are known to be difficult to perform with direct 
manipulation techniques. We have expanded and refined 
them in this section. We present 3 subsets of requirements: 
managing sets of objects (R1), managing actions (R2), 
fostering exploratory design (R3). 

Search (R1.1) 
Designate (R1.2) 
Modify (R1.3) 

Manage sets of 
objects (R1) 

Identify sets (R1.4) 
Specify their nature (R2.1) 
Specify their parameters (R2.2) 
Specify the scope (R2.3) Manage actions (R2) 

Perceive consequences (R2.4) 
Try (R3.1) 
Evaluate (R3.2) 
Short-term exploration (R3.3) 
Compare versions (R3.4) 

Foster exploratory 
design (R3) 

A posteriori structuring (R3.5) 

Table 1: Requirements 

Managing sets consists in searching (R1.1), and 
designating (R1.2) the objects that are part of a set. It is also 
necessary to modify (R1.3) the sets (add, remove elements). 
Finally, users must be able to identify (R1.4) the objects that 
belong to a particular set, or determine the sets a particular 
object belongs to. 

Managing actions consists in specifying their nature (e.g. 
by clicking on an ‘alignment” icon, or a menu) (R2.1), their 
parameters (“vertical” or “horizontal”) (R2.2) and their 
scope (R2.3). Perceiving their consequences (R2.4) with 
appropriate feedback enables the user to realize the effects 
of its action after, and even before it is triggered [23]. 

In order to support exploratory design, it is important to 
provide users with tools that enable them to try (R3.1) and 
evaluate (R3.2) solutions during short-term exploration 
(R3.3), and compare different versions during middle-term 
exploration (R3.4) [24]. When satisfied with the results, 
users must be able to extend the modifications to other 
objects. If the system does not support this task efficiently, 
users will have to repeat the same actions to propagate 
changes (viscosity). Finally, if structuring is a solution to 
the viscosity problem, it is a hurdle to exploration if 
required a priori. Therefore, structuring should be made a 
posteriori (R3.5) i.e. when actions have already been done. 

 



 

INTERACTIVE TOOLS 
We have explored a number of interaction techniques to 
offer new ways of interacting with multiple objects through 
structures. To design them, we involved the users we 
interviewed in a participatory design process, with 2 
brainstorming and sketching sessions, and 5 evaluation 
sessions, as demonstrated in [17]. In the following, we cite 
the requirements that each feature is supposed to address. 
Requirements serve both as rationale to explain the design, 
and to help readers determine whether they are satisfied by 
our claims that the design fulfills the requirements. 

 
Figure 4. Overview of the application. Center: workspace, top-

right: samples; bottom right: inspector. 

Overview 
To illustrate the interactive tools, we have designed a 
graphical drawing application. There are four parts: a tool 
palette on the left side, a workspace in the middle, a sample 
panel on the top right corner, and an inspector on the 
bottom right corner (see Figure 4). The workspace is the 
main view, where users can create a new object by clicking 
and resizing. Selection is performed by clicking on an 
object or by drawing a rubber rectangle to encompass 
several items, as implemented in usual graphics editors. A 
bounding box with handles surrounds selected items. 

The samples panel contains a set of values for shape 
(square, oval, T for text), fill color (represented by a 
colored square), stroke color (stroked-only colored square) 
and stroke thickness (stroked-only circle). In order to 
modify a property of an object in the main view, users can 
drag a sample and drop it onto the object. Feedback is 
shown as soon as the sample hovers over the object, in 
order for the user to understand the action and to assess the 
change before effectively applying it by releasing the 
mouse button. This enables the user to cancel the action, by 
releasing the button outside of any object (R3.1 try, R3.2 
evaluate, R3.3 short term, R3.4 compare, R2.4 perceiving 
consequences). Drag and drop of samples also applies to a 
selection of objects. The interactions described so far are 
not entirely novel. The next sections present two tools with 
novel interactions. 

 
Figure 5. The user’s selection contains objects with varying 

shapes, fill colors, width, and height. A classical inspector (left) 
displays a blank fill for those properties, whereas 

ManySpector (at right) displays all different values. 

Implicit structure: ManySpector, an enhanced inspector 
An inspector (or property sheet [11]) is a window 
containing a vertical list of pairs of property name and 
value (e.g. shape: rectangle, color: green, thickness: 3). An 
inspector offers two services to the user: visualizing values 
with progressive disclosure and modifying them [11]. If 
multiple objects are selected, a classical inspector only 
displays values shared by all selected objects (e.g. stroke 
color in Figure 5, left). Users can change such a value, and 
the system reflects the change to all selected objects. The 
inspector does not display any value for properties for 
which there are multiples values (e.g. fill color in Figure 5, 
left). Users are thus not informed about those values, and 
sometimes cannot modify them through the inspector. 

