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Abstract. The “Model - Display view - Picking view - Controller” model is a 
refinement of the MVC architecture. It introduces the “Picking View” 
component, which offloads the need from the controller to analytically compute 
the picked element. We describe how using the MPDC architecture leads to 
benefits in terms of modularity and descriptive ability when implementing 
interactive components. We report on the use of the MDPC architecture in a 
real application: we effectively measured gains in controller code, which is 
simpler and more focused. 
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1 Introduction 

Modularity is an aspect of software engineering that helps improve quality and safety 
of software: once designed, implemented, and verified, modular components can be 
reused in multiple software so that such software can rely on their soundness. The 
advent of rich interaction on the web, and the advent of WIMP interaction in airplane 
cockpits [1][2] raise interest in interactive software architecture. The need to use, 
develop, and extend toolkits for interaction makes programmers eager to study this 
area. Similarly, a number of widgets have been formally described, so as to comply 
with important properties of interactive systems [14]. As a toolkit programmer point 
of view, reusing these components would ensure that his particular implementation 
complies with the same properties. 
Separation of concerns is a design principle that can help to achieve modularity: the 
idea is to break a problem into separate sub-problems and design software 
components that would handle each sub-problem. The Model-View-Controller 
(MVC) architecture is a well-known attempt to improve modularity of software [18] 
through separation of concerns (cf Fig. 1). In MVC, the Model encapsulates the data 
to be interacted with, the View implements the graphical representation and is 



updated when the Model changes, and the Controller translates actions from the user 
to operations on the Model. MVC has been successfully applied to high-level 
interactive components, though in this form it resembles more to the PAC architecture 
than its original description [6]. For example, frameworks to help develop interactive 
application, such as Microsoft MFC, organize the data structure in a document, and 
views on the document that are updated when the document changes. When applied to 
very low-level interactive components though, such as scrollbars, programmers 
encounter difficulties to clearly modularize the components so that the original goal 
of reusing components is reached: the View and the Controller components of the 
widget are so tightly coupled that it seems useless and a waste of time to separate 
them, as they cannot be reused for other interactive widgets1. 
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Fig. 1: MVC: The controller queries the view to know which part of the view has been clicked 
in order to react accordingly. 

We argue in this paper that by externalizing the picking concern from the Controller, 
we can actually modularize a set of interactive widgets so that the Controller can be 
reused across different classes of Views of the same model. We first present the 
causes of the problem mentioned above. We then introduce the Model – Display view 
– Picking view – Controller (MDPC) architecture, and show with examples how to 
use it. We then report our experience at refactoring a real application with the MDPC 
model.  

2 The need to externalize Picking 

At its lowest level, today's interactions usually involve a rasterized image (i.e. a 
digital/sampled/pixel-based image) and a pointer that the user controls to point at a 
given pixel. Rendering is the process of transforming a logical description or the 
conceptual model of an interactive component to a graphical representation or a 
perceptual model. Picking can be considered as the inverse process of rendering: 

                                                             
1 As stated by the designers of JAVA Swing: “We quickly discovered that this split didn't work 

well in practical terms because the view and controller parts of a component required a tight 
coupling (for example, it was very difficult to write a generic controller that didn't know 
specifics about the view). So we collapsed these two entities into a single UI (user-interface) 
object […]”.http://java.sun.com/products/jfc/tsc/articles/architecture/#roots 



Picking is the process of determining/querying the graphical primitives that 
colored/filled a given pixel, and in turn the corresponding conceptual entity. Usually, 
interactive systems use the pixel underlying the cursor, in order to react when the user 
clicks on an interactive component. Picking is also used during passive movements, 
for example to determine when the cursor enters an interactive component so as to 
highlight it. 

 
 
 
 
 
 
 
 
 

 
Fig. 2: a scrollbar and its parts 

 
For the remaining of this section, we take the scrollbar as an example (Fig. 2). A 
scrollbar is an instrument that enables a user to specify the location of a range by 
direct manipulation. For example, the user can use a scrollbar to modify the position 
of the view of a document too large to be displayed at once. Conceptually, a scrollbar 
is composed of four parts: a thumb to control the position of a range of values, a 
trough in which the user can drag the thumb, i.e. the position of the thumb is 
constrained inside the trough, and two arrows for decrementing/incrementing the 
position of the thumb by a fixed amount. 

 
if( (event.y > y_up_widget) and (event.y <  
  y_bottom_widget) { // test if it is in the widget 
  if (event.y < y_up_widget+harrow) { 

      // scroll down by one line 
      ... 
    } else if (event.y<ythumb) { 

    // scroll down by one viewing area 
} else //...and so on 

Fig. 3: An example of code using analytic picking 

In the original form of MVC, the Controller usually handles picking by receiving 
low-level events such as mouse clicks or mouse moves. For example, if the user 
clicks in the image of a scrollbar for a text editor document, the Controller computes 
which part of the view has been clicked on, and calls a particular method of the Model 
with a computed parameter: if the part is one of the arrows, the Controller sets the 
Model's value by decreasing or increasing it by an amount equivalent to that of one 
line. If the part is the space between the thumb and the arrows, the amount is 
equivalent to that of one viewing area. In order to determine the part that has been 
clicked on, the Controller must know the layout of the widget parts, i.e the location of 
parts that are displayed on the screen [15]. For example, with a vertical scrollbar, if 
the upper ordinate of the widget is ywidget, the height of an arrow is harrow, and the upper 

trough 

thumb 

arrow 



ordinate of the thumb is ythumb, a Controller can determine which part has been clicked 
on by using the code in Fig. 3. 

The code is embedded into the method that reacts to the click on the view. This 
prevents modularization of the controller: it is specially designed for one particular 
view, even if some of the values can be parameterized, such as the location of the 
whole widget. In particular, the relative layout of the different parts of the widget is 
often hard-coded, and is not a parameter of the widget. 

In fact, most interactive widgets are structured around parts that embody a spatial 
mode of interaction i.e. a same event in two different parts lead to two different 
behaviors of the widget. For example, clicking in an arrow triggers a different action 
than the one corresponding to clicking in the thumb. In a part, the action triggered by 
an event is the same regardless of the parameters of the event. Only the parameters of 
the action may depend on the dimensions of the event. What is important then to 
implement part-dependant code, is not the low level parameters of events such as the 
x and y coordinates, but the part on which the event took place. Thus, the Controller 
behavior must be dependant on parts below the cursor, and not the cursor’s x and y 
position, so that the code that describes it would resemble to code in Fig. 4. 
 

if( isin(event, scrollbar)) { // test if it is in the widget 
   if (isin(event,uparrow)) { 
      // scroll down by one line 
      ... 
   } else if (isin(event,thumb)) { 
      // scroll down by one viewing area 
      ... 
   } else { //...and so on 
      ... 

     } 
  } 

Fig. 4: An example of controller code independent of the exact position of parts 

In this case, the "isin" function is a call to an external picking function. As such it is a 
mean to factor out the picking process from the Controller, and enables its reuse with 
other Views. However, implementing the controller with multiple if/then/else 
prevents extension and combination, as adding a part requires adding code to handle 
it. Instead, we propose to completely externalize the picking process, and make the 
Controller behavior dependant on Leave/Enter events, instead of Move events. 
Usually, programmers describe graphics by the mean of graphical shapes: instead of 
filling pixels by themselves, they use a higher level of description, for example a 
circle at a given position with a given radius. A graphical library in turn fills the 
pixels according to the description. A Leave event is triggered when the shape under 
the cursor changes between two consecutive Move events. A Leave event is 
immediately followed by an Enter event, as leaving a shape means that the cursor 
enters another shape (we consider the background as a shape with infinite size, which 
lies under every other shape). Leave and Enter events are synthesized events: they are 
computed from Move events, and a description of the layout and contours of the 
shapes in used. Thus, Leave/Enter events generation requires a data structure that 
keeps track of the layout of the shapes and their contours. This kind of data structure 



is called a scene-graph. Usually, a scene-graph is used as an intermediate stage in the 
rendering process described above: the programmer describes the rendering of the 
conceptual model in terms of shapes, their geometrical and styling transformation, 
that are stored in a scene-graph. Since a scene-graph knows about the layout and 
contours of shapes, it is able to determine the shape that is under the cursor. Thus a 
scene-graph can handle input and implement a picking service, as well as synthesize 
Leave/Enter events. 
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Fig. 5: The Model – Picking View – Display view Controller (MDPC) architecture  

Display View and Picking View 

We propose to split the View component into two components: the Display View, 
which is exactly the ancient MVC View, and the Picking View, which is an invisible 
rendering of the model that is specialized to facilitate interaction description. By 
splitting them, we deepen the separation of concerns aspect of the MVC model: while 
the display view handles the representation that has to be perceived by the user, the 
Picking View helps the determination of the part of the widget that is under the 
cursor. This separation also solves two problems of the design of interactive widgets, 
related to the differences between the structure of the graphics for interaction and the 
structure of the graphics for display: those due to graphic design concerns, and those 
due to transient, invisible interactive structure. 
When developing widgets, a programmer can use graphical primitives that do not fit 
with interaction needs. For example a scrollbar can be seen as a thumb moving into a 
trough (Fig. 2). This can be described as two shapes, the thumb shape lying on top of 
the trough shape. If this structure were mapped to a scene graph, the Enter and Leave 
event would contain the identifier of the shapes, regardless of the position of the 
cursor relative to the thumb. Thus, the Controller would receive the same Move event, 
be it above the thumb, or below the thumb, and would not be able to discriminate the 
zone in which the cursor has actually entered (above or below the thumb), though this 
information is mandatory to implement control. This fact usually leads the 
programmer to implement analytic code, i.e. code that uses the x and y position of the 
thumb to eventually determine the zone. However, if the design of the view is done 
with three parts, the "decrease part", the thumb, and the "increase part", the only 



information required to implement the interaction is the part identifier dimension of 
the Enter/Leave events. It is therefore necessary to decouple the display part of a 
widget from its picking part. Furthermore, interactive projects now involve graphic 
designers, whose creativity may be refrained by coding requirements. The separation 
between display and picking frees the graphic designer from the obligation to respect 
a graphical structure that does not map with the desired display: would the display 
view serves for both display and picking, the designer is required to use a three parts 
graphic, although two parts would have been enough. On the other hand, a designer 
can use as many graphical primitives she needs (like soft shadows, filters etc.), and in 
any configuration. In particular, she could have used sub-shapes like text of other 
images useful for the user to understand the display, but that are of no interest for 
interaction. As unnecessary graphical structures increases the complexity of formal 
checking of the controller code, reducing their number is important. 
We saw above that the picking structure can be different from the display structure. 
But it can also change for the sake of interaction, while the display structure remains 
the same. In the scrollbar example, when one clicks on the thumb to move it along the 
trough, there are invisible zones in which spatial mode of interaction enters in action 
(Fig. 2, right). When the thumb "hits" the top or the bottom of the trough, the thumb 
does not move even if the user goes on with his movement, as the thumb is 
constrained in the borders of the widgets. However, when the user reverses his 
movement, there is a position from which the thumb starts moving again. This 
position is invisible, but can be computed as soon as the user clicks in the thumb: in 
the case of the vertical scrollbar, it is equal to the position of the widget plus the 
difference between the click and the top of the thumb. When the cursor is in this zone, 
the thumb moves as the cursor moves. When the cursor leaves this zone, and enters 
one of the two other zones, the thumb position is not updated anymore (and is set to 0 
or 1). Usually, the interaction is described by using a "special mode" of the controller: 
as soon as the user clicks on the thumb, the controller "captures" the cursor so that 
moving it on top of unrelated display areas will not trigger associated actions. This 
behavior is traditionally implemented with analytic determination of distance from 
important points, such as the one described above. Instead, we propose to implement 
it using the same mechanism outlined above, namely with zones that are entered and 
left, with the difference that this time they are invisible and transient, as they are 
enabled only in certain states of the widgets. Hence, for one model, there can be one 
displayed view, whatever the interaction handled by the widget, and two different 
invisible, transient views to implement control, which leads to the split between 
Display Views and Picking Views. 

3 Example 1: the scrollbar in depth 

In this section we show how to use the MDPC model to describe the scrollbar. The 
model of the scrollbar is a range whose two boundaries lie in the range from 0 to 1 
(Fig. 6). To specify values in an arbitrary range of values, not only 0 to 1, we can use 
a linear (i.e. ax+b) transform function when notifying observers. The Scrollbar widget 
enables a user to specify position of the range, i.e. she can slide the range so that both 



boundaries are changed at the same time. The extent of the range (i.e. the difference 
between the boundaries) is specified by either the application, or is tied to another 
widget such as a text widget. The range-slider is a scrollbar widget, augmented with 
instruments that enable the user to specify the values of the boundaries. Hence, the 
Scrollbar and the Range-slider share the same model. 
 
 
 

 

 

 

Fig. 6: From left to right, the Model, the Display View, and the Picking View of the Scale, the 
Scrollbar, and the Range-slider. The model of the Scrollbar and the Range-slider is the same. 

The display view is a drawing composed of several graphical shapes. In its simplest 
usable form, the drawing may resemble to Fig. 2: one background shape for the 
trough, and one shape for the thumb, lying over the background shape. The size of the 
trough is arbitrary chosen. The size of the thumb can be computed from the values of 
the model and the size of the trough, using a simple linear function. However, the 
thumb has a minimum size to allow the user to pick it regardless of the extent it is 
supposed to reflect. As explained above, the structure of the display view cannot be 
used to implement the control, as it is necessary to differentiate between the part of 
the trough that is above the thumb from the part that is below. Hence, the picking 
view is composed of three shapes, one for the thumb, and two for the visible parts of 
the trough. When the user manipulates the thumb, the position of the thumb shape is 
changed in the display view and in the picking view, while the size of the two sub-
shapes of the trough are changed in the picking view.  The controller of the scrollbar 
can then be described with events that contain the identifier of the shapes, as there is 
no need to analytically compute which part has been clicked on. 

Invariance to geometrical transform and relative layout transform 

The horizontal scrollbar is a 90° rotated vertical scrollbar. As such, it can be 
implemented by adding a 90° rotation in the display view and the picking view 
components. The interaction corresponding to a click in the arrows, and in the two 
parts of the trough, is exactly the same. However, in traditional MVC, the controller 
code of the vertical scrollbar has to be updated to handle the new positions of the 
parts. The controller as we defined it, does not need to be changed for a vertical 
scrollbar: it is invariant with respect to geometric transforms. This result is true for 
one type of interaction with the scrollbar, namely clicks in part that triggers action. 
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With the 90° rotation example, the vertical movement corresponding to the 
manipulation of the trough is not compatible with the orientation of the scrollbar. To 
overcome this problem, we use the inverse transform that enables the generation of 
the view, by transforming the events so that their coordinates are relative to the view, 
and not absolute (or relative to the screen). Using the inverse transforms, the 
controller remains the same. 

Fig. 7: The Display View, and the Picking View of varieties of Scrollbar. 

Moreover, the controller is invariant with respect to the relative layout of parts of the 
scrollbar. As shown on SEQ, the arrows can be move at one extremity of the trough 
(to mimic a variety of MacOSX scrollbar), or even at the ends of the thumb (to mimic  
OpenLook scrollbar). The same MDPC controller as the vertical scrollbar can control 
these kinds of scrollbar, whereas with MVC each variant requires a different 
controller.  

Multiple picking views for transient behavior 

When sliding the trough though, the user can go outside the widget and still hold 
control of the scrollbar. This has been handled in traditional architecture with a 
special mode of interaction, namely by “capturing” the cursor so that any other 
underlying system such as MVC is bypassed. With our model, moving outside the 
widget will trigger a Leave event, and eventually stops the controller. This behavior is 
due to the fact that dragging the thumb is actually a completely different interaction 
than clicking in scrollbar parts. In fact, the picking model is different from the one 
described above. The sliding interaction is dependent on three zones: one in which 
moving the cursor moves the thumb (or more precisely, set the boundaries of the 
scrollbar model, which is reflected by the view as a displacement of the thumb), and 
two in which movement has no effect on the model (and hence on the view of the 
thumb) because the thumb hit one of the edges of the trough. This can be 
implemented as another picking view (see SEQ, left). When clicking on the thumb, 
the  “waiting-for-click” picking view of SEQ is replaced by the “sliding” picking 
view. When the cursor moves inside the central part, the thumb follows its position. 
When the cursor enters the upper part, the value of the Model is set to 0, and does not 
move until it reenters the central area again. As long as the user holds the button 

OpenLook Vertical MacOSX Rotated 



pressed, the controller receives Leave, Enter and Move events and reacts accordingly. 
When the user releases the cursor, the “waiting-for-click” picking view comes back. 
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Fig. 8: To the left, the state-machine describing the behavior of the scrollbar. To the right, a 
simplified version with the transitions with associated actions only.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 9: when clicking on the thumb, a new Picking View is used. The thick rounded rectangle 
reflects the border of the screen. 

 To assess the universality of this model, we can describe a variation of this 
interaction. While sliding the thumb, the user can move the cursor at a particular 
distance from the scrollbar. With a MacOSX scrollbar, this distance is infinite, and 
can be described with rectangular zones that extent horizontally up to the border of 
the screen. With a Windows scrollbar, the distance is finite, and when crossed, the 
thumb goes back to the position it has at the beginning of the interaction (i.e. when 
the user clicks on the thumb), enabling the user to cancel the interaction. This can be 
described by shrinking the three zones of the picking view (SEQ, right), so that the 
background appears at their sides: when the cursor enters the background zone, the 
Controller resets the thumb position back to its previous value. 
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4 Example 2: the bar chart and the pie chart 

 
Fig. 10: the Model of the partition and two Display Views: a Pie Chart, and a Bar Chart. 

A partition model can be considered as a list of floats that range from 0 to 1. Each pair 
of floats specifies an interval. It can be represented with a bar chart, in which each 
part’s height is proportional to its interval. It can also be represented with a pie chart, 
in which the extent angle of each part is proportional to its interval. Charts are often 
used as visualization only. However, a user can specify the values by clicking and 
dragging the borders between each part. Fig. 11 shows a picking view that enables 
this interaction. Thick borders reflect the interactive parts. They might be invisible in 
the display view, but are necessary to ease interaction. When clicking on a border, the 
second picking view enters in action, and precludes the user to move a value below or 
above neighbor values. It seems difficult to use the same controller for both Bar and 
Pie picking views since they are so different. However, they are topologically 
equivalent. We can use the inverse of the transform that generates the view: the Bar 
view involves a transformation from Cartesian coordinates, while the Chart view 
involves a transformation from polar coordinates.  

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 11: Above: the “wait-for-click” Picking View and “sliding” Picking View of the Bar 
Chart. Below: the “wait-for-click” Picking View and sliding Picking View of a Pie Chart. Both 
“sliding” picking view prevent the user to move a value below or above neighbor values. 
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5 Example 3: the hierarchical menu 

 
Fig. 12: the Display View and Picking View of a deployed hierarchical menu. 

When clicking on an entry of a hierarchical menu that has sub-entries, a pull-down 
menu shows up. On MacOSX, the controller allows the user to “fly over” entries of 
the first menu and reach entries of the submenu that are displayed at the bottom and 
left of the current location of the cursor. If the cursor goes downward vertically, it 
enters another entry, and the sub-menu hides itself. If the user does not initiate the 
interaction after a few milliseconds, the “fly over” mode is stopped. As shown in Fig. 
12, it can be implemented with a transient triangular-like shape in the Picking View. 
Apart from the fact that the MDPC model eases the comprehension of the behavior, it 
leads again to less code in the controller, as no analytical computation is necessary to 
implement control. Moreover, it simplifies the architecture of the code, since no 
special mode of interaction in which the cursor is captured is necessary. It also shows 
that the picking structure can be very different from the display structure: it needs a 
transient state in which a shape helps implement interaction, but that is hidden to the 
developer. Finally, the set of necessary shapes for picking are less important than the 
set necessary for display (for each entry in the hierarchical menu: a sub-shape for the 
background, the text, the triangle icon). When using the same scene-graph for both 
display and picking, special code that prevents action for Leave/Enter events 
involving sub-shapes is needed. Separating the scene-graphs removes this obligation, 
and leads to smaller, more focused, code. 

6 Return of experience with a real application 

We updated the architecture of a real application that uses the ARINC 661 set of 
widgets [2]. The purpose of ARINC 661 specification [1] is to define interfaces to a 
Cockpit Display System used in interactive cockpits. MPIA is an airborne application 
that uses the ARINC 661 specification, and that aims at handling several flight 
parameters. It is made up of 3 pages (called WXR, GCAS and AIRCOND) between 
which crewmember are allowed to navigate using 3 buttons (as shown on Fig. 13). 
Interaction with MPIA relies on button-like widgets exclusively. Though we did not 
use the button as an example in previous sections, our observation that controller code 
is polluted by picking code holds true: with the previous architecture, picking is done 
by traversing the tree of widgets and by checking for each widget whether it is picked 
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We want to show with this example that externalizing the picking process leads to 
more simpler, more focused code. 

 

                    
Fig. 13: the three pages of MPIA 

Though we described control with state machines so far, for this application we used 
the ICO formalism [17], which is based on Petri-Nets. The next section describes how 
rendering is done using declarative specifications, and how the renderer implements 
picking services for the handling of low-level user input events. 

Rendering 

In the previous version, rendering was implemented with Java code, using the Java2D 
API. Instead, we now rely on an SVG description. SVG is an xml-based vector 
graphics format: it describes graphical primitives in terms of analytical shapes and 
transformations. As such, SVG is a scene-graph. To render SVG, we use the Batik 
renderer. Transforms from models to graphics are done with XSLT. XSLT is an xml-
based format that describes how to transform an xml description (the source) to 
another xml description (the target). An XSLT description is called a “stylesheet”.  
XLST is traditionnaly used in batch mode to transform a set of xml files, but XSLT 
can also be used in memory so that performances are compatible with interaction. We 
used the Apache Xalan library to handle XSLT transforms. 

In our case, the source is a DOM description of the components the application: the 
“ARINC tree”. It is built at startup time, together with the instantiation of the ICOs 
components. Before running the application, the system compiles two stylesheets to 
two XSLT transformers: one for the display view, and one for the picking view (Fig. 
14). This compilation can be triggered at any time, to update a stylesheet while 
designing and implementing it. While running the application, each time the state of 
an ARINC tree variable changes, the transformer transforms the ARINC tree to two 
DOM SVG trees, which in turn are passed to the SVG renderer (Fig. 16). The display 
view is then displayed in a window, while the picking view is rendered in an 
offscreen window. 

Each time the cursor moves on the display view, the picking manager “picks” the 
topmost graphical item of the picking view at the position of the cursor, as if the 
cursor was moving over the picking view instead of the display view. Then, the 
picking manager sends an event to the Petri nets with the cursor position and the ID of 



the graphical item under the cursor as parameters. The Petri nets specification then 
uses the ID to retrieve the instance of the models over which the cursor is. 
 
arinc xml description: 
<arinc> 
  <button x="10" y="10" width="200" height="50" text=”submit” 
enable=”1”/> 
</arinc> 
 
xslt stylesheet: 
<xsl:stylesheet> 
 <xsl:template name="button"> 
  <rect x="{@x}" y="{-(@y+@height)}" width="{@width}" 
height="{@height}" rx="150" fill="url(#gradientPanelBackground)”/> 
  <text x="{@x}"  y=”{-@y}">submit</text> 
</xsl:stylesheet> 
 
generated svg: 
<rect x="100" y="-60" width="200" height="50" rx="150" 
fill="url(#gradientPanelBackground)”/> 
<text x="100" y="-50">submit</text> 

Fig. 14. Examples of an ARINC tree, an XSLT transformer, and the resulting SVG Picking 

Advantages of the architecture 

Our goal with this application is to show that it is possible to externalize picking from 
the controller. The resulting refactoring first shows that the architecture is 
implementable, and that it enabled us to reduce the complexity of the controller code 
by a significant amount (about 25% less), without removing functionality. While 
applying it to the entire modeling of the MPIA application and the user interface 
server compliant with ARINC 661 specification this produced a significant reduction 
of model size as shown in Fig. 15. This difference is more salient with widgets in 
charge of the assembly of widgets as the ones shown Fig. 15. For other terminal 
widgets (like command buttons, text boxes), the reduction of models size is still 
present but more limited.  
 

Widget Model size 
without MDPC 

Model size 
with MDPC 

Places Transitions Places Transitions 
RadioBox 49 29 28 21 
TabbedPanelGroup 62 22 44 16 
TabbedPanel 72 49 22 7 
Panel  65 46 16 5 

Fig. 15. Measure of volume of each widget in terms of model size 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16: The run-time architecture 

This architecture clearly distinguishes the conceptual model from the perceptual 
model, and gathers all the graphics and transforms description into one external 
entity. It has clear advantages over the previous architecture. First, it increases 
readability of the graphical code. Second, changing the look of an application is as 
simple as changing the XSLT file. Fig. 17 shows two renderings that can be 
alternatively presented without making any change in the models describing the 
widgets. Most commercial drawing and painting software can produce SVG graphics 
compatible with our system, allowing graphic artists to be involved earlier in the 
design process of interactive applications [5].  Finally, rendering is considered as a 
transformation process that uses functional programming without side-effect, which 
increases robustness [9]. It is also interesting to note that the advantages of the 
architecture are demonstrated both at the level of programming code and at the level 
of model description.  
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Drawbacks of the new architecture 

The performance of dedicated Java2D code is much better than the one exploiting 
SVG, XSLT, and Batik. The low performance of the new architecture comes from the 
fact that the transformation process involves the entire conceptual model each time it 
is triggered, leading to a whole new SVG DOM, even if a single variable of the 
ARINC DOM has changed. This problem is related to the current status of 
transforming tools, which are unable to do incremental transformations. An 
incremental transformer is able to only update the changing parts of the target tree, 
which increases performances (up to 500 times) [16][22]. Another solution is to use 
“active transformations”, i.e. transformation systems and specifications designed to 
implement incremental transformations [2]. 
 

  

Fig. 17: The same User Application window with two different stylesheets 

7 Related work 

Fabrik is a direct manipulation - based user interface builder that enables a designer to 
specify transforms between widget with a visual flow language [10]. Events flow in 
the same flow graph that describes the geometrical transforms, so that they are 
automatically transformed to a position relative to the graphically transformed widget. 

In [7], Dragicevic and Fekete introduce the MVzmC architecture. Like MDPC, the 
widget is divided into zones that embody a spatial mode of interaction. The “view 
controller” plays the role of our transform mechanism, and works similarly to Fabrik 
transforms. However, the Vzm component is still in charge of determining which 
zone has been hit, hence it is not invariant to changes of relative layout of parts. 
Similarly, in the Event-driven MVC [20], the code that handles picking is buried into 
the view, and hence precludes any simple change of layout. MDPC clearly factors out 
this task from the Controller and the View, which leads to more reusable code. 
Finally, both the MVzmC and Event-driven MVC use a single view, and cannot be 
used to implement transient picking structure. 

Using a declarative description of an interface is not new (see [21] for a review). 
However, in much of these systems, the description is only a way to get the interface 
outside the code of the application: a run-time environment displays widgets by 
interpreting the description. Furthermore, the description is only about the layout of 



predefined WIMP widgets at the finer level of details. Such systems are primarily 
targeted at toolkit users (i.e. interactive application designers) that do not need to 
implement new or slightly different interaction techniques. In our case, the 
architecture describes all models, from the level of the application down to the inner 
mechanics of a widget. For example, we can describe the control and the rendering of 
a range slider using the same architecture that we use to describe the application, 
while it’s not possible with other systems.  

The idea of transforming a conceptual model to a perceptual model comes from the 
Indigo project [4], a novel client-server architecture for highly interactive systems. 
While X11 splits rendering and interaction between the server and the client, Indigo 
makes the server in charge of the rendering and the interaction. To reflect changes of 
the logic of the client into the rendering, Indigo uses a transformation process similar 
to the one described in this paper. Indigo widgets are part of the server, and the 
rendering is not done using a transformation process. In our architecture, we apply the 
transformation model to the inner mechanics of the widgets. Transforms are also used 
in [13], but it is done once at the instantiation of widgets from a layout description, 
while transforms are used continuously in our architecture. 

8 Discussion 

This work attempts to tackle the question often asked when disserting about the MVC 
model: what is a controller exactly? As inventors of MVC apply separation of 
concerns to interaction code, we can apply separation of concerns down to the 
Controller itself: in MVC, the controller handles picking, the backward translation of 
dimension of events to arguments for operations on the model, and the management 
of the interactive state of interactive components (as opposed to graphical state).  In 
MDPC, the combination of the scene-graph (the picking view) and Leave/Enter 
events synthesis handles picking. The picking code is hence offloaded from the 
Controller code, which makes the controller simpler. In order to pass computed values 
from events to arguments for operations on the model, the old Controller has to 
transform dimensions of the events in the widget referential: hence, it is dependent on 
the View, as it must queried its parameters (such as the orientation) to compute the 
inverse transform. This backward translation from the dimensions of the events to 
arguments for operation on the model can be handled by the inverse transform 
mechanism in the MDPC model. We have shown how to do it functionally with 
rotated scrollbar and pie charts.  If this translation is more complex, it can be dealt 
with with a similar mechanism to MVzmC’s one, i.e. a View Controller. Hence, in the 
MDPC architecture, what we call a controller is the piece of code that manages the 
interactive state of a component, i.e. the state-machine or the Petri Net that describes 
it. The interactive state is different from the graphical state. The graphic state is just a 
direct translation from the model to a graphical representation. For example, if a 
scrollbar is disabled because the interface does not allow the user to interact with it, 
there should be a Boolean in the model that should reflect it, and that would be used 
to draw a disabled toolbar (for example in gray). The management of interactive state 
is the core functionality of the Controller: it defines the behavior, or the inter-actions 



between the user and the model, i.e. the intertwined sequences of actions from the 
user, and actions from the system that change the set of future actions at user’s 
disposal. With such a definition, Controllers presented in this paper seem simple. 
However, when dealing with multiple inputs, the description is complex, and may 
require Petri Nets with dozens of places and transitions. With the MPIA application, 
the code associated to transition is limited to change of values in the model, without 
any other computations. Hence the Controller is the Petri net, and almost nothing else, 
except the rules that change values in the model. In other words, it seems to us that it 
is impossible to remove other aspects of the Controller, as we reduced it to its crux. 

Another goal of this project was to foster the use of an MDA approach to the 
design of interactive application. We designed the models of our widgets in order to 
make them as independent as possible from controllers and views, which led to the 
merge of the scrollbar model and the range slider model into a single range model. 
The choice of setting the bounds of the values inside the models to a range of [0,1] 
makes the model even more reusable, since the addition of a linear function makes it 
general enough to describe previous use of scrollbars. Our approach is an attempt to 
maximize the late binding aspect of our components: MDPC makes use of late 
binding of range bounds, of positions, and of relative position of parts. 

9 Conclusion 

In this paper, we have presented a new architecture for interactive systems 
implementation. We split the View component of MVC in a Picking View and 
Display View components. The picking task, traditionally handled by controllers of 
interactive widgets, is offloaded to a picking manager, which turns Move events to 
Leave/Enter events by using the picking view. Widgets following this architecture 
gain invariance from relative layout of components and invariance from geometrical 
transforms. The Controller code shrinks and is more focused to its functional core. 
The architecture can also be used to implement invisible, transient interactive 
structure. One of the goal of this project is to have a complete MDA driven widget 
set. The MDPC architecture is a first step towards this objective, as it enables the 
definition of interactive systems based on a MDA approach. The controller is 
specified using a formalism such as Petri Nets, the display and picking view are 
specified with a transformation model based on declarative specifications. In order to 
fully accomplish our goal, we need better and more efficient transform tools. In 
particular, we plan to design incremental, and bidirectional transform engine, in order 
to ease the definition of transforms. Another result is more conceptual: thinking of 
control as leaving/entering/moving over/clicking on possibly invisible parts helps 
design and describe it, as shown in the hierarchical menu example. 
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Abstract—Specifying and programming graphical interactions 
are difficult tasks, notably because designers have difficulties 
expressing the dynamics of the interaction. This paper shows how 
a specific architecture improves the usability of the specification 
and the implementation of graphical interaction. The 
architecture is based on the use of picking views and inverse 
transforms from the graphics to the data. With three examples of 
graphical interaction, I show how to specify and implement them 
with the architecture and how this improves programming 
usability. Moreover, I show that it enables implementing 
graphical interaction without a scene graph. This kind of code 
helps prevent errors due to cache consistency management. 

Keywords-Usability of programming, Graphical Interaction, 
Specification, Implementation, Picking views, Inverse Transforms 

I. INTRODUCTION 
Interactive system programming is difficult, notably 

because designers have difficulties expressing the dynamics of 
the interaction [1]. Even if interaction is inherently graphical, 
specifying it and implementing it still relies mainly on textual 
languages that enlarge the gap between the phenomenon to 
describe and the description. Furthermore, writing interactive 
code with calculus-oriented languages is not suitable for 
describing reactive processes [2][3]. This results in so-called 
spaghetti [2] code that prevents readability and favors bugs, 
notably when the system grows after several increments. 
Finally, the need to make systems as fast as required by the 
interaction loop (short duration between user action/machine 
reaction/user perception) forces the designers to optimize their 
code and thereby make it difficult to read and modify. 

I think that these problems pertain to the usability of 
specification and implementation of interactive graphics. 
Specifying interaction (referred to as “designing” in [1]) 
consists in describing how graphical representations react to 
user input. This is a problem that has been approached before 
with various languages (including visual), but as noted in [1], 
further work needs to be done to facilitate this task. 
Implementation is the process by which a programmer can turn 
a specification into executable code. Again, various approaches 
aimed at improving the transition and the readability of 
interaction code. Still, I think that a number of unimportant 
considerations hinder code readability and that a better 
architecture is necessary. 

In this work, I rely on a particular architecture to ease 
specifying interactive graphics and to ease implementation of 
interactive graphics. The specification narrows the gap between 
the phenomenon and its description. The implementation 
paradigm enables the designer to use a data-flow architecture, 
which is more readable and more manageable than imperative 
code. I first present the architecture on which this work relies. 
After discussing a number of dimensions of analysis, I then 
present three examples of interactive graphics and argue that 
their specification and their implementation is more readable 
and understandable. 

II. MDPC 
This section briefly introduces MDPC, the architecture I 

used (more details are available in [4]). MDPC is a refinement 
of the MVC architecture (‘M’ and ‘C’ denote ‘Model’ and 
‘Controller’, the ‘View’ becomes ‘Display view’ and a 
‘Picking view’ component is added). MDPC relies on two 
principles: “picking views” and “graphical transformations”. 
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Figure 1.  Top: display (left) and picking (right) view of a menu. Bottom: 

display (left) and picking (right) view of a horizontal scrollbar 

Picking views are invisible graphical objects overlaid on 
visible ones, but that still react to user events. Fig. 01 shows the 
“display view” of a hierarchical menu (top left) and the 
corresponding picking view when the user is navigating in the 
menu (top right). The (transient) triangle laid over the menu in 
the picking view enables reaching the sub-menu entries while 
avoiding submenu folding. Similarly, the picking view of the 
scrollbar displays as many shapes as spatial modes (thumb, 
arrows and spaces between thumb and arrows). Picking views 
have two benefits. First, they help managing the dynamic of the 
states of the interaction (e.g. the transient triangle), as opposed 
to the graphical state of the display. Second, they enable to 
avoid analytical computation of spatial relationships (e.g. the 
movement with a direction below 45°, or the position of a click 



with respect to the thumb) by using Enter/Leave events 
generated by the underlying graphical toolkit. Picking views 
actually reify spatial modes of interaction. A spatial mode is 
the spatial equivalent of a temporal mode: different behavior in 
function of space, versus different behavior in function of time. 

Graphical transformations are functions that transform the 
conceptual model into graphics. MDPC uses two graphical 
transformations: one for the display view and one for the 
picking view. Fig. 02 shows the affine transforms applied to the 
model of a horizontal scrollbar (two values between 0 and 1) to 
generate the display view and the picking view. Computing the 
inverse transformations enable translating a graphical 
interaction (say a drag of the thumb) into operations on the 
model (translation of values). 
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Figure 2.   The graphical transforms (left) from the model to the views and 
the inverse transforms from the picking view to the model (bottom right). 

MVC was the result of the application of the separation of 
concerns principle on interactive code [5] to improve 
modularity. Still, the MVC controller is in charge multiple 
concerns including the management of interactive state and the 
translation of events into operations on the Model. MDPC can 
be considered as the application of separation of concerns 
down to the MVC Controller itself. By using picking views and 
inverse transformations, MDPC offloads those two concerns 
from the MVC Controller. This makes the Controller code 
much simpler, almost eliminates the apparent impossibility to 
decouple the Controller and the View and makes Views and 
Controllers invariant from geometrical and layout transforms. 
This also improves modularity since the Controller can be 
made more general and reusable. For example, the same 
Controller can be used for various species of scrollbar (e.g. 
arrows at both ends, at one end, at the thumb ends; horizontal, 
vertical and radial layout). MDPC has been shown to make 
possible entirely “model-driven” implementation of scrollbars, 
sliders, range-sliders and hierarchical menus. 

III. DIMENSIONS OF ANALYSIS 
I think that MDPC is also beneficial to the specification of 

interactive graphics and to their implementation. More 
precisely, using MDPC as a pattern helps at both designing the 
specification and designing the code. As such, MDPC can be 
considered as a method that improves the usability of 
programming. 

Usability of “programming” (taken in a broad sense, i.e 
including specification and implementation) is the extent to 
which an environment (including language, pattern, IDEs etc) 
can be used to achieve programming tasks with effectiveness, 
efficiency and satisfaction (see [6] for an introduction). 

Usability is difficult to assess, because it requires longitudinal 
studies with a large number of designers (as defined in [1]). 
Since I have not done such studies in this work, I provide 
predictive evaluation of specification usability and 
implementation usability along three properties. 

The first property that I assess is the descriptive power. i.e. 
the extent to which a designer using MDPC is able to specify 
and implement existing graphical interactions. This is a 
prerequisite for designers if I want them to be effective: they 
will not be able to design an intended interaction if the 
architecture does not allow for it. In the next section, I present 
three examples of specification and implementation of 
interactive graphics: Drag’n’Drop with hysteresis (direct 
manipulation technique [7]), Magnetic guides (instrumental 
interaction technique [8]) and a Calendar (complex 
representation combined with direct manipulation). Together, 
those examples aimed at showing that MDPC expressive power 
is sufficient to specify a large range of graphical interactions. In 
addition, I describe two kinds of implementation, one based on 
a scene-graph (Drag’n’Drop, Magnetic guides) and the other 
one based on a data-flow (Calendar). I show code snippets to 
help explain the implementation to the readers, to convince 
them that the implementation actually exists and runs and to 
enable them to replicate this work. 

The second property that I assess is simplicity of 
description. Even if MDPC has a sufficient descriptive power, 
it would be useless if the description itself were cumbersome to 
specify and program. I provide an evaluation of simplicity of 
description by using concepts from the Cognitive Dimensions 
of Notation framework (CDN) [9] and from a list of desirable 
properties employed in the literature (see [3] for a survey). 

The third property that I assess is the performance 
(implementation only). I also discuss this aspect since however 
elegant an implementation is, its usefulness can be reduced if 
performances are too weak. 

IV. DRAG’N’DROP WITH HYSTERESIS 
The first example is the Drag’n’Drop with hysteresis, a 

direct manipulation technique. Drag’n’Drop with hysteresis 
forces the user to move past a small minimum distance from 
the ButtonPress position, before effectively triggering the Drag 
operation. This prevents the system from misinterpreting a 
Selection for a Drag’n’Drop: when selecting a graphical object 
with a click (ButtonPress then ButtonRelease), one or a few « 
Move » events may occur between the button events, because 
the mouse slips due to the force applied on the button by the 
finger. This makes the system misinterpret a Selection for a 
Drag’n’Drop and moves the selected object by a slight, but 
undesirable amount. 

A. Interaction specification 
A traditional analytical algorithm consists in computing at 

each Move event the distance between the ButtonPress position 
and the cursor position, testing if the distance is superior to the 
minimum distance and moving the object if the test is 
successful. This necessitates the computation of a Euclidean 
distance (square root of sum of squares). 



1) Description 
The version with MDPC consists in drawing an invisible 

circle centered on the position of the ButtonPress, with a radius 
equal to the hysteresis distance. Fig. 03 shows the display and 
picking views for explanation purpose: the circle is visible, but 
in the real system it is not. At the beginning, the cursor is at the 
centre of the circle. If the cursor does not leave the circle before 
a ButtonRelease, the interaction is interpreted as a Select. If the 
cursor leaves the circle, the minimum distance is reached and 
the Drag can start. The invisible circle is removed, which 
allows the user to move the object within a distance from its 
initial position smaller than the hysteresis distance. 

 
        a                                 b                              c                                    d 

Figure 3.  Hysteresis with MDPC.  (a) hover (b) press:an invisible circle is 
inserted into the scene (visible here for explanation) (c) no drag while the 

cursor stays in the circle (d) leaving circle: removal of the circle, drag starts. 

2) Simplicity 
I think that the MDPC description is closer to the 

conceptual model of the interaction. In fact, computing the 
distance between the cursor and its initial position at each 
Move event is not necessary for specifying the interaction. The 
only information needed is the minimum distance to be 
reached. Since this distance is reified into a circle, the concept 
of distance crossing is more directly represented. Hence, 
MDPC improves the Closeness of Mapping cognitive 
dimension. Finally, the designer can make picking view visible 
for debugging purpose. By directly seeing the circle on the 
screen, one can understand how the graphical interactive state 
behaves and debugs more easily than with code only. Here, 
MDPC improves the Visibility cognitive dimension. 

B. Implementation 
This particular implementation uses the SwingStates toolkit 

[10]. SwingStates enables programming interaction with state 
machines directly in java files. The transition between states 
can be guarded (i.e. a predicate prevents the transition to fire) 
and can trigger an action when fired. SwingStates relies on a 
scene graph, i.e. a data structure that retains graphical objects. 
With SwingStates scene graph, graphical objects may be 
“tagged”: any operation on an object can also be applied on a 
“tag”, meaning that any object with this tag will be modified 
accordingly. The following code heavily used this feature. 

1) Description 
The state machine is shown in Fig. 04. When the user 

presses on an object, the current state becomes “waitHyst” and 
waits for the hysteresis distance to be crossed. The code of the 
action associated to the “Press” transition is shown in Fig. 05. 
The picking shape is created (CEllipse, the circle), made 
invisible, then added to the scene graph. Graphical objects of 
the picking view are invisible to the user, but react to mouse 
events. As said before, one can comment the line that make 
objects invisible for debugging purposes. 

The circle is centered at the location of the cursor: hence, 
the cursor is inside the circle. The “leave” transition pertains to 
this circle (code not shown in the figure): when the cursor 
leaves the circle, the “leave” transition to the “dragging” state 
is fired, an action removes the invisible circle from the scene 
graph and the user is free to drag the object around. 
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Figure 4.  Hysteresis state machine. Circles denote states, arrows transition. 
The text on a transition denotes the interaction event that triggers a transition. 

Figure 5.  Action on “press” transition from “start” to “waitHyst”. 

2) Simplicity 
Even if simple, the MDPC-based description of the 

interaction illustrates how Enter and Leave events are used in 
place of analytical computation of the Euclidean distance. 
Hence, the designer is not required to write this code. Of 
course, with the traditional way, one could have used 
abstraction and call a ‘distance’ function instead of writing the 
distance code, but the MDPC version gets rid of this necessity. 

This example also illustrates how picking views help 
manage the dynamics of the interaction state. Finite State 
Machines are well adapted to MDPC descriptions of the 
interaction. At each state can correspond a particular picking 
view, which is active when the state is active. This is similar to 
the architecture described in [11]. Again, MDPC improves 
Closeness of Mapping with interactive state implementation. 

3) Performance 
Adding a single circle to a scene graph is inexpensive. The 

generation of Leave/Enter events may actually use a Euclidean 
distance, hence the computation is the same as the traditional 
algorithm. 

V. MAGNETIC GUIDES 
Magnetic guides are instruments for aligning graphical 

objects [8]. During the Drag’n’Drop of an object, if the object 
is close enough to the magnetic guide, the guide attracts the 
object: hence, dropping multiple objects on a linear guide 
makes them aligned. More complex alignments allow for 
alignment of objects center, but also of their boundaries. More 
complex guides include Bezier curves. Alignment with 

public State start = new State() { 
   Transition press = new PressOnShape(BUTTON1, ">> waitHyst") { 
      public void action() { 
         toMove = getShape(); // get the object to drag 
         lastPoint = getPoint(); // store last clic position 
         hystShape = new CEllipse(lastPoint.getX()-5,lastPoint.getY()-5, 10, 
10); // picking shape 
         hystShape.setDrawable(false); // set invisible 
         canvas.addShape(hystShape); // add to scene graph 
      }};}; 

 



magnetic guides is an example of instrumental interaction [8]: a 
Magnetic Guide is an instance of an instrument i.e. action 
(alignment) reified into an interactive object that control other 
interactive objects. Magnetic guides are different from a “grid”, 
since they are explicitly defined and manipulated by the user. 

A. Interaction specification 
As in to the previous example, a traditional analytical 

algorithm computes the distance between the guides and the 
dragged object, tests if the distance is inferior to the attraction 
distance and sticks the object on the guide if so. 

1) Description 
Fig. 06 shows both the display view (dashed line and green 

rectangle) and the picking view (gray rectangles, red square) 
for illustration purpose. With the MDPC pattern, the algorithm 
consists in drawing an invisible thick line over the guide (thin 
dashed line on the figure), whose thickness is equal to two 
times the attraction distance (Fig. 06, gray rectangles), and in 
registering a callback when the cursor enters or leaves the 
invisible thick line (events “Enter” and “Leave”). Thus, when 
the cursor enters the invisible thick line, the object sticks to the 
guide; when the cursor leaves the thick line, the object sticks to 
(and thus follows) the cursor. 

 
Figure 6.  Dashed lines: magnetic guides; gray rectangles : picking view of 
magnetic zones ; red squares: picking view of magnetic zones shared by two 
guides (a) free drag (b) right horizontal alignment (c) just before entering in 

the magnetic zone to align vertically, at the bottom (d) 

As said earlier, more complex guides allow for alignment 
with the center of objects, but also with their boundaries. With 
MDPC, this is described with multiple picking zones, placed 
around the magnetic guides with respect to the geometry of the 
object and the position of the cursor relative to the object 
(Fig. 06, gray rectangles). In addition, guides may intersect, 
allowing an object to stick to their intersection and keep 
alignment with two sets of objects. Drawing two thick lines 
results in a partial occlusion of one line by the other at the 
intersection point. With a toolkit that can synthesize Enter and 
Leave events for occluded objects, no adaptation of the 
previous algorithm is necessary. However, with the 
SwingStates’ event synthesis model, the previous method does 
not work: the topmost guide would prevent the attraction from 
the occluded line since no Enter or Leave event would be 
emitted for the occluded thick line.  With such a model of 
events, it is necessary to define the area of intersection between 
thick lines and make the object stick at the intersection when 
the cursor is in the intersection area (Fig. 06, red squares). 

 

2) Simplicity 
The interaction is complex, and the distances to compute 

are numerous: there are 6 distances per guide (3 vertical, 3 
horizontal) and the reference point from which to compute the 
distance is not easy to grasp and understand. MDPC 
encourages the identification of spatial modes of interaction 
and their corresponding area. I think that thinking in terms of 
area of attraction is easier. As noted in [1], designers often use 
drawings to explore a solution and explain them to colleagues. 
MDPC allows designers to use these drawings directly to 
express the interaction. In addition, when the guide themselves 
are complex (e.g. curves), no additional cost in terms of 
reasoning is necessary compared to the distance model. 
Similarly to the Drag’n’Drop example, MDPC thus improves 
Closeness of Mapping and Visibility. 

The intersection area problem induces more coding for the 
designer than the distance computation model. The MDPC 
solution seems more complex than computing distances from 
guide: the burden of describing intersection shapes may not 
make MDPC as advantageous as claimed. This hinders the 
Terseness cognitive dimension. It must be underscored 
however that this problem only occurs with scene graphs that 
do not generate Enter/Leave events for occluded objects. 