We have designed ManySpector, an inspector that displays 
all used values for a property given a set of differing 
objects. For example, in Figure 5-right, the Fill property 
displays all colors used by objects in the selection. Used 
values reveal an implicit structure of graphics, the sets of 
objects that share a value for a given property. Though not 
explicitly defined by the user, we think that such sets may 
be useful, since users sometimes think about objects with a 
graphical predicate (“all red objects”). We relied on the 
display of used values to design a set of interactions that 
offer new services for exploratory design and structure-
based interaction: query and selection of objects with 
graphic examples, selection refinement, and properties 
modification on multiple objects. 

The representation of a shared value in ManySpector 
actually reifies [3] both the value per se, and the set of 
selected objects that exhibits this property value. As a value 
per se, and similarly to the interaction with the sample 
panel, users can drag the shared value (considered as a 
value) from ManySpector onto (a selection of) objects in 
the main view to modify a property. If the shared value is 
numerical, users can hover over it and rotate the mouse 
wheel to increment or decrement it (scope and specify 
actions). Together with immediate feedback, this enables 
both exploration and precise adjustment of properties, thus 
reducing temporal offset [2] between action and feedback. 



 

ManySpector limits the number of used values to half a 
dozen. If the number of used values is larger, a scrollbar 
enables the user to browse through all values. When the 
cursor hovers over a property placeholder, an animation 
enlarges it smoothly to reveal other used values. 

 
Figure 6. The cursor is over the blue shared value of the fill 

property. Because they don’t have this shared value, the green 
rectangle, the pink circle and the two yellow shapes are dim. 

 

Figure 7. Starting from Figure 5, a) the user drags a “stroke 
thickness: 6pt” sample over the “fill: yellow” shared value. 
Immediate feedback turns the stroke thickness of all yellow 

items to 6pt. b) the user has dropped the sample, the 
modification is applied. 

Since a shared value also reifies a set of objects, hovering 
over a shared value highlights the relevant objects while 
blurring others with a short animation (Figure 6). This 
makes it easy to figure out which set is made of what 
(identify sets R1.4), and to detect outliers and fix them. 
Users can drag a sample (a value) from the sample panel 
onto a shared value (considered as a set of objects) to 
modify at once a property for multiple objects (R2.3 scope) 
(Figure 7). Users can also drag a shared value (value) onto 
another shared value (set) (Figure 8). 

To select objects, users can click on them in the workspace, 
or draw a selection rectangle. In order to refine the 
selection, users can use three meta-instruments (i.e. 
instruments that control instruments, here the selection): 
Remover, Keeper and Extender. The interaction consists in 
a drag and drop of the representation of the instrument onto 
a shared value. Remover throws out of the selection all 

objects that have this shared value (Figure 9). Keeper keeps 
in the selection the objects that have this shared value, and 
throws away the others. Extender adds to the selection all 
objects that are not selected but that possess this shared 
value. The instruments can also be dropped onto an object 
of the scene to add or remove it from the selection. These 
interactions extend the set of example-based queries 
introduced above (R1.3 modify sets). 

 
Figure 8. The user drags the “width: 280” shared value and 

drops it on the “shape: circle” shared value. All circles in the 
selection now have a width set to 280. 

 
Figure 9. The user drags the Remove tool onto the “fill: blue” 

shared value. Blue objects are removed from the selection. 

Explicit structure: the property delegation graph 
Besides ManySpector, we have explored an interactive tool 
that enables users to structure the content explicitly. Users 
can specify that a property of an object (the clone) depend 
on the property of another object (the prototype). A 
prototype is similar to a master in Sketchpad: when users 
change a property of a prototype by dropping a sample from 
ManySpector onto the prototype, all dependent clones are 
changed accordingly (R1.3 modify sets, R2.3 scope). 

The interaction to specify a dependency is as follows 
(Figure 10): by clicking on an object, users can toggle the 
display of the properties around it. They can press on a 
property, draw an elastic link, and drop it onto another 
object as if they were dropping a sample. The clone object 
appearance reflects immediately the appearance of the 
clone for that property. Users can remove a link by pressing 
the mouse button in the blank space, drawing across the 
links to be deleted, and release the button. 