B. Implementation 
1) Description 

This implementation also uses the SwingStates toolkit. The 
state machine is shown in Fig. 07. The interaction begins with 
the hysteresis interaction described earlier. When crossing the 
hysteresis distance, the “leave” transition is fired and the 
machine enters the “dragging” state. 
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Figure 7.  Magnetic guide state machine 

Picking views are managed in the code of the action 
associated to the “leave” transition (shown in bold in Fig. 07). 
The code itself is shown in Fig. 08. First the previous picking 
views (hysteresis circle) is removed (a) and replaced by three 
picking objects per guide (b), to align with the center and the 
boundaries of the dragged object. At the beginning, the picking 
objects are put on the position on the guide. The objects for the 
boundaries are then “spread around” the guide by a distance 
equal to half the height or width of the dragged object (c). 
Then, all guides are moved by a distance equal to the shift 
between the position of the cursor inside the dragged object and 
its boundaries (d). When the cursor enters the picking shape of 
a guide, the machine enters the corresponding state. In the 
“dragIn*Guide” state, the move transition triggers an action 

  
          a                         b                           c                             d 
 



that moves the object along the guide. In “inStickGuide”, no 
action (and thus transition) is necessary on a “move”. 

Figure 8.  Action on “move” transition from “waitHyst” to “dragging”  

2) Simplicity 
For simple guides, such as horizontal or vertical guides, the 

computation of the position of the dragged object stuck to the 
guide is straightforward: one of the Cartesian dimensions is 
that of the cursor and the other is that of the guide. In the case 
of a more complex guide, it is necessary to code the 
computation of the orthogonal projection of position of the 
dragged object on the guide and sets its coordinates to the 
coordinates of the projection. 

Since SwingStates does not synthesize Enter and Leave 
events for occluded objects, the code has to create the picking 
objects for the intersections. In the simple case of horizontal 
and vertical guides, the shape of the intersection is a square 
centered at the intersection of the guides. However, more 
complex guides may require more complex computation. In 
this case, MDPC extends nicely to the use of the AND 
operation of the constructive area geometry and the 
computation the shape resulting from an AND between the two 
thick lines. Some toolkits provide such algorithms (i.e. Java2D 
Shape API, or OpenGL GLU tesselator [12]). 

3) Performance 
Again, in order to make reasoning easier, the code avoids 

analytical computation by relying on the algorithms provided 
by the scene graph. The test for shape inclusion does not 
require a rasterization. Instead, the algorithm in the scene graph 
may use the distance algorithm that one would have used in the 
interaction code. Hence performances are similar. 

With SwingStates model of events, additional computations 
of area are necessary. However, those computations happen 
only once during the interaction (in the transition between 
“waitHyst” and “Dragging”). 

VI. CALENDAR 
The next example is a Calendar application, with a “week” 

view on events, such as Apple’s iCal or Google Agenda. 
Fig. 09 shows the overall display (top) and picking (bottom) 
view. I have replicated two interactions: “Drag’n’Drop” of 
calendar entries, which allows the user to move an entry in the 
day, or to move it into another day of the displayed week; and 
the “Resize” of the duration of calendar entries. 

 
Figure 9.  The “display” view (top) and the corresponding “picking” view 
(bottom) of a calendar. The picking algorithm uses unique colors for each 

picking object, which explains the colorful picking view. 

A. Interaction specification 
A traditional algorithm uses the positions and analytical 

distance computation to decide the reaction to user events. 

1) Description 
With MDPC, the “Display” view of each calendar entry is a 

rectangle (Fig. 10). The top edge reflects the date and time 
when the entry starts, while the bottom edge reflects the date 
and time when the entry ends. The width of the entry is not tied 
to the data: it is equal to the width of a column, in this case a 
seventh of the window since a week contains seven day. When 
multiple calendar events overlap, the corresponding rectangles 
share the column width (left most column in Fig. 09). 

The picking view of each entry is composed of three 
juxtaposed rectangles (Fig. 10). The middle rectangle is similar 
to the rectangle of the display view and its height depends on 
the entry duration. A Drag’n’Drop of this rectangle allows 
modifying both the start and end time without modifying its 
duration. The two other rectangles allow the user to pick the 
top (resp. bottom) edge of an entry and change the start (resp. 
end) of the entry by direct manipulation. The modification of 
the data is done thanks to an inverse transformation, as 
explained in the next section. 

2) Simplicity 
The gain in simplicity is the same as in the previous 

examples: this improves Closeness of Mapping and Visibility. 

B. Implementation 
The previous examples use Java and a scene-graph. They 

illustrate the use of picking views for managing interaction 

public State waitHyst = new State() { 
   Transition drag = new LeaveOnShape(">> dragging") { 
      public void action() { 
         […] 
         // (a) remove previous picking view 
         canvas.removeShape(hystShape);  
         // (b) create horizontal pick shapes 
         for (int i=0; i<3; ++i) { 
            CShape s = new CShape(new 
BasicStroke(20).createStrokedShape(new Line2D.Double(0, 0, 500, 0))); 
            canvas.addShape(s); 
            s.addTag(hMagnetTag); 
            // (c) spread the pick shapes around the guideline 
            if (i==0) s.translateBy(0,toMove.getHeight()/2); 
            if (i==2) s.translateBy(0,-toMove.getHeight()/2); 
         } 
         // translate around guideline  
         hMagnetTag.translateBy(0,ymg); 
         // (d) translate the pick shapes according to the relative position of 
the cursor from the reference point of the shape (middle) 
         hMagnetTag.translateBy(0,pickRelPos.getY()); 
 
         // create vertical pick shapes and sticky pick shapes at h and v 
intersections 
         // hidden: similar to horizontal guides 
}}} 



state and for avoiding analytical computations. I implemented 
the calendar example with Tcl [13] and OpenGL [12], and by 
relying on a data-flow. This demonstrates not only the use of 
picking views, but also the use of inverse transformations, the 
second principle of MDPC. It also shows that MDPC is 
independent from the language and does not require a scene-
graph. 
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Figure 10.  Display and Picking view of a calendar entry. The position of the 

cursor is transformed back into the conceptual model by using the inverse 
picking transformation. 

1) Description 
The architecture is shown in Fig. 10). Calendar entries are 

stored in a relational database table. The table includes a 
“start”, an “end”, and a “title” column. A SQL select allows 
selecting visible entries and computing the value needed for the 
visualization. Each frame rendering triggers two OpenGL-
based redisplay functions, one for the display view (proc view, 
display view, Fig. 11) and one for the picking view (proc view, 
picking view, Fig. 11). The display transformation fills pixels 
in the frame buffer, while the picking transformation fills pixels 
in an offscreen buffer. Both transformations share a transf 
function (Fig. 11, middle-left).  transf first wraps the data 
multiple times on X and Y (Fig. 12). The wrap function (shown 
in Fig. 11, bottom-left) is more complex than necessary (since I 
only use the week view), but serves as a demonstration that 
even a complex function can be reversed. Once wrapping is 
done, the position in the day is computed and displayed on the 
screen’s Y dimension quantitatively (yInDay). This leads to a 
2-D position expressed in terms of cells (e.g. (3; 4.5)), which is 
then multiplied by the actual display size of a cell (CellWidth x 
CellHeight). Finally, the transf function applies a user-
controlled pan and zoom. A final computation shifts the x 
position of events inside a cell to take into account parallel 
entries (Fig. 09, right). 

The code that manages user input is shown in Fig. 11, right. 
When the user presses on and moves one of the small 
rectangles in the picking view of a calendar entry, an inverse 
transformation is applied on the X and Y dimensions of the 
Move event. Since the position of the rectangles is the result of 
the application of a continuous and monotonous function on a 
scalar (a time), it is sufficient to apply the inverse function to 
the position of the cursor to get the corresponding value in the 
referential of the data model. The inverse transf is shown in 
Fig. 11, middle-right and the inverse wrap is shown in Fig. 11, 
bottom-right. Finally, a SQL query update modifies the data in 
the data table. After each modification (hence each movement), 
the system triggers a redisplay and the modification is visible 
immediately. 

proc view {} {
   set sql [subst {SELECT * FROM event WHERE start>=$s AND end<
$e ORDER BY day,start}]

   db eval $sql {
      # for each event in the query do…       
      foreach {x y_top} [transf $start] {} # find x and y according to time
      foreach {x y_bottom} [transf $end] {}
    
      # shift x for parallel events
      set x [expr $x+$cellWidth*$rankInParaEvents/($numParaEvents
+1.0)]
      set x_right [expr $x+$cellWidth/($numParaEvents+1)]

      if {$view==DisplayView} {
         # display view 
         # rect fill
         glRectf $x $y_bottom $x_right $y_top     
         # text for title
         renderText $title
     } else if {$view==PickingView} {
         # picking view
         # top rectangle
         setColorAnId "$idx top"
         glRectf $x $y_top $x_right [expr $y_top+3]
         # middle rectangle
         setColorAndId "$idx middle"
         glRectf $x [expr $y_top+3] $x_right [expr $y_bottom-3]
         # bottom rectangle
         setColorAndId "$idx bottom"
         glRectf $x [expr $y_bottom-3] $x_right [expr $y_bottom] }}

proc pick {} {
bind $win <ButtonPress> {
    set rgb [getRGB %x %y]
    foreach {idx zone} [eval getColor $rgb] {}
    set sql [subst {SELECT start as oldstart, end as oldend, title FROM 
event WHERE idx=$idx} ]
   db eval $sql ""

   set pointedTime [expr [invtransf %x %y]]
   set offset [expr $pointedTime-$oldstart]

   bind %W <B1-Motion> {
      set pointedTime [%%x %%y]
      set newstart $oldstart
      set newend $oldend

      if {$zone=="top"} {
          set newstart [expr $ss+$pointedTime]
      } elseif {$zone=="middle"} {
          set newstart [expr $ss+$pointedTime-$offset]
          set newend [expr $newstart+($oldend-$oldstart)]
      } elseif {$zone=="bottom"} {
          set newend [expr $ss+$pointedTime]
      }
      # turn invtransform into operation on the model 
      set sql [subst {UPDATE event SET start=$newstart, end=$newend 
WHERE idx=$idx} ]
      db eval $sql ""       
      %W postredisplay }}}

proc transf {value} {
    global zoom xpan ypan
    global cellWidth cellHeight heightPerSecond

    #wrap days
    foreach {x y} [wrap $value/(24*3600)] {}

    #y position in the day [0;1.0[
    set yInDay [expr ($value%(24*3600))/double(24*3600)]
    set y [expr $y + $yInDay]

    # scale for a day cell
    set x [expr $x*$cellWidth]
    set y [expr $y*$cellHeight]

    # pan and zoom
    set x [expr int($x*$zoom+$xpan)]
    set y [expr int($y*$zoom+$ypan)]
 
    return "$x $y"}

proc invtransf {x y} {
    global zoom xpan ypan
    global cellWidth cellHeight heightPerSecond
    
    # pan and zoom
    set x [expr int($x/$zoom-$xpan)]
    set y [expr int($y/$zoom-$ypan)]

    # unscale from a day cell
    set x [expr int($x/$cellWidth)]
    set y  [expr int($y/$cellHeight)]

    # seconds in the day
    set secInDay [expr int( ($y%int($cellHeight))/$heightPerSecond)]
 
   #unwrap days
    set day [invwrap $x $y]
    
    return [expr $secInDay + 24*3600*$day] }

proc wrap {sss} {
    set x 0; set y 0
    # year    
    set x [expr $x+int($sss/(7*5*3*4))]
    set x [expr $x*3]
    set sss [expr $sss%(7*5*3*4)]
    # trimester
    set y [expr $y+int($sss/(7*5*3))]
    set y [expr $y*5]
    set sss [expr $sss%(7*5*3)]
    # monthInTrimester
    set x [expr $x+int($sss/(7*5))]
    set x [expr $x*7]
    set sss [expr $sss%(7*5)]
    # week
    set y [expr $y+int($sss/(7))]
    set sss [expr $sss%(7)]
    # day
    set x [expr $x+int($sss)]
    set sss [expr $sss%(1)]
    return [list $x $y] }

proc invwrap {x y} {

    set year [expr int($x/(7*3))]
    set x [expr $x%(7*3)]

    set trimester [expr int($y/(5))]
    set y [expr $y%(5)]

    set month [expr int($x/(7))]
    set x [expr $x%int(7)]

    set week [expr $y]

    set day [expr int($x)]

    set res [expr int(($day+7*($week+5*($month+3*($trimester+4*
$year)))))]
    return $res
}

 
Figure 11.  Actual code for calendar. Left: disp. & pick. views, transformation 
(transf) and wrapping (wrap) - Right: their inverse (pick, invtransf, invwrap). 

Note the symmetry or anti-symmetry of functions and their inverse. 

sec: y day: x week: y month: x trimester: y year: x  
Figure 12.  A calendar is a wrapped view of time over X and Y 

2) Simplicity 
The display is the result of the application of a function on 

the data. The first advantage is that the understanding of how 
the model is transformed on the screen is easier to grasp, 
because it only depends on an identified flow and is not spread 
around the entire program (Fig. 11): in other words, spaghettis 
untangle [2]. This improves Locality [3] and thus Visibility. 
The second advantage is that if the function is a reversible 
transformation  (which is the case here), the design of the 
function that transforms user manipulations into results on the 
model is straightforward: it consists in applying inverse sub-
functions in reverse order. Moreover, the visualization of the 
program text helps to design such an inverse function, because 
of the Symmetry [3] between transformation and their inverse 
(Fig. 11). When designing the display and the interaction, a 
good way for a designer to get confidence in the code is to 



target and reach this symmetry and verify that for each sub-
function there is an inverse sub-function. 

Using functional code enables the implementation to use a 
data-flow. When applying modifications to the model, all 
depending variables (in particular all graphical positioning 
properties) are recomputed and displayed immediately. There 
is no need to manage consistency, which reduces the Viscosity 
cognitive dimension. Variables external to the model also 
benefit from data-flow. For example, the width and height of a 
cell depend on the containing window. When the user resizes 
the window, the size of cells adapts “automatically”. 

3) Performance 
If it is simpler to manage than analytical computation, this 

architecture is more costly in terms of computation. For 
example, it is necessary to recompute for each modification the 
tessellation and the rasterization of each graphical object. This 
behavior is similar to 3D applications and games: with 3D 
scenes, since the point of view may differ for each frame, 
coders do not bother implementing algorithms that manage 
damaged zones and usually redisplay all objects. I think that, 
given the computing power available since the advent of 3D 
games, it is more beneficial to trade performances for ease of 
coding. Besides, the description with a data flow can help 
optimizing performances: it is possible to consider the chain of 
transformation from data to pixels as a compiler and use 
automatic optimization provided by a graphical compiler [14] 
(partial evaluation, automatic cache, dead-code elimination, 
etc). Finally, if a data-flow may be more costly in terms of 
computation, it is less costly in terms of memory since it does 
not retain graphics. 

VII. DISCUSSION 
This section synthesizes the benefits of using MDPC for 

specification and implementation. 

A. Software Engineering 
As explained in [4], MDPC improves software modularity. 

The role of the Controller of MDPC is limited to the 
management of the dynamics of the interaction state. In the 
Drag’n’Drop and Magnetic guide, the controller is reduced to 
the state-machine. In the Calendar example, the Controller is 
the interaction code. Since the Controller is independent from 
geometrical or layout transforms, it can be reused across 
multiple interactions. For example, if a pan is applied to the 
D’n’D or Magnetic guide scenes, there is no need to change the 
interaction code. This is particularly visible in the Calendar 
example: the same code can be used regardless of the fact that 
pan and zoom is handled by the application. One can add a 
rotation at the end of the transf function and its inverse at the 
beginning of the invtransf function (for example to implement 
interactions from [15]), with no need to modify further the 
existing code. The interaction of the user will still be perfectly 
transformed into operations on the model. 

It is important to note that it is the combination of picking 
views and inverse transformations that enables this feature. 
Using picking views radically simplifies the code and cancels 
the need for complex adaptation of analytical code when one 
adds a new transformation. And transformations are an 

abstraction which is both independent from the notion of 
interactive state and can still be applied easily to the reification 
of interactive state into picking views. 

B. Implementation: scene graph considered harmful 
The implementation of the calendar uses a paradigm that 

contrasts with the paradigm relying on a scene graph. Often, 
implementers use a scene-graph to retain the properties of the 
graphical objects and to optimize the rendering. In fact, a scene 
graph is also a “cache” of the rendering pass. As a cache of 
graphical properties, it relieves the designer from the apparent 
obligation to retain the graphical objects for subsequent 
redisplay. As a cache of transforms, it optimizes the redisplay: 
often, the modification between two frames is minor and one 
can expect better performance if previous computation is 
reused. 

However, as with any “cache”, consistency must be dealt 
with. Consistency management is known to be error-prone and 
even if it seems compulsory to users of scene-graph, it requires 
caution to be taken, hence time and resources, at the expense of 
other concerns. I think that graphics management, user input 
management and data update are hindered by consistency 
management. The data-flow architecture inherently eliminates 
cache management problems, since there is no cache anymore. 
Thus, getting rid of scene-graph makes implementing 
interactive graphics easier. 

Two arguments may counter this claim: performance and 
lack of services of scene-graph-less code. As for performance 
of data-flow, I have already noticed that highly demanding 3D 
applications behave this way and are efficient. Furthermore, 
some interaction requires drawing the entire scene. For 
example, resizing the window of the calendar application leads 
to a complete computation of all graphical elements in the 
scene. In this case, the advantage of the scene graph is null, 
since it does not act as a cache anymore (the cache is 
invalidated at each rendering pass). Besides, the use of a 
graphical compiler offloads optimization concerns from the 
programmer to a tool [14]. 

As for services, a number of them provided by a scene 
graph (ready-to-use graphical shape rendering, picking 
management) do not require a data structure that retains 
graphics. For example, the graphical properties need not be 
retained, since the transformations that lead to those graphical 
properties are retained in the code: graphical properties can be 
generated at each redisplay. In the same way, picking does not 
require a complex scene-graph. In the calendar example, 
picking is realized with a “pick by color” algorithm [16]. 

VIII. RELATED WORK 
A number of works have tackled usability of programming, 

including psychology of programming, cognitive dimensions of 
notation [9], or API usability [17]. For example, [10] and [11] 
enable the programmer to describe interactive state with state 
machines [18]. Most usability studies target general-purpose 
languages or APIs rather than tools for building interactive 
systems [3]. Exceptions include Myers’ study of the 
programming practices of graphical designers [1]. Our work 
builds on these concerns and proposes a practical method that 



aims at improving usability of specification and 
implementation of graphical interaction. Artistic resizing is a 
technique that enables to specify how graphical components 
resize when users resize the container window [19]. It is an 
example of how specification can be turned from a program 
into graphical description. Our work pursues this effort, in that 
it improves the Closeness of Mapping between the 
phenomenon and its description. 

Describing graphics with Data Flow has been extensively 
studied in the past. For example, Fabrik is a direct 
manipulation-based user interface builder that enables a 
designer to specify transforms between widget with a visual 
flow language [20]. Events flow in the same flow graph that 
describes the geometrical transforms, so that they are 
automatically transformed to a position relative to the 
graphically transformed widget. Garnet uses one-way 
constraints, which can be considered as data flow to propagate 
changes [21]. In order to improve interactive graphics 
programming, [22] proposes solutions to facilitate mixing of 
data flow of input and scene graph for output.  

The inverse of model-view matrix is often used to retrieve 
an object that has undergone multiple 3D transforms (due to a 
change of point of view, or due to modeling) [12]. [23] 
discusses how to enable users to change data through 
visualization and a data-flow. Metisse [15] and Façade [24] 
rely on inverse transforms to handle user manipulation in 
rotated views. However, none discusses how to design inverse 
transformations to reflect users’ manipulation into the models. 

IX. CONCLUSION 
I have presented how the MDPC pattern - based on picking 

views and inverse transformations - can facilitate specifying 
and implementing graphical interaction. I have evaluated 
positively its ability to describing a large range of graphical 
interaction. I have also assessed the simplicity of description by 
identifying the benefits (modularity, closeness of mapping, 
visibility, locality and symmetry of code). Of course, there are 
some drawbacks (terseness and performances in certain cases) 
and the claims, even if supported analytically, must be 
experimentally tested. Furthermore, I do not claim that MDPC 
is adapted to all graphical interaction. For example, one would 
better apply a modulo operation to the cursor position to align 
objects on a grid, instead of relying on one picking shape per 
row or column on the grid. However, I believe that thinking in 
terms of reified spatial modes of interaction and 
transformations facilitate designing an interaction. In the 
future, I plan to separate even further the implementation of 
graphics and the implementation of transformation by using 
specialized languages (e.g. SVG as in [14]) and to explore 
optimization and especially cache management. 
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ABSTRACT
Although reactive and graphically rich interfaces are now
mainstream, their development is still a notoriously difficult
task. This paper presents Hayaku, a toolset that supports de-
signing finely tuned interactive graphics. With Hayaku, a
designer can abstract graphics in a class, describe the con-
nections between input and graphics through this class, and
compile it into runnable code with a graphical compile chain.
The benefits of this approach are multiple. First, the front-
end of the compiler is a rich standard graphical language that
designers can use with existing drawing tools. Second, ma-
nipulating a data flow and abstracting the low-level run-time
through a front-end language makes the transformation from
data to graphics easier for designers. Third, the graphical
interaction code can be ported to other platforms with min-
imal changes, while benefiting from optimizations provided
by the graphical compiler.
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INTRODUCTION
Interactive graphics development is a notoriously difficult
task [18, 19]. In particular, rich interactive systems design
requires finely-tuned interactive graphics [13], which con-
sists of a mix of graphical design, animation design and in-
teraction design. Subtle graphics, animations and feedback
enhance both user performance and pleasure when interact-
ing [16]. The success of the iPhone demonstrates it: finely
tuned widgets, reactive behavior, and rich graphics together
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make the iPhone interface superior to other products. De-
signing such systems is a recent activity that has rarely been
supported explicitly in the past. Yet, their quality is essen-
tial for usability. Unfortunately, developing such software
is not reachable by all stakeholders of interactive system
design. This requires highly trained specialists, especially
when it comes to using very specific graphic concepts and
optimize the rendering and interactive code. Hence, there is
a clear need for making interactive graphical programming
more usable.

Moreover, even within a given style of computing (either
web or mobile), new means of thinking, designing and de-
veloping interfaces arise every couple of years. For exam-
ple, we successively saw the rise of Java2D, Adobe Flash,
Adobe Flex, Microsoft dot net, XAML, SVG, WMF, Web
2.0 interfaces programmed in javascript in the browser (with
the Canvas and HTML5), OpenGL etc.1. In order to design
and develop interactive systems on those platforms, inter-
face designers have access to a plethora of toolkits, usually
incompatible with one another. This results in the failure
of reusability, one of the most praised property in comput-
ing: designers have to redevelop existing software in order
to port it to another platform, with the associated drawback
of not reusing well crafted and tested software. For exam-
ple, the menu subsystems that have reached a good level of
usability in traditional desktop platforms (i.e. Windows or
MacOSX) are poorly imitated in Web 2.0 interfaces, where
the user is for instance required to follow a tunnel strictly
when navigating in a hierarchical menu. Hence, there is a
need for the ability to reuse existing software, especially if
we assume that new platforms will keep appearing in the fu-
ture (see WebGL for example).

This paper addresses the two requirements presented above:
design usability and reusability of finely-tuned interactive
gra-phics. In particular, we introduce Hayaku, a toolset that
targets interactive graphics that Brad Myers refers to as the
“insides” of the application [21], and that no widget toolkit
can support. After a review of related works, we present the
exact audience that we target, and the requirements of such
an audience. We then present the toolset using three use
cases, and some of the internal mechanisms that implement

1. . . , Cairo, Qt, Prefuse, Protovis, iPhone SDK, Open Handset Al-
liance’s Android, Palm WebOS to name a few more



its features. We finally provide a number of elements to eval-
uate the toolset according to our claims. Related Work This
work is related to two topics in the user interaction software
and technology community: methods to design interactive
systems, and graphical toolkits.

Interactive System Design Methods
Chatty et al. [6] present a method and associated tools to
involve graphic designers in interactive system design and
development. Programmers and graphic designers first agree
on a conceptual and simple SVG skeleton of the scene. While
programmers code the interaction with a low quality repre-
sentation, graphic designers can work on their design in par-
allel. Since programmers and designers respect a contract,
the production of the final system consists in the replace-
ment of the low quality representation by the designer’s one.
However, the tools oblige the graphic designer to use a li-
brary to transform the high-level language (SVG) to a lower-
level one (a Tk-like canvas) with a lesser expressive power.
This hinders exploration of alternative design since changing
gra-phics implies many manipulations to reflect the change
in the final application. Furthermore, when optimizing code,
the approach falls back to a sequential process: program-
mers have to wait for designers’ solutions before optimizing
by hand the rendering code, and designers have to wait for
optimizations to assess if their design is usable.

Microsoft Expression Blend makes heavy use of XAML to
describe the graphical parts of the application. Like Intuikit,
the aim is to separate the graphical description from the func-
tional core of the application. The designer can produce one
design per C# class that has to be drawn, but he still needs
to manipulate the low level code in order to implement inter-
actions and animations. The concept of “binding” allows
programmers to link the graphical shapes and the source
objects. The Adobe Flex and Flash suite also provides a
means to separate the graphical description from the func-
tional core. However, even if the designer can rely on Flash
to build her graphical components, she has to develop the
rest of the application using the ActionScript language. Fur-
thermore, there is no abstraction of the graphics, nor a way
to express properties with a data-flow. Finally, even if Flex
runs on a variety of platforms in its own window, it is not
possible to embed the graphics among the graphical scene
of another application.

Toolkits
Many toolkits address the problem of performance: Prefuse
[14], Jazz [4], Piccolo [3], and Infoviz Toolkit (IVTK) [9]
for instance. Performance is maximized by using special-
ized data structures explicitly (tables for Prefuse and IVTK),
or hidden data structures (spatial tree for Piccolo). The first
limitation of this approach is that the language used to de-
scribe graphics is both inappropriate and not rich enough:
describing graphics in Java code with SwingStates [1] is ver-
bose, Java concepts do not match graphics exactly, and rich
graphics created with tools for graphic design cannot be di-
rectly used in the toolkit. Rich graphics toolkits exist, such
as Batik2, but they are not efficient performance-wise. Fur-
2 http://xmlgraphics.apache.org/batik/

thermore, the problem with these toolkits is that even if they
are efficient, they force the toolkit user to work with a spe-
cific language and a specific run-time. For instance, users of
toolkits can not use Prefuse to write a C or C++ application.

Other works use compiler-like optimizations to produce effi-
cient graphical code (Java3D, LLVM [15] with Gallium3D3

in Mesa). However these tools are only accessible to low
level graphical programmers that manage to write code for
the graphic card directly. They are not supposed to be used
by the average interactive application developer, with basic
understanding of the factors that accelerate rendering.

The solution we propose here consists in helping the produc-
tion of efficient code for heavy graphics handling. In order
to compile the graphical part, we rely on a dataflow, and a
mechanism that is able to track the dependencies between in-
put data and graphical elements. Dataflow has been used in
graphical interactive toolkits (Icon [8] for the input, and Gar-
net [25] for the constraints), and have been showed to help
building interactive systems efficiently. However, the main
difficulty with such a system is to make it fast for both graph-
ical rendering and the dependency updating mechanism.

This point is addressed in [24], which introduces a compile
chain for interactive graphical software. This work shows
that using a graphical compiler (GrC) together with a dataflow
leads to good performance. However, the tools were more a
proof of concept than a real toolset: the authors present a
way to implement optimizations, but do not detail how pro-
grammers of the graphical interface can connect all parts to-
gether. Another problem of the GrC is that it generates a
program that is linked to the runtime of the GrC. This forces
the designer to describe all graphical parts of the applica-
tion with the GrC. However, when dealing with high per-
formance applications, there are parts of the code that the
programmer still wants to write manually, in order to max-
imize the performances. Meanwhile, this programmer may
not want to write every piece of the software, if only because
they already exist.

The work we present in this paper improves on the concepts
described in [24]. In particular, we show how our new tool
can help the programmer and the graphic designer to use
graphical compiling in a simpler manner, and what benefits
can be gained from the new functionalities. We also improve
it by allowing it to be modular and thus producing embed-
dable components. Finally this modularity allows us to turn
this proof of concept into a real compiler that can handle
multiple graphics back ends and run-time modules.

TARGET AUDIENCE AND REQUIREMENTS
The work presented here targets members of interactive sys-
tem design teams. A large body of work aims at support-
ing interactive system design. For example, Participatory
Design (PD) partly aims at facilitating production and com-
munication between all designers, be they user-experience
specialists, graphic designers, users, programmers [17]. PD
employs multiple means to elicit design and communicate it
3http://wiki.freedesktop.org/wiki/Software/gallium



efficiently in groups where people do not share the same cul-
ture. Use cases in the form of stories, drawings and mock-up
[5], paper prototypes [23]: all tools aim at maximizing ex-
pression, exploration by iteration and understanding by cul-
turally different designers.

brainstorming/
mock-up

rough
prototype

dynamic
prototype

final
design

Figure 1. Targeted activity

After these tools have led to initial static prototypes, the de-
signers have to work on dynamic, graphical interactive pro-
totypes [2] [6] (figure 1). As said in the introduction, part
of the work is the design of finely-tuned interactive graph-
ics, which consists in a mix of graphical design, animation
design and interaction design. The quality of the artifacts de-
signed during this stage in the process is essential for usabil-
ity. The overall user experience of interacting depends on
how well all features (be they graphical, animation, behav-
ior) mix together: the designer must address all concerns at
the same time, and dispatching the task between a graphical
designer and a programmer does not work anymore. Hence,
this activity requires designers with skills in graphic design,
animation, interaction design and programming. Our work
especially targets this kind of designers.

As demonstrated by Artistic Resizing [7], we think that tech-
nical support has a great influence on the experience of de-
signers engaged in the activity. A recent survey analyzes
how designers design and program interactive behaviors with
current tools [19]. Among the findings, the designers ex-
presses that “the behavior they wanted were quite complex
and diverse [. . . ] and therefore requires full programming
capabilities”; that “the design of interactive behaviors emerge
through the process of exploration [. . . ] and that today’s tool
make it difficult to iterate on behavior or revert to old ver-
sions”; “Details are important, and you never have them all
until full implementation”; “I can represent very exactly the
desired appearance. However, I can only approximate the
backend behaviors”; and they want to do “Complex transi-
tions / animations.”

Based on these concerns, we propose a set of requirements
for our tools. Similarly to paper prototypes in PD, tools
should maximize expression, exploration, and communica-
tion between designers. Maximizing expression requires rich
graphics, hence a toolset should be able to handle heavy
graphical scenes, with lots of subtle graphical properties.
Designing such scenes requires efficient design tools, such
as vector graphics editors. However, in order to be usable in
interactive system, the toolset should deliver enough perfor-
mance. Maximizing exploration implies a system in which
changing things (e.g. a graphical property) should be as in-
expensive as possible, i.e. with as little manipulation as pos-
sible required to reflect the change in the subsystems.

TOOLKIT DESIGN AND CONCEPTUAL MODEL
Designing a system that addresses all the requirements above
is beyond the scope of this paper. In this work, we describe
Hayaku, a tool set that partly addresses these requirements.
In particular, we address richness of expression, exploration,
performances, and reusability. Hayaku mainly focuses on
the rendering part of the application. It also provides hooks
to implement interaction with the user and communication
with the rest of the application. The functional part of the
application (what happens in the system when the button is
pressed for instance) is out of the scope of the paper.

General Idea: the Interaction Designer is in Charge
As said before, this activity requires designers with skills in
graphic design, animation, interaction design and program-
ming. Omniscient individuals that possess all skills are rare,
if existing. In order to tackle this problem, teams include
specialists in each domain, and design is distributed among
the members of the team. In particular, graphical designers
and computer scientists (or more precisely interaction pro-
grammer) are among the kind of specialists involved in the
design of interactive software.
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Figure 2. Role repartition with Intuikit and XAML (a) and role repar-
tition with Hayaku (b).

The general idea of our approach is wider than the Intuikit
approach [6]: instead of acknowledging the irreconcilabil-
ity between graphical designers and interaction programmer,
and maximizing communication between two different spe-
cialists, we tried to make the programmer’s concerns acces-
sible to the graphical designer. More precisely, what we tar-
get is a graphic designer that has basic programming skills,
and that the tool empowers. As depicted in Figure 2, Hayaku
provides the required graphical expressive power, while of-
floading optimizations to the graphical compiler. This turns
the interaction coder and the graphic designer into an inter-
action designer. Again, we assume that the artefacts pro-
duced at this stage in the design should be done with all
concerns (graphics and code) in mind, and thus by a unique
person, or a very close team that share tools and artefacts.
The approach is similar to Artistic Resizing: instead of de-
scribing with code the behavior of graphical elements under
size change, Artistic Resizing enables graphic designers to
express the behavior with means closer to their knowledge.

We provide the interaction designer with a tool chain that
uses a standard vector graphics editor (Inkscape or Adobe
Illustrator) as its first link. This has two advantages: the de-
signer leverages on her experience with such tools, and she



can express graphics using the full expressive power of the
tools. The other links of the toolchain consist in a compile
chain that takes two inputs: graphics elements edited with
the graphical editor, and abstractions of graphical element to
control them. The remaining of this section enumerates the
main features of Hayaku. One of the contributions of this
work is the identification of those features. The goal of the
paper is to present the concepts used by the tool, and show
why they are adapted to the activity we target. Though there
is not enough information to fully describe the system be-
cause of limited space, the concepts presented here can be
used by readers if they want to design a similar system.

Abstract and Control Graphical Elements The graphic edi-
tor stores the drawings in an SVG description. SVG draw-
ings are like “classes” of graphical objects. In order to use
SVG drawings in a real application, the designer has to pro-
vide three descriptions, all written in JSON4. The first one
is the “conceptual language” shared with the functional core
coders, and serves as a bridge between the functional core
and interactive graphics. As in [6], the designer and the rest
of the team must agree on a common data structure, or “mod-
els” which also acts as classes of concepts. This language
is illustrated by the right part of Figure 3. The second one
describes how the models defined in the first description is
related to SVG graphics, by connecting fields of the models
to nodes and attributes in SVG drawings with a mini, data-
flow-like functional language. It is similar to a stylesheet.
In Figure 3, the connections are represented by the lines be-
tween the SVG part and the abstract model part. Finally, the
last description is the “scene”, i.e. a list of instances of the
classes (not represented on Figure 3).

Figure 3. Representation of the connections (the black lines) between
the graphical classes (the SVG) and the model.

Though this conceptual model of application design seems
complex, it is no more than existing ways of writing code:
the first JSON description can be considered as a class defi-
nition, the second one as a stylesheet, while the last one cor-
responds to the instantiation phase of classes at the launch of
a program. The only addition is the SVG description, which
corresponds to “graphical classes” definitions.

Fast Application Generation
Hayaku includes a compiler that takes the SVG description
and the three JSON files as input, and generates an appli-
cation. The compiler uses various strategies to maximize
compile speed and launch speed of the generated applica-
tion. This allow for rapid fixes and tests, and thus efficient
exploration of design.

4Javascript Object Notation

Fast and Portable Code Generation
As many compilers, the graphical compiler is able to opti-
mize the generated code. Thanks to a data-flow analysis,
and user-provided hooks, the code allows the use of complex
graphics (expressive power) with a rendering speed compati-
ble with interaction. Furthermore, the compiler is able to tar-
get different graphical back-ends, such as OpenGL or Cairo.
This guarantees that the design is portable.

Generate Whole Application or Embeddable Code The com-
piler can generate either a stand-alone application, or em-
beddable code. With traditional toolkits, embedding is often
limited to a window that the host application displays next
to its own windows. The kind of embedding that we tar-
get is more useful: graphics should appear inside an existing
scene of the host application. Such embeddable code allows
for creation of dynamic applications, in which the number of
graphical elements is not known at compile-time. This also
allows designers to use the compiler as a translation tool be-
tween SVG and a run-time environment. More generally,
this transforms our toolset in a toolkit for graphical toolkit
design (a toolkit of toolkits).

USE CASES
In order to illustrate our approach, we describe how to use
Hayaku to implement three different kinds of applications.
Though the descriptions look like a tutorial, they enable to
understand and assess how a designer is supposed to use the
features provided by the tool, and help evaluate how effi-
cient the features are at supporting the designer’s activity.
The first one is a basic multi-touch application that enables
multiple users to move and resize simple graphical objects.
It is not very rich in terms of graphics, but since it is simple,
it allows for a gentle introduction and short code examples.
The second one is a more graphically complex application:
a resizeable keyboard with a fish-eye effect that is activated
only if the size of the keyboard is too small. The last exam-
ple is a generic pie-menu that can be reused in an existing
application.

Figure 4. A simple multi-touch application.

Writing a Simple Application
This test-case consists in writing a simple multi-touch appli-
cation (Figure 4). The interaction consists in controlling in
a simple and natural way each of the “heads” that appears
on Figure 4. The properties that users of the application can
control are the position, size and rotation of each shape.

For the designer, the first phase consists in defining four
graphical “classes” (here the “head”-shapes) with Inkscape,
and save them in a SVG file.



{ "model": "SMILEYS",

"classes": [ {

"name":"Object",

"extends":null,

"attributes": {

"ID":"key",

"X0":"vint", "Y0":"vint",

"SCALE":"vfloat",

"ROTATION":"vfloat",

"PRIORITY":"vfloat",

"Picked_Key":"vint" }},

{ "name":"Object_0",

"extends":"Object",

"attributes": {}}]}

Figure 5. Model of the multi-touch widget.

{"model":"SMILEYS",

"objects": [

{"className":"Object_0",

"file":"demo.svg",

"graphicalItems": [

{"name":"smiley_svg",

"connections":

{"X0":"smiley_svg.transform.tx",

"Y0":"smiley_svg.transform.ty",

"SCALE":"smiley_svg.transform.scale",

"ROTATION":"smiley_svg.transform.rotation",

"PRIORITY":"smiley_svg.transform.priority"},

"picking":

{"Picked_Key":"smiley_svg"}}]}]}

Figure 6. Connection between the model of the multi-touch widget and
the graphic parts (smiley svg).

{ "name":"Smileys",

"model":"SMILEYS",

"content": [

{ "type":"Object_0",

"attributes": {

"ID":0,

"ParentID":0,

"X0":100, "Y0":100,

"SCALE":0.5,

"ROTATION":0.0,

"Picked_Key":-1 }}] }

Figure 7. Instantiation of the multi-touch widget.

def translate(self,dx,dy):

self.x0.set(self.x0.eval() + dx)

self.y0.set(self.y0.eval() + dy)

def rotate(self, dr):

self.rotation.set(self.rotation.eval() + dr)

def zoom(self, z):

if self.scale.eval() + z >= 0.1:

self.scale.set(self.scale.eval() + z)

Figure 8. The Python code of the three commands to control the graph-
ical objects.

The third phase consists in defining the connections between
the model and the graphical part (Figure 6), again in a JSON
file. Connections are straightforward and need no explana-
tion. The fourth description pertains to the scene, in another
JSON file. This file consists in instantiating the different el-
ements of the graphical scene (Figure 7).

The designer has to provide the reactive part of the appli-
cation, i.e. the connection between input events and reac-
tion of the graphical objects. Since Hayaku focuses on the
rendering part only, it does not provide any multi-touch ca-
pabilities. Rather, it is up to the designer to describe with
the run-time language and input toolkit how events act on

the conceptual model, by updating the corresponding fields
of the instances. However, when generating the code corre-
sponding to the conceptual model, the toolset offers the pos-
sibility to concatenate user-defined code. This enables the
designer to abstract behavior (see Figure 8). Furthemore,
Hayaku provides a picking mechanism that can be called
from user-defined code.

In order to test and launch the application, the interaction de-
signer edits a Python script that contains a call to the function
load with the three JSON files as arguments (the model, the
model-to-svg connection, and the scene). She then launches
the command hayaku with the script as a parameter. If the
compile phase succeeds, Hayaku launches the generated ap-
plication.

The compilation time for this example is 2.2 seconds the first
time. Further recompilations requires 1.9 secs only. The first
time of compilation is longer due to some tools that need
to be embedded in the final application and that does not
need to be recompiled each time a change occurs (OpenGL
shaders and utility functions). The application takes less
than one second to launch, and runs at 515 frames per second
(see Table 2). Again, this application is simple and not de-
manding in terms of computation power. Still, it shows that
the toolkit is reactive enough to deal with high-rate incoming
data.

A Fish-eye Keyboard
The second application is a 40 auto-expanding keys key-
board, designed for motor-disabled users (Figure 9) [22].
The keyboard consists in two parts: the keyboard itself, and
a one line screen to display the result. The caps-lock key is
fully functional: the key mapping changes accordingly. The
key “123” toggles the numeric mode. Finally, the keyboard
can be resized, and at low sizes the keys close to the cursor
expand thanks to a fish-eye effect [10].

Figure 9. The test application in action.

This example demonstrates the ability of the toolkit to han-
dle rich graphics with high rendering performance. The de-
sign of the keyboard uses a full vectorial description for its
components. This leads to high quality graphics even when
the keyboard is resized. The design also uses rich graphic
properties: gradients, transparency, shadows. . .

Realisation
The graphical part of the application has been realised with
Inkscape (Figure 10). In a first SVG file, the designer creates
a key by using eight separate graphical layers. The layers are
grouped and named in a unique SVG component. In order



to build the global composition, the keys are then cloned,
organized and modified to generate an artwork of the final
keyboard. The creation of the upper area, including the text
display, the backspace key and a background with a gradient
completes this artwork. The whole keyboard contains 400
graphical elements.

Figure 10. The SVG description of the different components of the
keyboard, realized with Inkscape.

Once the global composition is satisfactory, three examples
of the different type of keys are put in a separate SVG file,
to serve as “graphical classes” : char key, func key and en-
ter key. The graphical components correspond to the com-
ponent described in the model, and are named accordingly.
The blocks that describe the background and the display of
the result are also added to this file. A parent class Key has
been defined to handle the common properties of the differ-
ent keys. The class is inherited by the different types of key
(char, func and enter).

The layout of the keyboard is given in the JSON scene file.
However, Hayaku does not provide a visual editor for the
scene. Thus, the designer has to provide it. Since the pro-
duction of this file can be laborious, a script has been writ-
ten to produce it. This script allows the interaction designer
to rapidly change the layout of the keyboard by changing
some variables in the script, instead of a bunch of values and
parenthesis into the JSON file.

The fish-eye effect is implemented by computing the dis-
tance between the cursor and each key, and by using this
distance to set the scaling property of the key accordingly.
Each time the cursor moves, a redraw is triggered, and the
key is scaled with is current scale before being drawn.

A Generic Pie-menu
To assess that Hayaku can be considered as a toolkit of toolk-
its5, we implemented a generic pie-menu (Figure 11). The
objective was to provide an implementation-independent de-
scription in order to use it inside an actual, existing appli-
cation (Figure 12). The pie-menu we designed includes a
feedback when flying over a slice: the underlying slice is
enlarged. Thus we can not use a mere circle, but several dis-
tinct slices. We also need to be able to control the number of
elements inside the menu.

5here, Hayaku can be considered as a toolkit for building a widget

Figure 11. The pie-menu in action.

Realisation
The design in itself resembles the design of the keyboard: we
designed the pie-menu to be a set of slices. Each slice has
7 main graphical parameters: a position, a label, an angle,
an internal radius, an external radius, a rotation, and a color
parameter. To describe the scene, we wrote a script similar to
the one that generated the keys in the keyboard. The script
generates the slices and their parameters according to the
number of slices.

The behaviour part maps the picking value of each slice with
a callback that changes the internal radius, the external ra-
dius and the color as needed. High-level events, such as
“menu 7 has been selected”, have to be generated by the be-
haviour part, since Hayaku only provides the graphical part
of the application.

Embedding in an Existing Application
We have embedded the pie-menu into an existing radar-like
application for Air Traffic Control (see Figure 12). This
application is written in C++ and makes extensive use of
OpenGL. The application is extensible, and provides a mech-
anism for loading dynamic external libraries. We used this
mechanism to plug our pie-menu into this system.

Figure 12. The pie-menu inside a real application.

The steps involved were the following. First, we had to write
a C++ class that interacts with the dynamically loaded ob-
jects generated by Hayaku. This class is the glue that links
the host application and the generated interactive graphics,
and factorizes the setup code for all embedded Hayaku code.
Then we wrote a subclass specific to the pie-menu, to han-
dle the pie-menu behaviour with respect to user interaction.
This subclass represents 112 lines of code. It is a transcrip-
tion in C++ of previously written Python code, developed
during the prototyping phase of the pie-menu widget. As



Figure 12 shows, the pie-menu smoothly integrates into the
host application, and does not reduce the frame rate.

This use case shows that it was possible to externalize the
creation of widgets and reuse them in other applications.
However, in general, existing systems do not support exten-
sions with external dynamic plug-in: in this case, the code
generated by Hayaku must be embedded at source-level. The
glue between the original code and the graphical part is sim-
pler (just a “#include” at the beginning). Drawing is initiated
by calling the exported draw function.

TOOLKIT IMPLEMENTATION
How the Toolset Works
The command hayaku automatically calls the GrC. The GrC
then creates a directory named BUILD in which it places all
its productions. The JSON files are transformed into Python
ones, and a set of C files and their headers are written. Then,
the GrC calls gcc to compile those C files and produce the
object files that can be embedded into C applications. It gen-
erates a dynamic library that can be either linked to the run-
time of the GrC, or embedded into an existing application.

To reduce compile time, the compiler is able to detect parts
that have been modified between two successive compila-
tions, and compiles those parts only. In addition, we de-
signed a monitoring system on the files, and the recompi-
lation occurs automatically whenever a file is modified and
saved. The change is automatically reflected in the generated
application while it is still running. For example, changing
the color of one of the shapes in the example above with
Inkscape, and saving the SVG file automatically updates all
shapes of this class in the running application. This illus-
trates the advantage of separating graphics from behavior
and using data-flow mechanisms: since the graphical pipe-
line is clearly delimited, the toolset is able to trigger it at any
time, without affecting the behavior of the whole applica-
tion. Such tools reduce the time needed between envisioning
an idea and testing it.

Generation of Portable Code
As we already said in the previous sections, the designer
produces the graphical shapes thanks to SVG files. The ab-
stractions and connections between those graphical shapes
and the models are given through JSON files. Then, Hayaku
loads them into the GrC.

The GrC in itself is written in Python. The GrC is able to
produce different types of outputs, in terms of target lan-
guage and run-time (currently C and Java), and in term of
graphical backend (currently OpenGL, and partly Cairo). To
be able to reuse the code of the transformations, we im-
plemented our own partial class mechanism. We separate
the description of the intermediate languages and the trans-
formation between them. At the beginning of the compile
chain, the GrC chooses which languages and transforma-
tions it needs to produce the final code by attaching the trans-
formation functions to the descriptions nodes. The trees that
are generated can then be transformed just by visiting each
node. This mechanism allows us to modularize the graphi-

cal compiler and thus to plug different behaviour at different
stages as needed.

Generation of Static and Semi-static Code
Most examples are instances of application in which the num-
ber of objects is not variable (sliders, pie-menus, keyboard).
For other types of applications, such as radar image where
the number of flights is in theory not bounded, the data-flow
architecture does not allow for simple description and han-
dling of dynamic creation of objects. In this case, Hayaku
provides two strategies.

The first one is to consider the number of elements to be dis-
played bound by an upper limit [24]. This requires to start
the application with a pool of available invisible graphical
objects, which are allocated to any new data that appear dur-
ing run-time. In practice, this strategy works well: for exam-
ple, the number of flights in a sector is bounded by regulation
agencies in order to enable a limited numbers of controllers
to handle the traffic. It comes at the expense of internal han-
dling of invisible objects (which may hinder performance
uselessly) and longer compile time. But the benefits out-
weigh the drawbacks, since it helps keeping the application
simple to write and understand.

The second strategy consists in generating pieces of specific
interactive graphical code that can be reused in a larger pro-
gram. In the radar image, this would consist in designing the
graphics for a single flight, and generating the corresponding
display code. The main program would then manage cre-
ation of new flights and deletion of disappearing ones, and
use the display code whenever necessary. With this solution,
the compile time is reduced, since the graphical code is not
unrolled as in loop unrolling for instance, and the constraint
of the upper limit of objects is removed.