 

The system proposes two ways of creating new objects 
from existing ones: either by copying it or by cloning it 
(R1.3 modify sets). Copying is the regular copy operation: 
properties from the copy are independent from the 
properties of the source. Cloning enables users to get a 
clone, whose properties are entirely delegated to the copied 
object (the prototype) (Figure 11). By creating a clone, 
users minimize the number of actions required to specify a 
single difference with the prototype: if they copied instead 
of cloned, they would have to link all shared properties. 

Explicit structuring is supposed to bring more action power, 
at the expense of increasing viscosity and hindering 
exploratory design since users have to manage a structure. 
We have lowered these drawbacks with a posteriori 
structuring and by leveraging off ManySpector. For 
example, choosing to clone or to copy may be premature at 
the moment of the creation of a new object from an existing 
one. To solve this problem, users can decide to change them 
to a copy or a clone after the creation of the object (R1.3 
modify sets, R3.5 a posteriori structuring). This is made 
possible by tracing the history of objects, and how they 
were created. Toggling between copy and clone only affects 
the properties that were not set explicitly by the user. 
Another problem is to interact with similar objects in order 
to make them depend on a prototype. A viscous solution 
would be to interact with each object and making it a clone 
of the prototype. A more efficient solution consists in 
selecting the objects that are to be clones, and in dropping 
the property of the prototype onto an object of the selection 
(R1.3 modify sets, R3.5 a posteriori structuring). Users can 
also drop the property onto a shared value in ManySpector 
(Figure 12), which links all objects sharing that value to the 
prototype. 

The property delegation graph is an extension of the 
delegation tree found in prototype-based languages [14]. 
However, with a tree, objects cannot have multiple parents. 
For example, the scene tree available in illustrator may be 
helpful to conceptualize the scene, but is unable to help 
specify cross-branches relationships. Conversely to a tree, a 
node in our graph of properties can have multiple parents. 
This enables users to be more specific about the parent that 
holds a particular property: a node can delegate ‘fill’ to a 
prototype A, and ‘stroke-width’ to a prototype B. 

Discussion about the design 
The interactions are consistent: they all use modeless 
interaction based on drag and drop, be it from or on an 
object on the scene, a shared value, or a prototype. With 
immediate feedback and a posteriori structuring, they also 
support exploratory design. The properties are immediately 
visible (no need to devise a query): users can try and test by 
hovering over and off the used values, and assess the results 
thanks to immediate feedback without applying the change 
(button still pressed). 

The interactions we devised can be considered as a kind of 
surrogates [12]. We have expanded them by explicitly 
taking into account the interaction to manage the selection 
and explicit structuring. Furthermore, our version exposes 
not only common properties but also all used values, which 
makes direct the access to more subsets and expands 
notably the scope of interactions. Of course, existing 
systems enable users to obtain the same final results, and 
even by relying on similar concepts (flash, sketchpad). 
Those systems actually provide the same functionalities, but 
not the same interactions. For example, existing tools do 
enable users to perform a graphical search, but with an 
indirect manipulation (through a menu and a dialog box). 
This prevents users from quickly trying and testing changes 
and hinders exploratory design. In addition, interactions are 
not well integrated e.g. in Illustrator, there is a tree view, 
but users can use it only to select a branch then apply a 
limited set of changes on the selection. 

As such, the prototypes have issues. For example, more 
work needs to be done with respect to scalability: 
ManySpector is not able to handle very large sets of used 
values. The solution with a scrollbar and progressive 
disclosure may not be sufficient. The prototype/clone view 
also needs more work: if the links are numerous, the scene 
may result in a mess of tangled links. Again, progressive 
disclosure is a possible solution but we are also exploring 
other representations and interactions [10]. Furthermore, the 
system does not check for cycle when the user tries to link 
two properties. Appropriate feedback is necessary to 
prevent it, such as displaying the links to show a potential 
cycle when hovering over a property. 

  
  

Figure 10. The user draws a link between the fill property 
of the green object (the prototype) into the blue object (the 
clone) to specify a dependency.  The fill color of the clone 

turns to the color of the prototype (green). 

Figure 11. The user has 
selected the clone to see the 

dependency. 

Figure 12. The fill property is 
dragged onto a used value to 

specify that the fill property of a set 
of objects depend on the prototype. 



 

USER STUDY 
We have argued in the previous sections that our tools are 
novel, consistent and effective for performing structure-
based interaction. Assessing those claims is not a 
straightforward task. We were especially concerned with 
the understandability of the used values concept, and the 
fact that they refer either to a value or the set of objects that 
share this value. Would it be too difficult for users to grasp 
the shared value concept and linked properties? Even if 
users understand them, how would they struggle when 
trying to use them to interact with multiple objects? Finally, 
can users translate high-level problems into graphical 
interactions with used values and linked properties? 