Generated code must follow a number of requirements to
make it embeddable. First, the generated code has to keep
the state of the application. For instance, when working
with OpenGL applications, the drawing code has to keep the
pipeline in the same state it was before its use. A second
requirement is to produce “human readable” code. Since
most of the time a designer will connect the generated code
to the other application, the names of the functions that are
exported have to be understandable by the programmer. For
instance, set0 25 2 1 is less readable than set component0 -
key25 backgroundColor red.

Picking Support
The generated code must provide a way to send back infor-
mation. For instance, when the end-user moves the mouse,
the code has to inform the caller that the picking state chan-
ged. Hayaku provides a picking mechanism, together with
a callback system. The host application has to register call-
backs if it wants to be notified by the graphics code, or by
the underlying dataflow. Care must be taken when handling
picking. For example, a usual picking algorithm consists
in rendering the scene in a tiny rectangle around the cur-
sor, and storing each graphical object that owns pixels actu-
ally rendered in the rectangle. Applying the same algorithm



in a multitouch application requires as many passes as the
number of touches, which is costly. Instead, we used a one-
pass color-keying algorithm [12]. Each graphical shape is
assigned a unique color in an associative array, and rendered
with their unique solid color in an off-screen buffer. Picking
shapes consists in reading back the color of the pixel under
each touch, and retrieving the corresponding shape from the
color with the associative array.

PRELIMINARY EVALUATION
As with any method that aims at supporting design, evaluat-
ing a toolset requires controlled experiments, with multiple
design teams under different conditions (with or without the
tested toolset for example). Such an experimentation is a
heavy task, and is beyond the scope of this paper. However,
we provide in this section a preliminary evaluation in terms
of descriptive power, performance, and usability.

Descriptive Power
We provide two dimensions of analysis to evaluate the de-
scriptive power of the toolkit: the size of the class of visual-
izations that can be described by the toolkit in a reasonable
amount of work, and the simplicity of the description of typ-
ical applications. A toolset must target the right balance be-
tween the class size and simplicity. A thin class may indicate
that the toolset is so specialized that the benefits provided are
not very significant. On the other hand, expanding the class
usually comes at the expense of simplicity.

Class of Application: previous work showed that the GrC is
able to handle basic WIMP interaction (sliders) and graphi-
cal scene with a large number of objects, such as a radar im-
age. We showed with the use-cases of this paper that Hayaku
can implement multiple types of interactive graphical soft-
ware: interactors (pie-menus), graphically rich interactive
software (fish-eye keyboard), and multitouch applications.

As said before, most examples are instances of application
in which the number of objects is not variable (sliders, pie-
menus, keyboard). For other types of applications, such
as radar image where the number of flights is in practice
bounded, a strategy consists in picking objects in a pool of
available invisble objects. Hayaku enables to use a second
strategy that relies on embeddable, generated code, thus ex-
panding the class of applications.

Using a graphical editor also enables the designer to expand
the class of representation he can employ. However, we did
not try to design very dynamic applications such as graphi-
cal editors with Hayaku because we think that Hayaku is not
made for that kind of applications. We suspect that writing
such systems would require to twist the conceptual model
of application design so much, that it would be too cumber-
some to do.

Simplicity: Despite our research in the literature, we could
not find a clear definition for simplicity. Thus, we measured
it in terms of compactness of the code required to describe
interactive graphics, by providing the number of lines of
code (LOC) of previously described examples. (Table 1). As

said before, the JSON description of the scene (the graphical
components of the interface) has been judged as “laborious”,
and a Python script to produce it has been required. It cor-
responds to the “generator” column. For example, the 890
LOC for the keyboard have actually been generated by the
210 lines of code generator. As we can see, the amount of
code is in the hundreds, which is low considering the rich-
ness and variability of the three examples.

use case conceptual model to scene generator
model SVG of the scene

multi-touch 43 LOC 90 LOC 54 LOC ∅
keyboard 129 LOC 199 LOC 890 LOC 210 LOC

pie-menu 40 LOC 42 LOC 102 LOC 46 LOC

Table 1. The number of lines of code (LOC) of the different examples.

Performance
In Table 2, we show the performances of the three use-cases,
compiled with Hayaku, and rendered through OpenGL. For
each example, we show the frame rate of the produced code
(C+OpenGL), and the time needed to compile it. We dif-
ferentiate “first compile-time” from “re-compile time”, be-
cause Hayaku caches some computation between two con-
secutive compile phases (text fonts for example). The most
significant time is the re-compile time, since a designer using
Hayaku will spend most of her time doing small increments
to her description, and will launch recompilation from time
to time.

use case frames per first compile re-compile
second time time

multi-touch ∼515 f.p.s. 2.2 sec 1.9 sec
keyboard ∼136 f.p.s. 29.1 sec 8.6 sec
pie-menu ∼400 f.p.s. 10.2 sec 2.9 sec

Table 2. The performances of the different examples.

If performances may not be as good as expected, they could
be much higher (8.6 sec re-compile time for the keyboard).
The implementation of the toolkit we show here is a pro-
totype (written in the Python language), and could be im-
proved in many ways. For instance, the produced OpenGL
code does not use Vertex Buffer Objects, which could signif-
icantly improve the run-time performances. In addition, the
internal data structures of Hayaku and the GrC (graphs of
tiny Python objects) should be changed to decrease compile
time.

Usability
Evaluating the usability of a toolkit is an open research prob-
lem [20]. For this purpose, we discuss how Hayaku ranks
against Cognitive Dimensions of Notation [11], which help
make explicit what a notation (i.e a language) is supposed to
improve, or fails to support. Cognitive dimensions are based
on activities typical of the use of interactive systems. We
chose to evaluate the following activities: incrementation,
transcription, modification, and exploratory design; along
the following dimensions: closeness of mapping, hidden de-
pendencies, premature commitment, progressive evaluation,
abstraction, viscosity, and visibility.



Closeness of Mapping: the designer creates (incrementa-
tion) drawings directly into a graphical editor: it is very close
to the final product, at least closer than textual graphical lan-
guage. This allows the use of existing exploratory design
tools (inkscape), and thus maximizes this property. Mod-
ification of the graphics is eased since it modifies in turn
an SVG file that keeps the same properties (e.g. naming),
which in turn is compiled i.e. transformed computationally.
Porting can be considered as a transcription, and is efficient
thanks to the use of a compiler with multiple front-ends and
back-ends. The front end of the compiler is the conceptual
model JSON file. Since the interaction designer designs the
conceptual model, she can make it as close as possible to the
domain she models. Hence, closeness of mapping is maxi-
mized. However, setting the link between the graphics, the
conceptual models, and the data-flow language requires a
switch of notation (a graphical editor vs a textual notation).

Hidden Dependencies: the dataflow we provide is not en-
tirely visible. It is difficult for the designer to know ex-
actly what happens once the models and transformations are
given. However, the designer is mostly interested in the part
of the data-flow he wrote. The part of the data-flow gener-
ated by the compiler is less susceptible to be read and under-
stood, except for debugging purpose. Premature Commit-
ment: using a graphical compiler inherently prevents pre-
mature commitment. For example, changing the run-time
environment can occur at any time during the design pro-
cess. Furthermore, changing a property of the graphics may
require a simple recompile to be reflected in the applica-
tion. Moreover, as Hayaku relies on style-sheets to link
the graphical model to the graphical shapes, the design can
be rewritten several times without having to rewrite the be-
haviour part. However, the structure of the graphics must not
change too often, since other descriptions rely on it (see vis-
cosity). Progressive Evaluation: evaluating a recently mod-
ified graphics is immediate. However, evaluating the behav-
ior with respect to the interaction requires to launch the soft-
ware. Clearly, a tool such as artistic resizing is needed for
this kind of activity and concerns.

Abstraction: Hayaku relies on JSON files to abstract the
graphical model, the connections and the graphical scene.
However, if this language is well adapted to represent ab-
stract data, and forces the user to keep it abstract, it is not
very well adapted to the human that needs to write it into
his/her text editor. In particular, the connection between the
models and the graphics would be better defined directly in
a graphical editor.

Viscosity: the conceptual model requires all graphical ele-
ments to be declared in the JSON file. Hence, if a graphical
element is used multiple times (such as the key element in
the keyboard example), a change in the “prototype” requires
propagating the change in all instances of that element. A so-
lution to this viscosity problem is to design a small program
that generates all instances from a prototype in a JSON file.
This program can be considered as another link in the com-
pile chain, and helps abstract concepts from the conceptual
model of the application to be designed.

A change in the conceptual model itself must be reflected
into the connection description, and the scene description.
This is the problem that the programmer of a C++ class en-
counters when he adds a field for example: he has to update
all calls of the class constructor if a parameter to set up the
field is required. Various mechanisms exist to cope with this
problem (e.g. a default value), but none is implemented in
Hayaku. Similarly, a change in the graphical structure (i.e.
the hierarchy of SVG elements) can have a large impact on
the model-graphics connection description.

Visibility: currently, the visibility of the toolkit is limited.
For example, JSON files tend to be verbose and long, which
hinders searching or exploratory understanding.

EARLY FEEDBACK FROM DESIGNERS
We provided Hayaku to the graphical designer of the origi-
nal Fish-Eye Keyboard, and we asked him to recreate it. This
designer is used to both design graphics and write interaction
code. The designer praised the reliability of the rendered
scene. Since Hayaku relies on a graphical compiler, the fi-
nal generated code does not suffer from a trade-off between
speed and power of expression. The final rendered scene is
then very close to a static one, produced by Inkscape for in-
stance. Thanks to the expression power of SVG, the graphic
designer is not limited when dealing with graphics.

The designer found that one of the most interesting thing
was to design the graphical objects by keeping in mind their
graphical behaviour during the interaction. This behaviour
has been defined by targeting the graphical properties that
need to be connected to the models in the graphical scene.
The evolution of the parameters are then described, either
“relatively” with a mathematical expression (similar to the
one-way constraints in Garnet [25]), or with a value com-
puted by the behaviour part. For example, the anchor of the
shape of a key depends on its width (“FORM X0”: “(self.
WIDTH - 100) / -2”): since the width depends on the dis-
tance with the cursor, the anchor is updated automatically.
Considering all the inputs and outputs of the generated ap-
plication as a data flow simplified the work of the designer.
For instance, implementing the global resize of the keyboard
took around 10 minutes, the time needed to understand and
implement the solution to connect the two variables screen
width and screen height to the application. The “connec-
tions” allow the graphic designer to quickly build complex
behaviour, such as the “fish-eye” function of the keys.

However, there still are some pitfalls. The main problem
was the hand writing of the different JSON files. This has
been judged as laborious, since the coherence between those
files had to be maintained manually. Furthermore, writing
a JSON file for the scene is also annoying, since a scene
can contain many similar elements. As explained, a solution
to this problem is to write a script that generates the scene,
which makes it more controllable.

CONCLUSION
In this paper, we have identified that there is a lack of tools to
support designers in producing graphically rich, finely tuned



and highly reactive graphical applications. We have pre-
sented Hayaku, a toolset that aims at supporting this activity,
by turning the interaction coder and graphical designer into
an interaction designer. The interaction designer writes the
program in a high-level, known language (SVG) and through
JSON files that abstract the graphical elements. He then
compiles it into an runnable application or embeddable code.

Like the keyboard example shows, the compile time hinders
design exploration, and must be improved. We have devel-
oped Hayaku in Python in order to prototype it rapidly, and
we are aware that parts of the code are sub-optimal (notably
trees traversal). Many optimizations can be done to improve
that part of the toolset. Future works also include expand-
ing the sets of back ends, both for graphics platform and
languages. Finally, using multiple JSON files as a descrip-
tion language is cumbersome, especially when describing
the connection between models and graphic models. Spe-
cialized tools must be designed, such as a graphical editor.
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FromDaDy: Spreading Aircraft Trajectories Across Views to 
Support Iterative Queries 

Christophe Hurter, Benjamin Tissoires, and Stéphane Conversy

Abstract—When displaying thousands of aircraft trajectories on a screen, the visualization is spoiled by a tangle of trails. The 
visual analysis is therefore difficult, especially if a specific class of trajectories in an erroneous dataset has to be studied. We 
designed FromDaDy, a trajectory visualization tool that tackles the difficulties of exploring the visualization of multiple trails. This 
multidimensional data exploration is based on scatterplots, brushing, pick and drop, juxtaposed views and rapid visual design. 
Users can organize the workspace composed of multiple juxtaposed views. They can define the visual configuration of the views 
by connecting data dimensions from the dataset to Bertin’s visual variables. They can then brush trajectories, and with a pick and 
drop operation they can spread the brushed information across views. They can then repeat these interactions, until they extract 
a set of relevant data, thus formulating complex queries. Through two real-world scenarios, we show how FromDaDy supports 
iterative queries and the extraction of trajectories in a dataset that contains up to 5 million data. 

Index Terms—visualization, iterative exploration, direct manipulation, trajectories.

 
  

1 INTRODUCTION 
In the Air Traffic Control (ATC) field, analyzing traffic or devising 
new ways of managing airspace requires trajectories analysis. An 
aircraft trajectory is a record of positions of an aircraft in a given 
airspace (3D+time plus other information such as identifier, speed 
etc). As such, trajectories are multidimensional data. Air Traffic 
stake-holders regularly analyze traffic to: 
  

• understand past conflicts and then improve safety with 
adequate evolutions, 

• assess new onboard and ground safety systems and the 
resulting aircraft trails, 

• devise new air space organization and procedures to handle 
traffic increase, 

• compare trails with environmental considerations (fuel 
consumption, noise pollution, vertical profile comparison), 

• study profitability from a business trajectory point of view 
(number of aircraft on a specific Flight Route per day, 
number of aircraft that actually landed at a specific 
airport…), 

• filter and extract trajectories in order to re-use them (this 
task will be later illustrated in this paper in the section on 
trajectory extraction for Air Traffic Controllers’ training). 

 
Formulating queries over trajectories in a declarative, textual-
language based manner, such as a SQL, is hard. Even if it is possible 
to select trajectories that flow over specific locations, it is very 
difficult to specify features like “select trajectories where this part of 
the trajectory is straight” or “where this part has a constant climbing 
rate”… Thus, visual analysis remains the only way to detect relevant 
trajectory features efficiently. 

Trajectories are numerous and tangle: one-day's traffic over France 
for example, represents some 20000 trajectories ( Fig.  1). When 
dealing with trajectories, users must perform dynamic requests 
(response time < 100 ms [15]) on a huge multi-dimensional dataset 
(>1 million data). In addition to the data size problem, users have to 
deal with a dataset that contains many errors and uncertainties: 
recording is done in a periodic manner (in our database: a radar plot 
per aircraft every 4 minutes), but a plot can be missed, or have 
erroneous values because of physical problems that occurred at the 
time of recording. The problem we address in this paper is to find a 
way to express these queries, simply and accurately, given the 
constraints of size and uncertainty of the datasets. 
 
We have developed FromDaDy (which stands for “FROM DAta to 
DisplaY”), a visualization tool that tackles the challenge of 
representing, and interacting with, numerous trajectories involving 
uncertainties. FromDaDy employs a simple paradigm to explore 
multidimensional data based on scatterplots, brushing, pick and drop, 
juxtaposed views and rapid visual configuration. The fundamental 
new aspect of FromDaDy compared to existing visualization 
systems, is to enable users to spread data across views. Together 
with a finely tuned mix between design customization and simple 
interaction, users can filter, remove and add trajectories in an iterated 
manner until they extract a set of relevant data, thus formulating 
complex queries. 
The remainder of this paper is organized as follows. First, we present 
relevant related work. Then we list the design requirements to fulfill 
the trajectory analysis task. Next, we describe FromDaDy features 
and justify our implementation choices. Finally, we outline the 
strengths of FromDaDy with two specific data extraction scenarios.  
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2 RELATED WORK 
FromdDaDy proposes a simple model of interaction that, compared 
to existing models of interaction, provides more explicit support for 
incremental data exploration, visual configuration and Boolean 
operations. Our work is based on many previous research 
publications on visualization and interaction with multidimensional 
data (Spotfire [1], Tableau/Polaris [16], GGobi [17], TimeSearcher 
[11]).  



 

2.1 The dataflow model 
Card, Mackinlay and Shneiderman [6] proposed a model that 
describes visualizations as a data flow sequence from the raw data to 
the views. This data flow model is still widely used in a lot of 
visualization software (SpotFire [1], VQE [7] , InfoVis Toolkit [9], 
ILOG Discovery [3], nVizN [19]…). 
 

 
Fig.  1 : One-day’s record of traffic over France. The color gradient 

from green to blue represents the ascending altitude of aircraft (green 
being the lowest and blue the highest altitude). The French coastline is 
apparent here in terms of sightseeing by light aircraft and the straight 

blue lines represent high altitude Flight Routes. 

2.2 Simple filtering and selection 
Though originally designed for data exploration, Dynamic 
Queries [2] represents the seminal work in query design. The 
associated “range-slider” widget, allows for fast, incremental 
manipulation of ranges, with immediate effect [15] . As such, a 
range-slider reifies a simple query, which filters out data outside the 
range. 
Some systems allow data to be selected by defining an area over 
graphical entities, which changes their appearance (for example, they 
are reddened). In a multiple view system, such as a scatterplot 
matrix, selected data appear highlighted both in the view 
manipulated by the user, and in the other views, making it possible to 
understand the relationships between selected data. 
Interactions for selecting data include one-by-one designation [12], 
rubber-band rectangle [12][8], lassoing [8] or brushing [4]. Various 
systems propose enhanced brushing techniques, such as XmdvTool 
[18]. However, they require a complex interface to tune parameters, 
which hinders rapid iteration. For example, an “erase-data” mode in 
XmdvTool is accessible, but only through a dialog box. 

2.3 Defining filtering and selection 
All tools enable the user to define a selection, but again in various 
degrees. With Dynamic Queries, users can point to a range-slider 
previously manipulated to adjust the range. “Rolling the Dice” [8] 
makes it possible to “sculpt” queries, but only by defining a new 
selection to be combined with existing ones. Though not fully 
explained, it seems that redefining a selection requires defining a 
completely new one: it does not seem possible to resize a rubber 

rectangle or modify a lasso shape. XmdvTools allows the user to add 
a new brush over an existing one, but does not allow removal of 
parts of the stroke [18]. TimeSearcher allows the user to select time 
series with movable boxes [11]. 

2.4 Multiple filtering and selections, Boolean 
operations 

Multiple range-sliders implicitly combine their queries into a single 
one, implementing a Boolean “and” operation. Some systems allow 
multiple selections (sometimes called “layers”), differentiated by 
colors. This enables the user to find patterns between the different 
groups of selected data. The combination of selections is done by the 
visualisation of a mix of differently colored shapes. Thus users 
visually apply a “xor” operation when seeking groups of isolated 
shapes, while they apply an “and” operation when they try to group 
differently-colored shapes. 
In some systems, users can explicitly define how selections are 
combined by choosing a Boolean operation: the resulting selection is 
then highlighted with yet another color. The interaction uses either a 
specific tool [18], or a specific button of the interface at the start of 
the interaction [13]. “Rolling the Dice” [8] reifies selections into 
stacked rectangles that enable the user to combine selections by 
dragging and dropping one rectangle onto another. The choice of 
which Boolean operation to apply is made by dragging either with 
the right button (and) or the left button (or). Once executed, the two 
selections are merged into one, and they cannot be manipulated any 
further. 

2.5 Views organization and navigation 
Matrix scatterplots are scatterplots arranged in a matrix, so that every 
scatterplot on a row (or column) shares the same dimension on the X 
(or Y) axis. As each dimension is spatially matched to the others, 
users can detect spatial patterns at a glance. In addition, there is no 
need to navigate between views, as all of them are displayed at once. 
This enables users to switch rapidly between views, so as to interact 
with the view that is the most adapted to the problem at hand. By 
contrast, a traditional visualization system offers few ways to display 
multiple views, and forces the user to switch between views with 
standard window manipulation. 
However, the size of scatterplots matrix scales quadratically with the 
number of dimensions, and results in thumbnail views that are 
difficult to visualize and interact with. Furthermore, even if 
interaction-free navigation requires finding a particular scatterplot in 
the matrix, this sometimes takes time; the user has to find the row 
and the column of the two dimensions to explore, and then find the 
scatterplot at the intersection between the row and the column. 
Designed to overcome this problem, “Rolling the Dice” [8] offers a 
number of interactions to navigate from one scatterplot to another, 
and displays a rolling dice-like animation when switching between 
views. However, “Rolling the Dice” displays only one scatterplot at 
a time (with geometrically transformed selections already made in 
other views). This makes interaction with previous selections longer, 
as it requires the user to look back and switch to a more appropriate 
view. 

3 DESIGN REQUIREMENTS 
This section presents the design requirements required to achieve 
trajectory exploration. The majority of our tasks consist in finding 
real world trajectories with a specific set of features. This contrasts 
with the traditional InfoVis tasks, where the goal is to discover 
trends or outliers. Trajectory features are difficult to specify for two 
reasons. First, they are often only specifiable with visual features 
(straight lines, or general shape). Furthermore, users often explore 
the queries as much as they explore the data: in the course of 
exploration, users discover that the set of features they thought 
relevant has to be adapted, either because they were false, or because 



they cannot figure out how to query them efficiently. Hence, the 
system must permit the customization of views so as to offer 
multiple means of understanding and querying the data visually. It 
should allow for a quick change of mapping between data and visual 
dimensions. Often, the set of interesting trajectories for a particular 
task can only be described by extension: hence, the system must also 
support iterative selection design, i.e. the ability to store a temporal 
state of a selection and to be able to improve it later. Trajectory 
databases are huge and multidimensional (more than 500000 records 
with more than 10 fields: aircraft’s name, speed, location…). The 
system should be able to handle this amount of data, and display 
graphical entities with a frame rate compatible with smooth 
interaction. As said earlier, our database contains many errors and 
uncertainties; thus the user must be able to figure out if the displayed 
trajectory is reliable or not. If not, users must understand why. 

 
Fig.  2 : The brushing interaction allows the user to select trajectories by brushing them with a size configurable tool. 

4 RADAR DATASET 
Our radar dataset contains recording of aircraft parameters at a given 
time (Table 1). This dataset may contain many other fields, but we 
present here the most important ones. Records are linked through the 
aircraft identifier (provided by radar tracking). Points are gathered to 
form trajectories. 
 
Field name details 
Latitude Latitude of the aircraft at a given time 
Longitude Longitude of the aircraft at a given time 
Flight Level Altitude of the aircraft 
Time The time of the record 
Speed The aircraft speed 
Track ID The unique identifier of the aircraft 

Table 1 : Record field names and semantics. 

The trajectories dataset contains many errors: 
• The radar tracking system is faulty when an aircraft has a 

very low altitude, 
• The onboard system may emit temporally wrong 

information (aircraft ID and altitude) , 
• The flight route used by aircraft may not correspond to the 

current aircraft heading (due to metrological 
considerations, traffic optimization or safety reasons). 

 
These errors are very important since they can highlight a radar loss 
detection area, or onboard technical problems. Errors can easily be 
detected visually when they create outliers or discontinuities in 
visualization: e.g. the aircraft altitude suddenly jumps to zero then 
back to high. 
The dataset also contains uncertainties, which are due to the 
sampling rate of the aircraft position. Our available dataset contains 
aircraft positions every four minutes. Therefore the actual aircraft 
position between two consecutive positions is unknown. For 
exemple, aircraft having landed may stop at a high altitude (the last 
detected position lasting four minutes). 

5 SYSTEM DESCRIPTION 
This section details FromDaDy basic features for trajectory 
exploration tasks. 

5.1 Visual configuration 
FromDaDy uses the data flow model, through a tool that enables a 
user to draw connections between data dimensions and visual 
variables [5], thus specifying a visual configuration. For instance, in 
the left hand image of Fig.  3, the user connected the longitude with 
the X axis of the view and the latitude with the Y axis of the view. 
The user also connected the altitude field of the database to the color 
of the lines. The resulting connections produce a vertical 
representation of a one-day traffic record over France (see right Fig.  
3). The user can also double-click on axis X or Y of a view to make 
the field selection menu appear, and change the mapping for that 
axis. 
FromDaDy uses an automatic scaling process to make data visible on 
the screen. This process is based on scaling with the min/max value 
of each field of the dataset and the configuration of the view. For 
instance, the user connected longitude with the X screen and latitude 
with the Y screen: FromDaDy scales the view so that all latitude and 
longitude values fit into the view.  
 

   

Fig.  3. The connection tool for visual design (left), menu axis (right) 

5.2 Brushing interaction and incremental selection 
The user selects a subset by means of a brushing technique. Brushing 
is an interaction that allows the user to “brush” graphical entities, 
using a size-configurable or shape-configurable area controlled by 
the mouse pointer [4]. Each trajectory touched by the area during the 
mouse movement is selected, and becomes gray. The selection can 
be modified by further brush strokes (“Ctrl key” pressed), or by 
removing parts of it with brush strokes in the “erase” mode (“Shift 
key” pressed). Our implementation leaves a brush trail, so that the 
user can see and remember more easily how the selection was made. 
All trajectories that cross the trail are selected: hence, modifying the 
selection is like painting or erasing the trail (Fig.  2). While the ctrl 
and shift key are pressed, the size of the stroke can be adjusted with 
the mouse wheel. If neither of them is pressed, the mouse wheel 



 

allows zooming of the view in and out. The combination of fast 
switching between the add or erase mode, trail visualization, rapid 
size-setting, and cursor-centered zooming with the mouse wheel 
provides for fast, incremental selection. 

5.3  “Pick and drop” paradigm 
Thanks to the brushing technique, the user can select and highlight 
parts of the displayed data. By hitting the space bar, the user can 
extract previously selected data and attach them to the mouse cursor 
(beginning of Fig.  5). By default, the selected data are picked: they 
are removed from the view, and appear in a “fly-over” view 
(transparent background). When the user hits the space bar for the 
second time, a drop occurs in another view under the cursor. If there 
is an empty view under the cursor (gray views as shown in Fig.  5), 
the software creates a new view with the selected data. If the user 
presses the space bar while moving over an existing view, 
FromDaDy adds the selected data to this view. 
Although it resembles to a regular drag’n’drop operation, we prefer 
to use the term “pick’n’drop” [14], in the sense that data is removed 
from the previous view and is attached to the mouse even if the space 
bar is released. 
 

 
Fig.  5. Pick and Drop interaction 

5.4 The organization of Views 
A session starts with a view displaying all the data. The visualization 
employs a default visual configuration, i.e. the mapping between 
data dimensions and visual variables. The view is inside a window, 

and occupies a cell in a virtual infinite grid that extends from the four 
sides of the cell. With the brushing and the Pick/Drop paradigm, the 
user creates new views and changes their visual configurations. The 
user can select the other cells to display another representation of the 
data. The user can also destroy a view if the brush selects all the 
trajectories and if the user picks them. 

 
Fig.  4 : Users control the transition between top (Latitude, Longitude) view and vertical (Altitude, Longitude) view by dragging the mouse along 

the vertical axis.

5.5 Rolling dice animation 
Sudden changes in the axis of the view are disruptive since they 
prevent the user from tracking changes over time. Therefore 
FromDaDy uses an animation similar to “Rolling the Dice” [8]. In 
other words, one dimension in the focused view is preserved while 
the other changes. The change is visualized using an animated 
transition. As in [8], instead of simply interpolating the position of 
each point for the transition, FromDaDy performs the transition as a 
3D rotation. This gives some semantic meaning to the movement of 
the points, allowing the human mind to interpret the motion as a 
rotating shape, and to keep the focus on visual entities during the 
transition. The user can also control the transition with a click and 
drag along an axis (Fig.  4). Rolling dice animation is also used when 
dragging the picked data over a view. 
 

 
Fig. 6. FromDaDy interface with cells, design tools and one picked 

selection 



6 INITIAL OBSERVED BENEFITS 
FromDaDy has been used by engineers and Air Traffic Controllers. 
During this qualitative evaluation we observe how they took 
advantage of FromDaDy’s assets: the spreading of trajectories across 
views, the extended features of the pick/drop paradigm, the visual 
configuration choices, and the implicit Boolean operations. 

6.1  Spreading data across views 
Within FromDaDy, there is a single line per trajectory instance: 
trajectories are not duplicated, but spread across views. The 
advantage of this technique is twofold. Firstly, it enables the user to 
remove data from a view (and drop them on to the destination view). 
The fly-over view enables the user to decide rapidly if the revealed 
data (previously hidden by the picked one) are interesting. Secondly, 
it makes it possible to build a data subset incrementally. In this case, 
the user can immediately assess the quality of the selection, by 
seeing it in the “fly-over” view. Furthermore, by removing data from 
the first view, the user makes it less cluttered, and makes it easier for 
him to pick data again from the first view and drop them on to the 
second view.  

6.2 Picking, transition, and visual configuration picker 
The rolling dice animation is also used when the user moves a picked 
set of trajectories around. When moving over an existing view, the 
visual configuration of the view may be different from the picked 
view. In order to prevent sudden changes, FromDaDy animates the 
transition:  the colors, size, pan and zoom change until they reach the 
parameter of the view under the mouse pointer. This animation is 
easy to understand and helps the user to figure out the selection 
layout in the new view before dropping. This enables users to re-
assess the quality of the selection, as it allows them to forecast the 
result of the drop. Furthermore, this interaction acts as a visual 
configuration picker. The user may want to pick trajectories and 
apply the visual configuration of another view. To do so, the user 
brushes and picks trajectories, moves the picked trajectories over the 

view with the desired visual configuration, sees FromDaDy apply the 
configuration to the picked trajectories, and drops the trajectories 
into an empty cell.  

 
Fig.  7. Union Boolean operation 

 

 
Fig. 8. Intersection Boolean operation 

6.3 Line and brush combination for efficient selection 
Trajectories are displayed as dots connected by a line. Other design 
choices may have been envisaged: one color, shape or size per 
trajectory. Because trajectories are too numerous, lines remain the 
only suitable design to separate them visually. 
As said above, brushing selects entire trajectory instead of single 
plots. Line brushing has significant advantages: in a very dense area 
the brushing of a specific trajectory is difficult, whereas the user can 
select the same trajectory in a less dense area (for example, the 
surroundings). The zoom is not always a suitable solution to address 
the problem of selection in a dense area, since the user often needs a 
complete view on the trajectories. This design choice may lead to 
false interpretation as the system connects two non-consecutive 
plots: the line may hide radar detection loss. This kind of data error 
can be visually detected when trajectories are straight over a long 
distance. 
Trajectory exploration requires more complex selection shapes than 
a simple rectangle box, and a configurable selection shape, as 
supported by FromDaDy is more important than, i.e. a movable one. 
Unlike many visualization systems, FromDaDy employs a simple 
brushing tool: the user is able to add brush strokes, and remove parts 
of them. There is no “erase-data” mode, as pick and drop into a trash 
cell does the same thing. Though simple to master, FromDaDy 
allows for complex geometrical queries that other visualization 
software cannot easily perform. 

6.4 Implicit specification of Boolean operations 
Boolean operations are cumbersome to produce, even with an astute 
interface, as results are difficult to foresee [20]. FromDady reduces 
this drawback, since any operation of the interaction paradigm 
(brushing, picking and dropping) implicitly performs Boolean 
operations. The following two examples illustrate the union, 



 

intersection and negation Boolean operations. With these three basic 
operations the user can perform any kind of Boolean operation: 
AND, OR, NOT, XOR… 
Fig.  7, the user wants to select trajectories that pass through region 
A or through region B. He or she just has to brush the two desired 
regions and Pick/Drop the selected tracks into a new view. The 
resulting view contains his or her query, and the previous one 
contains the negation of the query. In Fig. 8 the same process is used 
to find the tracks that pass through A and B. By sequencing two 
“pick and drop” operations, the user formulates his or her request. 

6.5 Seamless view navigation 
FromDaDy gives the user partial control over the organization of the 
workspace. There are no windows to create and manipulate, and 
there is only a single layout available (juxtaposed views). This 
enables quick back and forth pick and drop operations between two 
views, with rough brushing to unveil hidden trajectories followed by 
precise brushing to restore some of them. The visual configuration 
tool is always available and allows for rapid representation change. 
Hence the user never has to interrupt the exploration process to cope 
with secondary manipulation.  
Furthermore, when exploring a query, the user can arrange the 
workspace, so as to lay out successive steps. This results in a kind of 
a storyboard that helps visualize the procedure (and not only the 
data). Thus, in the middle of an unsuccessful exploration, the user 
can quickly check intermediate views to figure out why the 
procedure is incorrect. 

7 SCENARIOS 
This section presents two scenarios that underline FromDaDy's 
assets. This first scenario illustrates how users can explore a dataset 
and interactively refine their visual queries. The second scenario is a 
real case, where FromDaDy was used to extract trajectories for a 
training simulator for Air Traffic Controllers. 

7.1 Iterative exploration 
The visualization shown in Fig. 9 displays air traffic over France 
during one day. The user wants to display transatlantic aircraft that 
landed or took off at Roissy airport during one day (Roissy is at the 
main intersection of the lines). To answer this query, the user first 
devises a procedure composed of two ordered steps. He or She 
initially decides to filter aircraft that flew over the Atlantic Ocean. 
To do so, the user brushes the left hand area of the visualization 
which selects aircraft that flew over the ocean (Fig. 9, right). 
 

  
Fig. 9. One day traffic (left), transatlantic selection (right). The thicker 

polygon is the outline of France. 

For the second step, the user changes the view configuration to a 
vertical view (altitude, latitude) and selects aircraft that have a very 
low altitude at the latitude of the airport (Fig.  10). The user then 
changes back the view configuration to a top view (X:latitude, 
Y:longitude). He or She picks the selected data and starts dragging it. 

Then the user discovers that trajectories from a second airport, close 
to Roissy, is part of the selection, and that trajectories landing at 
Roissy still exist in the view with unpicked data. Furthermore, an 
intruder aircraft stands out (on the bottom right of Fig.  11). This 
aircraft performed an unexpected transit flight through Lyon airport, 
which was not requested. 
 

  
Fig.  10. One day traffic vertical view (left), bottom selection (right). 

  
Fig.  11. Resulting selection with one intruder (left), zoomed (right) 

The result of the visual selection is effectively inaccurate: the 
selection misses trajectories that did not end at a low altitude 
(erroneous data due to radar detection loss or to the 4 minute 
sampling rate). Furthermore, the vertical view forces the user to 
select all trajectories with a low altitude at the same longitude of the 
selected airport (the two main airports in France have the same 
longitude but not the same latitude).  
Hence, the user has to revise the formulation of the query. He or she 
performs many tentative explorations and finally finds an additional 
statement: “aircraft that land at this airport do not overshoot it”. The 
user selects aircraft that flew over the ocean, and deletes the ones 
that overshoot the airport, by using a filter-out brushing operation. 
He or she thus obtains the required result. 
 

   
Fig.  12. Selection of non overshooting items (left), Zoom out (right). 

This example illustrates how iterative exploration allows the user to 
find out the correct procedure to use and how the user modified the 
query to find the correct result. It also illustrates how unexpected 
data can be easily removed. 

7.2 Specific trajectory extraction for ATC controller 
training purposes 

In this section, we detail in an actual scenario, in which FromDaDy 
was used to carry out a data exploration task. The user is a specialist 
in the Air Traffic Control field. His task was to extract specific 
aircraft fulfilling the following criteria. Aircraft must pass exactly 
over specific beacons (corresponding to referenced Flight Routes). 
Their vertical profile must correspond to a constant climbing 



trajectory: there should be no continuous horizontal flight. Finally, 
aircraft must be sorted by their main departure direction. 
Aircraft do not always follow standard Flight Routes. Air Traffic 
Controllers can shorten a trajectory for optimization reasons. 
Furthermore, an aircraft can deviate from its trajectory if it 
overshoots beacons. The user has to filter out this kind of data, even 
though the criteria that specify them are fuzzy. 
 

   
Fig.  13. Original aircraft trajectories (left), landing aircraft trajectories 

(right) and standard procedures (right hand figure, outlined trajectories 
are the published Flight Routes by the air transportation authority) 

7.2.1 Step by step actions 
The system first displayed a specific view (longitude->X, latitude-
>Y) (Fig.  13). As explained above, the data are linked by the “Track 
ID name”, the user can group and join them with a line on the screen, 
in order to display the different trajectories. Thus, each trajectory 
concerns a single aircraft. 
The user has a rough idea of the position of the standard trajectories 
and immediately detects them: as they are superposed, they merge 
into darker lines. The trajectories that surround them are either 
trajectories shortened by the controller or trajectories that deviated 
from the initial plan. The user eliminates these trajectories by 
brushing them and dragging them into a trash cell. FromDaDy also 
displays two numbers that correspond to the cursor position in the 
data dimension of the visualization. This enables the user to position 
the brush precisely at the longitude of the last beacon, and brushes all 
trajectories that overshoot it, in order to drag them into the trash cell. 
 

 
 

 
 
 
 
 

 
 
 

 
 

 
Fig.  14. Trajectories that follows the standard procedures (center), 

sorted trajectories (corners) 

At this stage, the user creates as many views as identified aircraft 
procedures (two North, one East, and one South departure). To do so, 

he selects, picks and drops each trajectory into their corresponding 
view (sorting stage: Fig.  14). 
The final step is the selection of the correct vertical profile (Fig.  15). 
The user changed the visual configuration to a “vertical view” 
(latitude->X, altitude->Y). The user wanted a constant vertical 
profile: no aircraft with a continuous flat altitude. Thus the user 
began to dismiss more aircraft in one view. However, he noticed that 
he would have been obliged to do so with the three other views. He 
thus retracted to the previous step by recreating the cell with 
unsorted trajectories. He applied the vertical profile filtering, and did 
the sorting step again, thus optimizing his procedure. By organizing 
the layout of temporary views, the user has been able to target 
rapidly which steps to retract to. 
 

  
Fig.  15. Trajectories with flat level vertical profile (left), trajectories 

without flat level (right). 

During the vertical profile filtering, the user noticed that the 
animated transition could have helped him if the views had been 
correctly arranged. He copied the vertical view under the top view, 
so that the animation between the top view (longitude, latitude) and 
the vertical view (longitude, altitude) helped to filter the requested 
flights: the longitude is common to the two views, therefore the user 
could focus on the longitude of the last beacon of the Flight Plan 
and, during the view transition, he could pick out aircraft that had a 
constant climbing rate up to this longitude (the user can keep the 
focus on a specific longitude). Again, the ability to organize the 
workspace rapidly allowed him or her to emphasize the animation 
feature. 

8 TECHNOLOGICAL CONSIDERATIONS 
FromDaDy is built in C# with the .Net framework 3.0 for interface 
implementation and DirectX 10 for GPU programming. The 
brushing technique with 5 millions points is technologically 
challenging. Therefore we had to take full advantage of modern 
graphic card features. FromDaDy uses a fragment shader and the 
render-to-texture technique [10]. Each trajectory has a unique 
identifier. A texture (stored in the graphic card) contains the Boolean 
selection value of each trajectory, false by default. When the 
trajectory is brushed its value is set to true. The graphic card uses 
parallel rendering which prevents reading and writing in the same 
texture in a single pass. Therefore we used a two-step rendering 
process (Fig.  16) : firstly we test the intersection of the brushing 
shape and the point to be rendered to update the selected identifier 
texture, and, secondly, we draw all the points with their 
corresponding selected attribute (gray color if selected, visual 
configuration color otherwise) (Fig.  16). We also implemented the 
rendering of points and lines with geometry shaders. 
Thanks to these techniques, FromDaDy can display up to 5 million 
points in real time (frame rates of over 20 FPS) with 2009 computer 
generation and a 2009 graphic card (8800GTX). 
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Fig.  16. Brushing technique GPU implementation

9  CONCLUSION  
FromDaDy is a multidimensional visualization tool making it 
possible to explore large sets of aircraft trajectories. FromDaDy uses 
a minimalist interface: a desktop with a matrix of cells, and a 
dimension-to-visual variables connection tool. Its interactions are 
also minimalist: brushing, picking, and dropping. Nevertheless the 
combination of these interactions permits numerous functions:  the 
creation and destruction of working views, the initiation and 
refinement of selections, the filtering of sub-datasets, the application 
of Boolean operations, the creation of relevant steps during the 
exploration process, and the organization of the desktop layout to 
create a storyboard and visualize the query building procedure. 
Through two scenarios, we showed how FromDaDy supports 
iterative queries and the extraction of trajectories in a dataset that 
contains up to 5 million data points with errors and uncertainties. As 
such, FromDaDy, meets the need for a rapid, flexible and accurate 
exploration of numerous trajectories in the ATC field. 
Our contribution is not a new interaction technique but rather a 
carefully reasoned justification of how existing techniques can be 
usefully combined to perform trajectory extraction. The cornerstone 
of FromDaDy is the trajectory spreading across views with a simple 
brush/pick/drop paradigm. 
We plan to assess FromDaDy with practitioners in traffic analysis. 
This will enable us to provide longitudinal studies of other tasks. 
FromDaDy is not limited to displaying aircraft trajectories. It can use 
different types of data; we plan to perform further experiments with 
other datasets, such as GPS tracking. 
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ABSTRACT 
Collaboration is key to safety and efficiency in Air Traffic 
Control. Legacy paper-based systems enable seamless and 
non-verbal collaboration, but trends in new software and 
hardware for ATC tend to separate controllers more and 
more, which hinders collaboration. This paper presents a 
new interactive system designed to support collaboration in 
ATC. We ran a series of interviews and workshops to 
identify collaborative situations in ATC. From this analysis, 
we derived a set of requirements to support collaboration: 
support mutual awareness, communication and 
coordination, dynamic task allocation and simultaneous use 
with more than two people. We designed a set of new 
interactive tools to fulfill the requirements, by using a 
multi-user tabletop surface, appropriate feedthrough, and 
reified and partially accomplishable actions. Preliminary 
evaluation shows that feedthrough is important, users 
benefit from a number of tools to communicate and 
coordinate their actions, and the tabletop is actually usable 
by three people both in tightly coupled tasks and parallel, 
individual activities. At a higher level, we also found that 
co-location is not enough to generate mutual awareness if 
users are not engaged in meaningful collaboration. 

Author Keywords 
CSCW, tabletop, collaboration, air traffic control. 

ACM Classification Keywords 
H.5.3 Information Interfaces and Presentation: Group and 
Organization Interfaces. 
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INTRODUCTION 
The goal of Air Traffic Control (ATC) is to maximize both 
safety and capacity, so as to accept all flights without 
compromising their safety or creating delays. Because air 
traffic is expected to double by 2030, authorities in Europe 

and the USA have decided to design new ATC systems. 
The SESAR [10] and NextGen [6] consortia, both involving 
billions of euros or dollars, are aimed at changing hardware, 
software, air space organization and procedures followed by 
human controllers.  

ATC is a highly collaborative activity [1,11]. Collaboration 
makes controllers more efficient and is essential for safety. 
The trustworthiness of the global system comes not only 
from its individual parts (hardware, software or people), but 
emerges from the process of checking and crosschecking 
each other's activity. Over the years, various computer 
systems have been introduced to support ATC activities and 
controllers were able to use them as a basis for 
collaboration. However, most recent systems have been 
largely based on single-person interaction paradigms, and 
computerization has been obtained at the expense of 
collaboration. How can designers mitigate this in the 
systems that are currently being defined? 

Recent hardware advances in multi-touch multi-user 
tabletop systems enable us to imagine potential solutions 
for collaboration support. Designing such systems requires 
a deep analysis and understanding of the actual activity to 
be supported. Even with a sound activity analysis, designers 
need to find what set of interactions are useful to actually 
support collaboration: how can tabletop systems improve 
collaboration compared to other digital systems? How do 
we maximize users’ awareness of what teammates do? How 
can we enable seamless dynamic task allocation? What set 
of guidelines should we follow to design effective 
collaborative tools on tabletop? This paper provides 
preliminary answers to these questions. 

We first summarize the ATC activity and its evolution, so 
as to clarify the context in which designers work. We then 
report on an activity analysis focused on collaboration and 
performed by combining available literature on ATC 
activities and additional interviews with controllers. From 
this analysis, we extract a set of requirements and design 
guidelines. We then present the system and an evaluation. 

AIR TRAFFIC CONTROL AND ITS EVOLUTION 
In this section, we briefly outline the tasks of en-route 
controllers on a typical workstation, and focus on the role 
of collaboration in traditional ATC workstation designs. We 
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then explain why these designs are progressively 
abandoned and what problems this might pose.  

Traditional en-route ATC tools and procedures 
The activity of en-route air traffic controllers consists 
mainly of maintaining a safe distance between aircraft. To 
do this the airspace is divided into sectors, each sector 
being under the responsibility of a team of controllers. 
When a flight crosses a sector, the controllers guide the 
pilot by giving clearances (heading, speed, or altitude 
orders) until the flight reaches an adjacent sector, where 
other controllers take responsibility for the flight. 

In a typical setting, two controllers sit at a Control Position, 
which is especially designed to support their activities. A 
traditional Control Position (in France and other countries 
in Europe) includes a set of vertical screens (the main one 
being a radar-type visualization), and a horizontal board on 
which paper flight strips lie [11]. There are two radar 
screens, one for each controller, often with different 
configurations (e.g. pan and zoom), and a single horizontal 
strip board, shared by both controllers. One controller is the 
tactical controller, who gives orders to pilot by radio, and 
write down his orders on the paper strips. The other 
controller is the planning controller, who is in charge of 
preparing the newly arriving flights for the tactical 
controller (possibly by writing notes on the corresponding 
strips), and of “shooting” exiting flights to other sectors. 

Importance of collaboration in traditional ATC 
Past studies have shown that paper flight strips are more 
than mere information holders and serve as a 
communication medium [1,5,7,11]: the acts of physically 
moving, orienting, sticking, holding, and writing on a strip 
deliver non-verbal messages from one controller to the 
other. Moreover, as the strips are simply papers on which 
one can write notes, anyone can interact with them; both 
controllers can move them and update the information with 
a regular pen. Other people can also interact with them; for 
example, in storm situations up to five people might gather 
at a control position and manipulate the strips. In addition, 
the flexible co-manipulation of strips enables users to 
answer very quickly to unexpected events and errors, and 
enables resilience [14]. 

Non-verbal communication has been shown to represent up 
to 50% of all communication acts [2]. Usually, non-verbal 
communication is done while seeing the teammate and/or 
the shared environment: physical co-presence enables 
teammates to use multiple sorts of gestures that improve 
common understanding of the situation, including deictic 
gestures, object passing, utterance-like gestures and 
touching the shoulder to generate awareness [2]. Physical 
distance between co-workers need not weaken performance 
in collaborative activities, but it leads them to engage in 
more demanding communication acts [5,21]. The 
supplemental work is done at the expense of the main 
activity, which may be problematic in a situation where 

work is complex and cognitive load is high. Furthermore, 
knowledge that one’s collaborators know as much as 
oneself makes the interpretation of collaborators’ intentions 
easier, which in turn makes collaboration better [2,23]. 
Multimodal communication involving speech and co-
located gestures is better at building this mutual knowledge 
than speech alone [2]. 

Automation and its consequences 
In order to increase airspace capacity significantly, US and 
European programs promote automation of separation 
(between aircraft) monitoring and control [6,10]. By 
delegating the separation assurance function to systems on 
the ground and in the cockpit, they assume that controllers 
would shift their attention to such tasks as optimization of 
traffic flow, or accommodating pilots’ requests for route 
changes. However, the accuracy and efficiency of 
automated separation depend on the system’s up-to-date 
knowledge of planned and modified trajectories. The 
current paper and voice-based interaction do not update the 
system with modifications and orders from controllers, thus 
preventing the use of automation. This has led to projects 
that aim at replacing paper and voice with digital tools. 

Many software-based systems have been introduced in 
support of control procedures, including problem 
management [2], flight lists to partly replace strip boards, 
etc. However, most introduced systems have used the 
WIMP paradigm and rely on mouse-based interaction (an 
exception is [3]), likely because such systems are easy to 
design and develop. Keyboards and mice are personal 
devices that are not normally shared: this hinders the ability 
of a user to interact with her/his teammate’s view while the 
latter is engaged in a conversation on the radio for example. 
As teamwork is a major asset of previous systems for both 
safety and efficiency, such individualized tools lower at 
least efficiency (and some of them have been rejected by 
users for this reason), and possibly also safety. 