 
Figure 13. The scene containing many objects. 

Tasks 
The evaluation session was divided into three parts, each 
dedicated to one of the three questions above. The first part 
was devoted to a tutorial that teaches users about used 
values and links, and how to interact with them in the 
graphical editor. The two other parts are scenarios that were 
designed so that they implement the requirements. 

In the tutorial, we instructed users to create a few objects, 
link them, change their color or stroke thickness, with a 
single object or a set of objects. The tutorial lasted 10min 
and included 15 simple tasks. Users were actually 
manipulating the mouse and performed interactions while 
they were listening to our instructions. The goal of this 
tutorial was not only to instruct users, but also to see if they 
understood the design. We assessed their understanding by 
observing them perform small tasks with no instructions 
and by asking them if they were confident in their 
understanding. We did not assess discoverability since we 
began with a tutorial. This aspect is left for future work. 

The second part of the session was an actual test. The test 
was still using the graphical editor, but this time with a 
scene containing multiple (50) differing objects (see Figure 
13). We asked users to perform more complex tasks such as 
‘change the thickness of all yellow circles to the maximum 
of all thicknesses’. We did not give any instructions, and 
left users perform the tasks by themselves. One of the 
expected benefits of used values is to help users select a set 
of objects with minimal interactions. Hence, we designed 

the tasks to make traditional selection (i.e. a selection 
rectangle, or adding shapes to the selection by shift-clicking 
on them) more and more difficult either because they 
involve multiple objects (scope R2.3), or because they 
involve graphical properties that are not perceptually pre-
attentive (search R1.1, identify sets R1.4). For examples, 
the task “change all circles’ color” is difficult because users 
need to find all circles in a scene, a visual task known to be 
non pre-attentive and that requires a cumbersome one-by-
one scan of graphical objects (try on Figure 13). Users were 
free to carry out the tasks the way they want, either by 
selecting shapes with the traditional way or using 
ManySpector (designate R1.2). The goal of this second part 
was to assess the extent to which users would rely 
voluntarily on used values and links, whether they would be 
able to perform non-trivial graphical tasks (specify action 
R2.1 and parameters) R2.2), and how well they could 
interact with used values and links. 

 
Figure 14. The calendar view. 

The third part involved a calendar application. Users were 
manipulating events on a week view (see Figure 14). Events 
are represented with rectangles with a title text and a start 
hour text. They are placed horizontally according to day of 
occurrence in the week and vertically according to the time 
in the day. The screen is filled with seven columns, one per 
day in the week. Instead of graphical properties, the 
ManySpector window contained calendar-related properties 
such as start, duration, title etc. as in the iCal inspector. 
Conversely to iCal, ManySpector displays used values. This 
allows for modification of unrelated events, while iCal 
allows for modification of multiple repeated (i.e. recurring) 
events only. We provided a partially filled schedule and we 
asked users to act as if they were teachers trying to schedule 
lecture sessions during the week with a schedule “manager” 
(the role we played). For example, we asked them to place a 
2-hour long lecture Wednesday afternoon. Then we told 
them that when we said “place a lecture at 10am”, we 
actually meant “10:15am”, so they had to change all 
“10am” lecture events to “10:15am” (a posteriori 
structuring R3.5). The goal of this third part was to assess 
whether users could translate higher-level tasks to graphical 
interactions with our tools. The tasks were high-level, and 
required users to try R3.1, perceive the consequences R2.4, 
evaluate R3.2 and perform short-term exploration R3.3. 



 

Since the calendar scene contained few elements only 
(~15), we were expecting that users would rely on 
traditional selection. Hence we asked them to use 
ManySpector instead of the traditional selection. 

Subject profiles 
We performed the tests with five subjects. Three of them 
use calendar application in a day-to-day basis, one of them 
was a graphical designer used to applications such as 
Illustrator, and one was a casual user of graphical tools such 
as presentation software. They were all aware about the 
viscosity problem that might occur when using such tools. 
Only the graphical designer was involved in the 
participatory design process, hence four users discovered 
the interactions for the first time. 

Procedure 
We asked subjects to think aloud [7] while they were 
acting. We observed them and logged what they tried, 
whether they struggled, made errors or succeeded. At the 
end of the second and third part, we made them fill a 
questionnaire to rate the difficulty and cumbersomeness of 
the tasks, and the usefulness of the design with a Likert 
scale from 1 (negative) to 5 (positive). Results are given in 
the following, with the mean and the standard deviation. 