RELATED WORK  
A number of research projects have tackled the problem of 
designing a digital system that can be updated, while 
preserving collaboration. DigiStrips is a prototype that 
makes use of two touch screens (one per controller) and 
finely designed graphics and feedback to support group 
collaboration [13]. DigiStrips’ designers argue that touch 
screens are appropriate tools to support collaboration: 

• They increase mutual awareness. Since touch screens 
involve gesture, seeing what a colleague is doing with his 
hand (directly or in peripheral vision) on a touch screen 
provides many clues on his activity. 

• Unlike mice, touch screens are shareable in a fluid 
manner: a user can interact on his touch screen as well as 
on his teammate's. 

DigiStrips mimics the ability of actual strip boards to lay 
out the electronic strips so as to convey information. For 
example, a planning controller may slightly shift or rotate a 



strip to the left to make it salient for the tactical controller. 
Though users could interact with the teammate’s screen in 
DigiStrips, the gap between touch screens prevented fluid 
passing of objects or the emergence of shared territory [17]. 

Direct Collaboration interfaces aims at reducing the role of 
explicit coordination. One strategy of Direct Collaboration 
is to design interactive objects that serve as a coordination 
medium [20]. Author proposed three prototypes of 
interfaces for order preparation and communication. 
However, they only serve as a demonstration purpose, and 
were at a too early stage to be tested. 

As an alternative to replacing paper flight strips with digital 
systems, paper strips can be augmented with computing 
functions. Mackay et al describe how augmented paper 
strips can provide information to the system, while 
maintaining paper strips’ properties and users’ habits [12]. 

As shown in [8], subtleties in settings can greatly improve 
collaboration. In an experiment for a new control tool [2], 
experimenters noticed that a pair of controllers collaborated 
more when the two radar screens were made closer to one 
another, and oriented slightly towards the other as opposed 
to strictly facing the two controllers. 

In other domains, numerous systems have been proposed to 
support close collaboration with tabletops or similar devices 
(see [18] for a survey on this topic). However, those 
systems were either a support for a usage or CSCW study, 
or did not require as precise collaboration as ATC’s. 
Nevertheless, we relied on tabletop design guidelines 
available in the literature (“System Design” section). 

COLLABORATIVE ACTIVITIES IN ATC  
In order to assess the possible benefits of new interaction 
technologies on ATC collaboration, we need an activity 
analysis focused on collaboration and how it is supported 
by traditional tools. A number of studies have been 
published on the activity of controllers [1,2,5,7,11]. 
However, practices evolve and subtle differences from past 
systems may have significant impact on the effectiveness of 
providing support for an activity. In addition, the available 
data was not obtained with the exact same purpose of 
feeding research on interaction design. Therefore, in order 
to understand current practices we organized four 
workshops in which we interviewed six different controllers 
and five ATC experts. During these workshops we aimed at 
identifying and analyzing situations that involve 
collaboration in the current French ATC system. We then 
combined our results with the available analyses to identify 
the following collaborative activities and situations. 

Organization and management of flights’ lifecycle 
A paper flight strip is the principal embodiment of a flight. 
Both controllers can manipulate the layout of strips on the 
board. Layout and orientation changes, hand-written 
updates to information, and strip disposal are all visible, 
accountable actions that permit situational awareness to 
arise non-verbally. 

Analysis and resolution of problems 
The problem space is always under construction: both 
controllers are required to perform a “tour of the radar 
image” or a “tour of the strip board” from time to time in 
order to discover forgotten actions or unnoticed problems. 
Working as a pair helps controllers to remember and 
double-check things to do, and is a cornerstone of safety.  

Anticipation, preparation, sequencing and sharing of tasks 
When a flight arrives in a sector, the planning controller 
checks whether it might enter into conflict with another 
flight in the near future (anticipation). If so, she traces a W 
on the strip (for “Warning”), and ensures the tactical 
controller notices the warning when placing the strip on the 
board (by tapping it with a pen, or by tapping the tactical 
controller’s shoulder). She can also propose changes to 
flight parameters such as altitude (preparation). Layout on 
the board can have a variety of significance. For example, 
flights can be ranked in column by the time of crossing over 
a beacon: in this case, the planning controller can stack a 
flight, or insert it in the stack (sequencing). Usually, the 
tactical controller is in charge of devising a strategy to 
avoid the potential conflict. However, devising the strategy 
may be a shared task.  

Activity allocation 
Activity allocation depends on workload, habits from local 
culture, and habits arising between the particular pair of 
controllers. Allocation is always dynamic; no workflow 
exists that would allow controllers to act in a step-by-step 
manner, since situations evolve rapidly and allocation 
requires real-time decision making that is strongly 
dependant on the current state. Hence, controllers use their 
tools (radar image, strip boards) more as a whiteboard, on 
which lie problems to be discovered, problems to be solved, 
and actions to be done. Actually, part of the activity of a 
planning controller is to evaluate the status of the other 
controller in order to devise the best help he can provide. 
The planning controller constantly adjusts his interpretation 
of the actions and the state of the other controller. 
Sometimes, a tactical controller will indicate that the 
planning controller is wrong in his evaluation, either subtly, 
or more explicitly (even by shouting at him). The two 
controllers share responsibilities, but the current paper-
based interface does not enforce awareness of 
responsibility: in fact, responsibility is in users' head and 
actions, not in the system.  

Execution and monitoring of actions 
When a flight must turn to follow the planned route, or 
when the controller has devised an avoidance strategy, the 
controller needs to give orders to the pilot at the right 
moment. Hence, part of the activity is devoted to 
remembering which actions to do at present, or in the near 
future. Furthermore, resolution of problems depends on the 
actual execution of orders by the pilots. Hence, controllers 
must monitor that pilots actually follow orders as given. 
The planning controller also checks and monitors the 



 

actions of the tactical controller and possibly corrects them 
in high workload situations. 

Training and high load situations 
Approximately 50% of the time there are more than two 
controllers on a control position. Often, controllers are 
apprentices: becoming an expert on a particular sector takes 
time. During training, the team of controllers includes the 
apprentice, an expert controller, and a second expert 
controller to back up the apprentice. In addition, in high 
workload situation such as storms or emergencies, up to 
five controllers can gather around the control position to 
help until the problem is resolved. 

SYSTEM REQUIREMENTS 
Based on this analysis of collaborative situations in ATC, 
we devised a set of requirements for our system. Our 
primary design goal was to foster seamless collaboration by 
requiring less explicit communication and fewer 
coordination acts. Our main assumption is that better 
collaboration will yield benefits in terms of capacity and 
safety. More precisely, the system should: 

• be updated with controllers’ orders. As seen above, this is 
a prerequisite, and it disqualifies the paper-based system. 

• allow more than two users to interact simultaneously with 
it. This should allow capacity increases since multiple 
users will be able to handle tasks concurrently. It is also 
required for monitoring and training & high-load 
situations. 

• foster mutual awareness. Safety should increase because 
users will have more means to be aware of teammates’ 
activity and more means to detect problems (analysis and 
monitoring).  

• foster communication and coordination. This should 
improve both safety (knowledge of teammate actions) 
and capacity (less latency). This is required for 
organization and preparation. 

• foster dynamic task allocation. Capacity should increase 
because users will be able to pick up new tasks to be done 
as soon as they have completed existing tasks (activity 
preparation and allocation). 

SYSTEM DESIGN 
In this section, we describe the various features of our 
systems. Because of limited space, we focus on features 
that are explicitly designed to fulfill the requirements, and 
not the entire system. 

In particular, the requirements can be fulfilled if users are 
aware of tasks to be done, or are able to evaluate workload 
of their colleague. In addition, it can only be done if any 
user is allowed to interact with any representation or tools 
while the other user is engaged in another task. We used a 
shared, multi-touch, multi-users surface as the basis of our 
system. Shared surfaces are supposed to exhibit these 

properties: users are close to each other, and they enable 
interacting simultaneously if designed appropriately. 

Hardware design 
The hardware design is as follows (see Figure 1):  

• Two radar displays are presented vertically on the 
position. These serve as a reference view of the traffic 
situation and are dedicated to information visualization 
rather than data input. The radar display is not the focus 
of the work presented here: it is not touchable and 
provides for minimal configuration (pan and zoom only). 

• A horizontal DiamondTouch (64x48cm) is placed below 
the radar displays. A projector displays a 1400x1000 
image on it. The surface centralizes the input 
mechanisms, and provides all control tools. More than 
two controllers can use this shared surface if necessary. 
We relied on the DiamondTouch ability to identify users, 
in order to differentiate synchronous interactions [4].  

Representation and Interaction 
The horizontal multi-touch screen displays an environment 
that includes a number of interactive graphical objects. All 
tools can be seen in Figure 2. We devised the following 
guidelines to design interactive tools so that they support 
collaboration: 

• Reify actions into objects. Since objects lie on the table, 
their manipulation may enable accountability [20]; 
furthermore, they can be passed around and allow for task 
reallocation. 

• Enable partial accomplishment of actions. An action can 
be separately prepared, checked and accomplished, 
possibly by different users, thus offering seamless 
workload allocation. 

• Provide as much feedthrough as possible. Since activities 
must be accountable, it is important that appropriate 
feedback provide an opportunity for teammates to 
observe one another’s actions. 

We also used several guidelines from tabletop and CSCW 
literature (orientation [9], territoriality [17], tabletop [16], 
direct collaboration [20] and coupling [22]). In the 
following, we mention the guidelines that we applied. We 

Figure 1: hardware and visualization settings 



chose not to prevent inter-controller conflicts using 
technical features; instead, we relied on social norms. 

Desktop 
Similarly to the well-known desktop metaphor, the 
background display is used as a placeholder for other 
objects. Unlike the radar image, the X and Y dimension of 
the background has no predetermined semantics; users are 
free to lay out the objects anywhere on the background. 
However, users can decide to bring semantics to a specific 
territory (as discussed in [17], e.g., every entering flight 
might be placed to the right by controllers) or layout (the 
top-most flight is the next to enter the sector). 

Strips 
A strip embodies each flight, and displays textual 
information about it such as call sign, altitude, speed and 
heading. Strips initially appear in a “printer” box, a 
metaphor to current hardware.  Strips can be dragged and 
dropped anywhere on the desktop. Users can orient strips 
non-verbally communicated and provide coordination, as 
explained in [9]. A column can help organize and 
manipulate a set of strips as a group; strips inside a column 
automatically stack onto one another and a strip can be 
inserted in a column by drag and drop.  

Trajectory editor 
The primary interaction with a strip consists of moving it 
around. We also chose a spatial model for strip editing 
rather than a temporal one: in order to edit information on a 
strip, a controller drops it in a trajectory editor. When the 
drop occurs, a new horizontal tab appears in the editor. 
Each editable field appears in an edit box: when a field is 
tapped, a specialized interactor allows for data entry (a 
radial slider for heading, a vertical slider for altitude, etc.). 
The trajectory editor fulfills the first requirement (update 
the system with orders). 

The trajectory editor lies on the desktop and can be moved 
around freely for convenience and to allow sharing between 
multiple users. Edited values are not applied 
instantaneously: instead, the user must press the “apply” 
button to confirm changes. Though this seems contradictory 
to the immediate feedback rule, it allows orders to be 
prepared and applied later, possibly by another user: this 
enables users to more finely allocate tasks.  

Extrapolation tool 
The extrapolation tool allows a controller, usually the 
planning controller, to predict future conflict between two 
flights (see Figure 3). The tool allows flight paths to be 

 
Figure 2: tabletop view, with interactive objects (named in white/italic) 



 

projected forwards in time, displaying computed future 
trajectories for selected flights on the two radar images. 
This provides the tactical controller with an opportunity to 
be aware of the problems the planning controller is solving. 

Figure 3: trajectory extrapolation on radar (top), each colored 
segment represents the future position in 1 (orange), 2 (green) 

and 3 (blue) minutes. The extrapolation tool on the table 
(bottom) controls the amount of future time. 

Post-it 
Controllers can create Post-its that display a number of call 
signs and optionally an icon depicting a specific action 
related to the flights written on the Post-it. To create a 
special-purpose Post-it, a user triggers the corresponding 
gesture (S for shoot to next sector, W for warning etc.). 
Post-its act both as a reminder of actions to do in the future 
and as a preparation tool similar to the trajectory editor. 
One controller can prepare an action with a Post-it for 
another controller to execute later. 

Timeline 
In order to help remember future actions, controllers can 
place Post-its on a timeline. The timeline is a horizontal 
strip that lies at the top of the screen. The X dimension of 
the timeline depicts the time: current time is at the center, 
and the future extends outwards in both directions, from the 
center to the edges of the timeline. A ruler that depicts the 
time according to the X position helps users to position 
Post-its. Once attached to the timeline, Post-its move 
automatically towards the center at a pace that follows real 
time (see Figure 4). As Post-its reach the center, controllers 
are encouraged to accomplish the associated action, before 
the Post-its disappear. The double-sided aspect of the 

timeline enables users to allocate responsibility: each user is 
responsible for the Post-its that lie on his or her side. 
Controllers can rearrange the strips, either to specify a 
different action time or to implicitly redistribute 
responsibility by moving a Post-it from one side to the 
other. As Post-its move to the center, they become easier to 
take from the other controller. 

Figure 4: timeline at two consecutive times: Post-its get closer 
to the center. 

The timeline and post-it may raise the question of 
responsibility awareness. We decide not to foster awareness 
of responsibility, relying instead of the same mechanisms 
that users employ with the current system. In fact, placing a 
post-it in the part of the timeline of a controller is of the 
same nature than placing a paper strip in front of him: 
nothing will remind a controller to deal with this particular 
strip, except the other controller. 

Figure 5: Post-its with audio annotation 

Audio annotation 
As seen above, users can create general purpose Post-its if 
no specific Post-it applies. In order to remember why they 
created the Post-it, they can associate an audio message to 
the Post-it by talking into a microphone while pressing on 
the “Rec” icon (see Figure 5). Teammates can listen to the 
message later to be reminded of the action or other 
contextual information. Controllers can also prepare a vocal 
order, to be dropped later onto a “radio” object: the audio 
message is then played on the radio as if the controller were 
speaking to the pilot. This enables seamless integration of 
vocal order preparation with current tools and procedures. 

Feedback and feedthrough 
In order to improve situational awareness, the system 
supports various strategies for making controllers aware of 
what other controllers do. The system uses direct 
manipulation, which helps users to understand the actions 
of others since each action requires gestures and time to 
accomplish [19]. Controllers’ attention is divided between 

      
 

 
 

 
 

 

 
 



the vertical radar screen and the horizontal screen. 
Feedback displayed onto each screen is translated 
appropriately onto the other: for example, touching a strip 
highlights the corresponding representation on the radar 
image. This allows controllers to be aware of each others’ 
actions even while looking at the radar. Additionally, any 
touch interaction on the surface leaves a trail on the surface 
that gradually disappears (see Figure 6). This allows a 
controller who looks elsewhere to get an idea of what has 
been done when his attention returns to the table. Finally, 
all actions use smooth animation to depict state transition, 
which helps users notice changes made by their colleagues 
[15]. For example, inserting a strip in a column makes the 
other strips separate smoothly to make room. 

Figure 6: touch gestures leave transient trails 

PRELIMINARY EVALUATION 
We have conducted four pilot studies to evaluate our design 
choices. The studies were qualitative and involved a limited 
number of subjects and trials. As such, they yielded 
preliminary results only; however, we did make several 
useful observations. The studies were not meant to test 
whether our system is better than current systems in terms 
of capacity or safety. Rather, they test to what extent the 
requirements we listed above (orders notification, more 
than two users, mutual awareness, communication and 
coordination, dynamic task allocation) are fulfilled. 

Participants, settings and procedure 
The study participants were three air traffic controllers and 
five ATC experts. Study 1 involved four groups of two, 
Studies 2 and 3 two groups of two, while Study 4 involved 
the three current ATC controllers only. We used specialized 
software that replays recorded air traffic in real-time. The 
radar display and the tabletop view display the traffic by 
“listening” to the replay software. The replay software is 
able to modify the simulated traffic according to orders 
given by users. The setting is shown in Figure 7. 

In addition to direct observation, we videotaped the 
sessions with two cameras: one with a large field of view, 
to film the whole setting (people, horizontal surface, and 
vertical radar screen) and to catch any interaction between 

people, and one close to the multi-touch surface to catch 
gestures and the interactive environment.  

After we provided a general introduction to the system, the 
participants were allowed to interact with it. They 
performed the main possible interactions in order to 
discover and learn how to interact with the system. Once 
they appeared familiar with the system (~10min) they ran 
through each study, which consisted of reading instructions 
and fulfilling a set of tasks. We also ran a discussion with 
subjects after each study. 

Study 1: mutual awareness 
The main objective of the first study was to evaluate how 
the interactive surface affects the awareness of each other’s 
action. The two controllers each had a list of six actions to 
perform. After completing the scenario, each controller was 
asked to describe the actions performed by the other. Four 
groups of two controllers performed this test. 

The results were identical for all four groups: no controller 
was able to describe any action performed by the other. 
This can be explained by two observations. First, as we 
noticed in the video, subjects were still performing as 
beginners and spent a lot of time and cognitive resources 
discovering how to interact with the table, at the expense of 
mutual awareness. Later studies benefited from this 
learning process; however, this study was negatively 
impacted.  Second, the actions required were not embedded 
in a real activity and were not strongly related to one other, 
making them less “guessable” by a colleague. 

Hence, study 1 did not show that our system supports 
mutual awareness. However, it does illustrate that 
proximity is not necessarily sufficient for awareness of 
other participants’ actions: context and engagement in a 
meaningful collaboration is also important. 

Study 2: communication 
The main objective of our second study was to evaluate 
how the interactive surface might facilitate collaboration 
between the two controllers, through the different artifacts 
provided. Three scenarios were exercised during the test. 

Scenario 1: non-verbal communication 
In the first scenario, the tactical controller was asked to give 
clearances to aircraft via orders over the radio, and to 
update the system using the trajectory editor. In parallel, the 
planning controller was asked to integrate new flights by 
dragging the flight strips from the printer box to the 
appropriate column. Then, the planning controller was 
asked to focus the attention of the tactical controller on a 
conflict. We instructed the subjects that they could use any 
features afforded by the system (Post-it, orientation, 
timeline) to accomplish their tasks but that they were not to 
speak to one another. In practice, the ability for the 
planning controller to communicate with the tactical 
controller silently is important since the tactical controller 
may be speaking to pilots by radio. 

 
 



 

Figure 7: Multiple users engaged in the task and interacting 
simultaneously 

Planning controllers from both groups used Post-its 
associated with the two flights in conflict as communication 
artifacts. They dragged the Post-it into the timeline on the 
tactical controllers’ side. The planning controller of the 
second group additionally placed the associated flight strips 
beside the tactical controller’s column, in order to make 
later processing easier. While the first group succeeded in 
communicating, the second group failed, despite the 
additional step. Two observations may explain this result. 
The first group was composed of two current controllers. 
Before alerting the tactical controller, the planning 
controller actually checked whether there was a potential 
conflict. To do so, he used the extrapolation tool, and 
verified on the radar screen where and when trajectories 
cross. Feedthrough on radar allowed the tactical controller 
to notice planning controller’s actions. This helped the 
tactical controller build mutual awareness, and made her 
more eager to pay attention to potential problems. Both 
controllers confirmed this during debriefing interviews. 

The planning controller of the second group, who was not a 
current controller, selected the two flights randomly. This 
provided insufficient feedthrough to support the tactical 
controller (a current controller), who in turn was not 
engaged enough to really pay attention to a fake problem.  
It is probable that two current controllers are more used to 
paying attention to each other’s actions. However, the 
efficiency of tools in supporting collaboration is highly 
dependent on whether or not the controllers share the same 
skills, knowledge and training [2]. 

Scenario 2: verbal communication 
Scenario 2 was similar to scenario 1, except that verbal 
communication was allowed. The planning controller was 
asked to integrate new flights and to realize an 
extrapolation on two flights. In parallel, the tactical 
controller was asked to call the planner’s attention on a 
flight in order to initiate a route negotiation with an 
adjacent sector. 

The two groups chose the same strategy to achieve this goal 
successfully:  the tactical controller took the flight strip, 
placed it under the planning controller’s eyes, and talked to 
him while pointing at the label. In both groups, the planning 
controller understood immediately what to do.  

It is interesting to underline that this is the current means of 
collaboration between French air traffic controllers: they 
use the paper flight strips to enhance the efficiency of 
verbal communication and to eliminate ambiguity about 
involved flights. This property of a single physical flight 
representation has disappeared in some new systems where 
each controller has his own screen to display flight plan 
information. The shared surface restored the flight 
representation as a coordination object.  

Study 3: coordination 
The aim of Study 3 was to evaluate the efficiency of the 
Post-it as a mean for coordination. The tactical controller 
was asked to give clearances and to update the system, 
using the trajectory editor. In parallel, the planning 
controller was asked to edit a Post-it on a flight, in order to 
notify the tactical controller of a “frequency change.” 

Despite the Post-it motion executed by the planner on the 
tactical controller’s side of the timeline, neither of the two 
tactical controllers noticed the Post-it. It appears that the 
topological configuration makes it difficult to share 
information between seated users: as the timeline lies at the 
top of the interactive surface, it is out of the visual field and 
difficult to reach when one is seated. 

Study 4: more than two users and dynamic task 
allocation 
The aim of our fourth study was to assess the effectiveness 
of the system in supporting collaboration in situations 
involving more than two users, such as training or storms. 
The study involved real controllers only: two of them were 
asked to do a regular air traffic control using the tabletop 
system. After five minutes, a third controller (the 
“supporting” controller) was asked to help the others to 
control traffic (see Figure 7). 

First period: two controllers 
We made the following observations of the first period: 

• Controllers moved the printer box, initially placed on the 
left top of the interactive surface, to a location between 
them. In this position, both controllers can access the 
printer box and integrate new flights. This illustrates the 
ability to configure the environment so as to foster 
collaboration.   

• Flight strips on the surface were actively used to 
highlight and locate flights on the radar image. Hence 
flight information served as an individual aid (which may 
improve mutual awareness), as well as communication 
support (highlighting a flight for each other). 



Second period: Three controllers 
We asked the third controller to come and help due to a 
peak of traffic. She stood behind the two principal 
controllers and began to manage new flights that had piled 
up in the printer box. The three controllers then succeeded 
in working together on the surface (Figure 7). Several 
situations were observed: 

• A situation consisting of close collaboration between the 
tactical and supporting controller, using the flight strip 
combined with the radar image; 

• A situation consisting of parallel activities, where the 
tactical and supporting controller worked on one problem 
while the planning controller worked on another. 

Controllers succeeded in allocating tasks to the newly 
arrived controller. They did it in a fluid manner thanks to 
the capability of organizing the flight strips on the 
horizontal surface. It enabled a natural division of the 
surface into private spaces for each controller and common 
spaces used for exchanges (findings similar to [17]). 
However, during the debriefing session, the main negative 
feedback from the controllers was related to the surface 
size: it appeared too small when used by three people.  

DISCUSSION 
Our evaluation was partial: we did not test every feature of 
our system. For example, in our trials no subject used the 
audio annotation. We do not know whether the fading 
visual trails helped controllers with mutual awareness. 
Testing this feature would be hard in practice since it would 
require a scenario in which a peripheral system would 
distract one controller such that she has to understand what 
she missed during the disturbance. Even if she did not 
appear to benefit, this would not allow us to infer that such 
a feature is useless. Longitudinal studies would be better to 
really assess it. However, we learned a number of lessons 
through these studies. 

Subjects did not make a heavy use of orientation. This may 
be due to the complexity of our rotation interaction: one has 
to press, wait half a second to enter the rotate mode, then 
rotate the strip. This finding is consistent with guidelines 
for rotation [9]: we failed to provide a fluid interaction for 
rotation, which prevents actual use (the device we used 
makes it difficult to implement a multi-touch multi-user 
system without a temporal mode). Similarly, the position of 
the timeline was not adequate, which is consistent with 
previous work on territoriality [17]. 