Results 
We did not notice serious understandability problems. 
Users were able to manipulate shared properties and links, 
and succeeded in performing simple tasks at the end of the 
tutorial. When asked about their confidence, some of them 
felt that they needed some learning “to do it well”. We 
showed them many interactions, but even if the interactions 
are well integrated, users felt that they could not get 
familiar with them within such a short time. In addition, 
because there were several possibilities to accomplish tasks, 
users were always eager to find the best way of 
accomplishing it, which adds to their feelings. Our 
confidence into users’ understandability got stronger when 
we witnessed that they got more capable as they were 
performing the second and third part. We even observed 
users trying interactions that we did not designed but that 
were perfectly meaningful, such as using selection 
instruments (keep, remove) directly on samples to avoid the 
necessity to perform a selection of the entire scene, 
dropping a value onto a property name to apply it to all 
objects, or dragging a sample next to existing used values to 
extend the selection. This suggests that the design was 
consistent and predictable. 

We did notice some difficulties when users performed more 
complex graphical tasks in the second part (ease of 
translation in graphic scenario: mean: 3.6, stddev: 0.5). 
This can be explained by the fact that users were still 
learning the interaction. They also told us that the tasks 
were rather abstract. In fact, since the tasks were purposely 
complex, they lacked significance (none performed ‘change 

the thickness of all yellow circles to the maximum of all 
thicknesses’ in real-life). They struggled to understand and 
memorize them, which hindered their ability to devise a 
solution. The four non-graphical designers found the 
requests much less difficult in the last part with the calendar 
application and meaningful tasks. Still, all subjects were 
able to accomplish every tasks of the second part by 
themselves. (mean of the easiness of the 9 subtasks of the 
graphic scenario: 4.6; 0.5). 

We were wondering about voluntary use. We observed 
what we expected: with tasks that involve pre-attentive 
properties (such as color-oriented one: ‘turn yellow objects 
into red’), subjects were sometimes still using a traditional 
selection. However, they turned by themselves to used 
values with non-pre-attentive tasks, or when the number of 
objects was too important. They also used links when we 
asked them to repeat an interaction on the same set of 
objects: after a number of repetitions, some subjects turned 
a specific object into a master. This enabled them to be 
more efficient than devising a selection again with the 
ManySpector. All kinds of interaction were performed 
(with samples, used values, links), and all combinations of 
source and destination for drag and drop were witnessed. 

We did not notice difficulties when users had to translate 
higher-level tasks into interactions in the calendar test (ease 
of translation in calendar scenario: 4.2; 0.8). We witnessed 
a tendency to use traditional selection for very simple tasks. 
When we forced users to employ our interactions instead, 
they did not have difficulties to do so (mean of the easiness 
of the 7 subtasks of the calendar scenario: 4.7; 0.5). This 
suggests that the interactions can be applied to other 
contexts than graphical edition. 

Even if we did not plan to evaluate usability, the tests 
revealed some issues such as the difficulty of interacting 
with the text boxes. Users also found limits to the 
interactions we proposed: in some cases, users would have 
liked to keep objects based on a combination of values 
instead of a single one. As expected, links lacked visibility 
and legibility when numerous. 

All in all, the study allowed us to answer positively to our 
concerns: the tools fulfill the requirements since users were 
able to understand the interactions, could perform complex 
graphical tasks with them and could translate higher-level 
tasks into them. Users judged ManySpector very useful 
(ManySpector usefulness: 4.8; 0.4). They liked explicit 
structuring with links though not as much as used values 
(links usefulness: 4.4; 0.9). They also praised the fact that 
there was no imposed strategy and that they could perform 
tasks their way. 

CONCLUSION 
We have tackled the problem of interaction with structures, 
and interaction with content through structures. We have 
defined a set of requirements and have explored a set of 
consistent interactions that provide partial answers to the 



 

requirements: ManySpector, an inspector for multiple 
objects, and explicit delegation links. A study showed that 
users are able to perform complex graphical tasks with 
them. The examples involved a drawing editor and a 
calendar but the requirements and interactions are not 
specific to these applications, and can be applied to others. 

Our interactions suffer from some problems such as 
scalability (though this may not be a problem for e.g. the 
calendar) and legibility. Other designs are possible: we are 
currently investigating other forms of explicit structuring 
with no links. We also plan to assess how well those 
interactions support exploratory design. 
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