Another finding of this work is that activity knowledge and 
engagement are very important for the assessment of the 
effectiveness of the tools. In fact, we “forced” collaboration 
for the sake of study 1. This led the two subjects to execute 
unneeded collaborative tasks and prevents the formation 
and assessment of mutual awareness. In study 2, actual 
controllers succeeded in building mutual awareness because 
they were engaged in a meaningful collaboration and they 
shared a common understanding of the situation. 

We found that tabletop effectively supports communication 
and coordination: users were able to communicate verbally 
and non-verbally by using gestures and territories. 
Feedthrough plays a role in building mutual awareness. For 
example, the extrapolation tool helped the tactical controller 
understand what the planning control was doing. Highlights 
on radar screen also helped users gaining an idea of their 
teammate’s actions. The fact that mutual awareness is key 
to safety in critical systems highlights the importance of 
good feedthrough. 

Study 4 (with 3 controllers) gave very interesting results.  
The controllers had manipulated the system during the 
previous studies, and they were at ease in using it in real-
time conditions. Moreover, we observed that users were 
really engaged in their task: the flow of action was very 
smooth, since the interface allowed multiple controllers to 
manipulate it at the same time. Users were able to 
dynamically allocate tasks, and engage in tightly coupled or 
parallel tasks. This truly illustrates what we expect from 
such a system: that appropriate, seamless technologies and 
tools make collaborative activities such as air traffic control 
smooth and efficient. 

During the debriefing and discussions we had with the 
participants, they made remarks about possible benefits of 
the system. For example, in storm situation the combination 
of multiple people and multiple concerns often leads to 
contradictory actions. Even if the reified actions are not a 
complete description of the strategies involved, a trained 
controller can infer the appropriate action from the 
available information. The training process might also 
benefit from our system. At the beginning of ATC training, 
apprentices practice in simulation under observation by 
instructors. As in the storm situation, the reified actions and 
the timeline might help the instructor better understand the 
apprentice’s strategy. The instructor can then revise 
apprentices’ priorities (the major difficulty faced by 
apprentices) by rescheduling planned actions on the 
timeline while explaining the corrective actions to the 
apprentices by showing or tapping on other reified actions 
(i.e. speechless explanation). After the simulation ends, 
another tool could replay the actions performed by the 
apprentice. According to the instructors, “such a tool would 
be invaluable”. During actual traffic control, an apprentice 
could prepare and apply actions that an instructor would in 
turn validate in order to execute them effectively. 

CONCLUSION 
We have described a complete example of a digital tabletop 
system designed for ATC, a real-world, complex task 
environment. We designed the system to circumvent flaws 
associated with traditional technology in the context of a 
highly cooperative activity. We based our design on an 
analysis of ATC controllers’ activity, with a focus on 
collaboration, and provided a set of requirements (support 
more than 2 users, mutual awareness, communication and 
coordination, task allocation). We devised a set of 



 

guidelines to design our system (reification, partial 
accomplishment of actions, feedback), and presented a set 
of new interfaces and interactions. Finally, the paper 
provides initial data of an exploratory evaluation with ATC 
experts on the effectiveness of the specific interface design 
features included into the system. Researchers and 
practitioners can use the design guidelines as is, and get 
inspiration from the artifacts. They can also gain some 
insights into the utility of the specific interface design 
concepts in this, and potentially other complex, 
collaborative task domains. 

We obtained mixed results with the evaluation, a typical 
outcome of non-tightly controlled experiments: fluidity and 
dynamic repartition are largely unpredictable (it depends 
heavily on the particular pair of users for example), and 
thus difficult to control. Nevertheless, pilot studies show 
that our tools partially fulfill our expectations, and give 
insight on future evaluation or ideas. Assessing the 
effectiveness of our tools requires more than a few studies 
(new digital systems for ATC have been in the design phase 
for 20+ years because assessing them is so difficult). As 
tabletop technology matures, more accurate and reliable 
systems can benefit from the work presented in this paper. 
Together with longitudinal studies with reliable systems, it 
can provide convincing arguments to the introduction of 
tabletop based systems in real-world, critical activities. 
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ABSTRACT 
When using interactive graphical tools, users often have to 
manage a structure, i.e. the arrangement of and relations 
between the parts or elements of the content. However, 
interaction with structures may be complex and not well 
integrated with interaction with the content. Based on 
contextual inquiries and past work, we have identified a 
number of requirements for the interaction with graphical 
structures. We have designed and explored two interactive 
tools that rely on implicit and explicit structures: 
ManySpector, an inspector for multiple objects that help 
visualize and interact with used values; and links that users 
can draw between object properties to provide a 
dependency. The interactions with the tools augment the 
scope of interactions to multiple objects. A study showed 
that users understood the interactions and could use them to 
perform complex graphical tasks. 
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Graphical Interaction Design, Instrumental interaction, 
Exploratory Design. 
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INTRODUCTION 
When using computerized tools such as real-time editors, 
presentation software, GUI builders, etc. users create and 
manipulate graphical objects on the screen. They can edit 
them individually, e.g. change their color or their stroke 
width. Users can also consider and interact with sets of 
objects as opposed to individual objects. To do so, they may 
be required to structure the scene, by relying on concepts 
such as groups, styles, or masters. According to the Oxford 
dictionary, a structure is “the arrangement of and relations 
between the parts or elements of something complex”. 

Using a structure may have multiple assets, such as helping 
users conceptualize the scene they are creating (“the back-
ground of the slide includes this drawing and this text”, 
“this set of slides is a subpart of the presentation” etc.), and 
think better about the problem at hand. Here, we are 
interested in structures as means to interact with the 
content: since structuring involves sets of objects, the 
actions done on an element of the structure may have an 
effect on several objects at once.  

In current interactive systems, the use and the management 
of structures may be complex. Users have to create and 
maintain them. Depending on the kind of structure, some 
operations may be cumbersome or impossible to do, which 
prevents users to explore the design space of their particular 
problem. Furthermore, systems that provide structuring do 
not leverage off the structures fully to provide users with 
new ways of interacting with the content. 

Interactions with structure and with multiple objects 
through a structure have not been studied extensively in the 
past. Of course, a number of past works have identified the 
problem [6], but few concepts or properties targeted it 
explicitly [2,12]. For example, what are the interactions that 
enable users to define sets of objects? What are the 
available means to augment the scope of interaction i.e. 
apply an interaction to several targets? What are the 
concepts that may guide the design of such interactions? 

The work presented in this paper aims at improving the 
management of structures as means to augment the scope of 
interactions. Based on contextual inquires and related work, 
we present a number of requirements pertaining to the 
interactions with structures. We then present two interactive 
tools that aim at fulfilling those requirements. The first one 
is ManySpector, an inspector for multiple objects. 
ManySpector displays all used values for a property given a 
set of differing objects, whereas a traditional inspector 
displays no value. This reveals an implicit structure of 
graphics (the sets of objects that share a graphical property) 
and offers new interaction means. The second one is based 
on links that users can draw between object properties to 
provide a dependency. The resulting property delegation 
graph is a means for users to provide an explicit structure. 
We then report on a user study involving those tools. 
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specific permission and/or a fee. 
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CONTEXTUAL INQUIRIES AND SCENARIO 
We have based our work on concrete and realistic case 
studies. We have conducted five contextual inquiries with 
“designers”, the design activity being taken in its broadest 
sense: edition of graphics (Illustrator and OmniGraffle), 
courses schedule (iCal), architecture (Auto-CAD), or 
lecture presentation (PowerPoint). We have written a dozen 
scenarios that describe accurately the activities. 

In order to introduce the problem, we present one of the 
scenarios. This scenario illustrates a number of 
requirements pertaining to interactions on several objects, 
with or without a structure. The scenario is real but adapted 
slightly for illustration purpose: some interactions that are 
deemed as impossible (e.g. with Inkscape) might be 
possible with other tools (e.g. with Illustrator and vice-
versa). The steps are annotated in italic to characterize 
them. We detail the annotations later in this section. 

Elodie is a designer tasked with creating the graphics of a 
custom software keyboard for a tablet computer. Using a 
graphical editor, she creates a first key. She draws a 
rounded rectangle with a solid white fill and a surrounding 
stroke. She adds a rectangle inside the previous one, with a 
blue gradient fill (no stroke). She selects both rectangles 
with a selection lasso (designation) and groups them with a 
command in a menu (structuring). She then adds a soft 
shadow effect on the group. She overlays a label with a text 
‘A’ on the group of rectangles and centers the label and the 
group by invoking a ‘center’ command on a toolbox. She 
then forms another group with the label and the groups of 
rectangles, and names it “key” in the tree view of the 
graphical scene provided by the application (structuring). 
This first key serves as a model to create other keys: she 
duplicates the key, and applies a horizontal translation to 
the copy. She proceeds with this action several times in 
order to get a row of keys (Figure 1). She then modifies the 
text of each key one by one (Figure 2). 

 
Figure 1. The user creates a key, and duplicates it. 

 
Figure 2. The text of the ‘I’ key is not centered. 

When she changes the letter ‘A’ for ‘I’, she realizes that the 
‘I’ text is not centered with regards to the rectangles (Figure 
2). The first object was specified incorrectly: if the three 
objects (label, gradient rectangle, rectangle) are correctly 
aligned, the text of the label is not centered. The problem 
was not noticeable with the first letters (AZERTYU) since 
their widths are similar. Each label being in a 
heterogeneous group (containing object types other than 
label), the system does not provide a text center command 

that can be applied to a selection of objects. She has to click 
multiple times on an object to reach the label and apply the 
‘text centered’ command. Therefore, she estimates that it is 
more efficient to start over: she deletes all copies, ungroups 
the first key, centers the text, groups the objects again, 
copies and moves the copies, and modifies each letter one 
by one. 

 
Figure 3. The entire keyboard with the double keys. 

Elodie has finished the entire keyboard. Some of the keys 
are double keys that contain two smaller labels at the top 
and the bottom of the key (Figure 3). She wonders whether 
the double key labels are too small and she wants to explore 
new sizes (exploratory design). First she has to find each 
double key in her design (searching). To do so, she zooms 
out to make the keyboard entirely visible. This allows her to 
identify each double key. Again, she has to change the size 
of the labels one by one. 

The scenario illustrates several requirements. 

Structuring Elodie relied on the ability of the system to 
allow creation, modification, and management of sets. For 
example, she created a single group with two rectangles, 
then another group with the previous one and the label. 

Designation Elodie designated objects, properties and 
actions. For example, she changed the “alignment” property 
of the label to “centered”. 

Scope of actions Elodie acted on multiple objects at once. 
For example, she grouped objects because she wanted to 
consider them as a single entity that keeps the relative 
positions between subparts, but also because she wanted to 
apply a single translation on three objects at once. 
Conversely, she was not able to apply the command ‘set 
alignment’ to several objects at once. 

Seeking Elodie needed to retrieve objects: she had to search 
objects whose content is similar to other ones. The search 
action requires visually scanning the graphical objects and 
seeking candidate objects, at the risk of forgetting some of 
them. The more the objects, the more difficult it is to find 
out particular ones, especially if the features to search for 
are not pre-attentive [4]. As the number of keys increases, 
each modification gets more costly, not only because of the 
number of actions to repeat, but also because of the 
required visual search effort. 

Exploratory Design Elodie explored parts of possible 
solutions, and modified existing parts of solutions. By 
combining action, visualization of intermediate results and 
thinking, she co-discovered the problem and the solution. In 



 

doing so, she was pursuing an exploratory design activity. 
This phenomenon is important for activities in which the 
expected result is not known in advance: graphics edition 
activities, slides design, or class hierarchy design [8][24]. 

RELATED WORK 
Past works have tackled the problems of managing 
structures, and interacting with multiple objects, either 
explicitly or implicitly. We present them along three axes: 
interactions for structuring the content provided by 
interactive systems, design and evaluation of interactions 
for structuring, and structuring in programming. 

Structuring for users 
Groups Traditional graphical editors allow users to create 
groups from a set of objects previously selected by the user, 
and to act on those groups. The only operation available for 
a group is ‘ungroup’, which removes the group entity and 
selects all objects that were part of the groups (no 
modification, addition, or subtraction). Selection can be 
seen as a transient group, with ‘add’ and ’remove’ 
operations by holding the shift key and selecting several 
elements, or holding the ctrl key and clicking on individual 
elements. Some tools support heterogeneous settings, but 
with specific properties only e.g. translation, scale and 
rotation: all elements in the group are transformed 
accordingly. Conversely, some operations (e.g. ‘set color’) 
cannot be applied to groups, supposedly because some 
elements inside the group do not “understand” them. This 
forces the user to ungroup and apply the command on each 
object. In this case, interaction with the structure is not well 
integrated with interaction with the content. 

Trees Groups can be part of a surrounding group, turning 
them into trees or hierarchies. Support for management of 
such hierarchy ranges from no support at all, to navigation 
in the hierarchy of parents [18], and tree views in structured 
graphics editors (e.g. Inkscape or Illustrator). A tree view 
enables users to reparent elements with a drag and drop. 
However, there is no support for other operations, such as 
applying a color to a node in order to change all children. 

Masters A Master is an element used as a “model” for other 
elements. For example, PowerPoint enables users to define 
in a master slide the appearance that other slides would 
inherit. Sketchpad introduced masters as shareable objects 
that could be used in multiple locations in the scene [22]. 
Changing a property of the master would modify all objects 
that depend on this master. This was a way to reduce the 
number of actions required from the user when something 
must be changed. 

Properties Presto is a document management system that 
enables users to tag documents with properties, e.g. 
year=2012 [5]. Properties provide a uniform mechanism for 
managing, coding, searching, retrieving and interacting 
with documents. For example, users can define directories 
(i.e. a set) of documents using properties: either by 

extension (by putting elements into the directory), or by 
intension (with a query such as size >500k). Conversely to 
purely hierarchical structures, properties enable objects to 
be part of several overlapping sets. 

Graphical search Graphical Search & Replace [13] allows 
users to search for elements based on their graphical 
properties (designation) and change at once a particular 
property for all found objects (multiple scopes). 
Applications like Illustrator provide such a tool but through 
a dialog box, not by direct manipulation. 

Surrogates Surrogates are specialized interactors that allow 
users to interact with the surrogate instead of the domain 
object [12]. Similarly to classical inspectors, surrogates 
expose attributes that are common to objects, by 
automatically narrowing the surrogate to the lowest 
common ancestor. This enables users to interact with those 
values and modify several objects at once. 

User-defined macros and Programming by example User-
defined macros allow for automation of repetitive tasks 
[15]. The user proceeds with an example of the task to re-
peat, and an algorithm abstracts the actions, so as to enable 
application on other objects. 

Structuring for exploratory design Some structuring 
techniques have been designed to support exploratory 
design. The list of reversible actions is an implicit 
mechanism to help users not to fear possible damages [23]. 
Side Views display previews of interactive commands [25]. 
Parallel Paths support alternative exploration by relying on 
an arborescence of creations instead of a linear history, and 
on the simultaneous views of parallel results (comparison) 
[26]. Acting on a node of the creation path enables users to 
manipulate the subsequent designs at once (scope). 

Structuring for designers 
Interaction designers have already identified the need for 
many modifications with a low number of actions. 

Cognitive dimensions In the cognitive dimensions of 
notation framework [8], the problem described in the 
software keyboard scenario is identified as “viscosity”. It 
exhibits when the structure of the information contains a lot 
of dependencies between parts, which implies that a small 
change leads to numerous adjustments from the user. 
Viscosity is a hurdle to modification and exploratory design 
[9]. Since it may be costly to apply the changes, the user 
refrains from exploring alternatives. A solution to viscosity 
consists in creating an “abstraction”, a “power command” 
that would act on several objects [9]. An abstraction is a 
class of entities, or a grouping of elements that users will 
handle as a single unit e.g. styles in a text document. 

Abstraction can be costly. Learning, creating and modifying 
them require time and effort that should be balanced with 
investment in repeating a small sequence of actions to solve 
a small problem. Besides, abstractions can be a hurdle to 
exploratory design if they are required before any other 



 

simple actions. Finally, abstraction may introduce hidden 
dependencies: some parts of the scene may depend on 
others in an invisible way, which makes it hard for the user 
to predict the effect of a change. 

Instrumental interaction and design principles Direct [23] 
and instrumental [2] interaction techniques are efficient 
with a single object: they lower the number of required 
actions compared to other techniques, such as command 
lines, conversational dialogue, or modal interactions. 
Design principles related to instrumental interaction, such 
as reification (turning an object into a thing), polymorphism 
(applying the same change to different class of objects) and 
reuse (of past selection and interactions result) extend the 
scope of actions to multiple objects [2]. 

Cost of interaction techniques A particular technique is only 
better than another with respect to the task to accomplish: 
copy, modification, or problem solving (equivalent to 
exploratory design) [16].  CIS is a model that helps describe 
an interaction technique, analyze it, and predict its 
efficiency in the context of use [1]. CIS defines four 
properties for interaction techniques. Among them, Fusion 
is the ability of a technique to modify several work objects 
by defining multiple manipulations at once (scope), and 
Development corresponds to the ability offered to the user 
to create copies of tools with different attribute values. 

Structuring for programmers 
The problems raised so far can also occur during 
development activities. For example, refactoring tools in 
IDEs is an answer to the need for multiple scopes of action: 
if the user changes the name of a method, the system 
applies this change on each call of the method, possibly in 
many classes or files. Styles can be implemented in a style 
language (e.g. CSS), with a hierarchical structuring. 
Changing a parameter in an intermediate node has an effect 
on its children. Tags in the Tk toolkit allow the programmer 
to structure objects in overlapping sets [21]. Changes can be 
applied to graphical shapes or to a tag, and thus to the set of 
objects that hold this tag (scope). Tags can be defined by 
extension (with designated objects) or by intension (with a 
predicate e.g. all blue objects) [21]. 

Prototype-based languages offer an alternative to class-
based languages for object-oriented programming [14][20]. 
They offer a flexible creation model that allows sharing of 
properties and behaviors. Such mechanisms allow users to 
structure a hierarchy of prototypes and to act on several 
clones by manipulating a prototype in the delegation 
hierarchy. Morphic reifies prototypes and clones into 
graphic objects (called Morphs), and allows for their 
construction and edition with direct manipulation [18]. 
Tools have been designed to help structure a prototype 
hierarchy. For example, Guru is an algorithm that 
automatically creates a well-organized graph of prototypes, 
by factoring shared properties into new prototypes [19]. 

REQUIREMENTS 
In this section, we synthesize the requirements for the 
manipulation of objects through structures (Table 1). The 
synthesis is derived from the contextual inquiries we ran, 
and our analysis of the related work. Notably, the 
requirements are related to the set of tasks identified in [6] 
that are known to be difficult to perform with direct 
manipulation techniques. We have expanded and refined 
them in this section. We present 3 subsets of requirements: 
managing sets of objects (R1), managing actions (R2), 
fostering exploratory design (R3). 

Search (R1.1) 
Designate (R1.2) 
Modify (R1.3) 

Manage sets of 
objects (R1) 

Identify sets (R1.4) 
Specify their nature (R2.1) 
Specify their parameters (R2.2) 
Specify the scope (R2.3) Manage actions (R2) 

Perceive consequences (R2.4) 
Try (R3.1) 
Evaluate (R3.2) 
Short-term exploration (R3.3) 
Compare versions (R3.4) 

Foster exploratory 
design (R3) 

A posteriori structuring (R3.5) 

Table 1: Requirements 

Managing sets consists in searching (R1.1), and 
designating (R1.2) the objects that are part of a set. It is also 
necessary to modify (R1.3) the sets (add, remove elements). 
Finally, users must be able to identify (R1.4) the objects that 
belong to a particular set, or determine the sets a particular 
object belongs to. 

Managing actions consists in specifying their nature (e.g. 
by clicking on an ‘alignment” icon, or a menu) (R2.1), their 
parameters (“vertical” or “horizontal”) (R2.2) and their 
scope (R2.3). Perceiving their consequences (R2.4) with 
appropriate feedback enables the user to realize the effects 
of its action after, and even before it is triggered [23]. 

In order to support exploratory design, it is important to 
provide users with tools that enable them to try (R3.1) and 
evaluate (R3.2) solutions during short-term exploration 
(R3.3), and compare different versions during middle-term 
exploration (R3.4) [24]. When satisfied with the results, 
users must be able to extend the modifications to other 
objects. If the system does not support this task efficiently, 
users will have to repeat the same actions to propagate 
changes (viscosity). Finally, if structuring is a solution to 
the viscosity problem, it is a hurdle to exploration if 
required a priori. Therefore, structuring should be made a 
posteriori (R3.5) i.e. when actions have already been done. 

 



 

INTERACTIVE TOOLS 
We have explored a number of interaction techniques to 
offer new ways of interacting with multiple objects through 
structures. To design them, we involved the users we 
interviewed in a participatory design process, with 2 
brainstorming and sketching sessions, and 5 evaluation 
sessions, as demonstrated in [17]. In the following, we cite 
the requirements that each feature is supposed to address. 
Requirements serve both as rationale to explain the design, 
and to help readers determine whether they are satisfied by 
our claims that the design fulfills the requirements. 

 
Figure 4. Overview of the application. Center: workspace, top-

right: samples; bottom right: inspector. 

Overview 
To illustrate the interactive tools, we have designed a 
graphical drawing application. There are four parts: a tool 
palette on the left side, a workspace in the middle, a sample 
panel on the top right corner, and an inspector on the 
bottom right corner (see Figure 4). The workspace is the 
main view, where users can create a new object by clicking 
and resizing. Selection is performed by clicking on an 
object or by drawing a rubber rectangle to encompass 
several items, as implemented in usual graphics editors. A 
bounding box with handles surrounds selected items. 

The samples panel contains a set of values for shape 
(square, oval, T for text), fill color (represented by a 
colored square), stroke color (stroked-only colored square) 
and stroke thickness (stroked-only circle). In order to 
modify a property of an object in the main view, users can 
drag a sample and drop it onto the object. Feedback is 
shown as soon as the sample hovers over the object, in 
order for the user to understand the action and to assess the 
change before effectively applying it by releasing the 
mouse button. This enables the user to cancel the action, by 
releasing the button outside of any object (R3.1 try, R3.2 
evaluate, R3.3 short term, R3.4 compare, R2.4 perceiving 
consequences). Drag and drop of samples also applies to a 
selection of objects. The interactions described so far are 
not entirely novel. The next sections present two tools with 
novel interactions. 

 
Figure 5. The user’s selection contains objects with varying 

shapes, fill colors, width, and height. A classical inspector (left) 
displays a blank fill for those properties, whereas 

ManySpector (at right) displays all different values. 

Implicit structure: ManySpector, an enhanced inspector 
An inspector (or property sheet [11]) is a window 
containing a vertical list of pairs of property name and 
value (e.g. shape: rectangle, color: green, thickness: 3). An 
inspector offers two services to the user: visualizing values 
with progressive disclosure and modifying them [11]. If 
multiple objects are selected, a classical inspector only 
displays values shared by all selected objects (e.g. stroke 
color in Figure 5, left). Users can change such a value, and 
the system reflects the change to all selected objects. The 
inspector does not display any value for properties for 
which there are multiples values (e.g. fill color in Figure 5, 
left). Users are thus not informed about those values, and 
sometimes cannot modify them through the inspector. 

We have designed ManySpector, an inspector that displays 
all used values for a property given a set of differing 
objects. For example, in Figure 5-right, the Fill property 
displays all colors used by objects in the selection. Used 
values reveal an implicit structure of graphics, the sets of 
objects that share a value for a given property. Though not 
explicitly defined by the user, we think that such sets may 
be useful, since users sometimes think about objects with a 
graphical predicate (“all red objects”). We relied on the 
display of used values to design a set of interactions that 
offer new services for exploratory design and structure-
based interaction: query and selection of objects with 
graphic examples, selection refinement, and properties 
modification on multiple objects. 

The representation of a shared value in ManySpector 
actually reifies [3] both the value per se, and the set of 
selected objects that exhibits this property value. As a value 
per se, and similarly to the interaction with the sample 
panel, users can drag the shared value (considered as a 
value) from ManySpector onto (a selection of) objects in 
the main view to modify a property. If the shared value is 
numerical, users can hover over it and rotate the mouse 
wheel to increment or decrement it (scope and specify 
actions). Together with immediate feedback, this enables 
both exploration and precise adjustment of properties, thus 
reducing temporal offset [2] between action and feedback. 



 

ManySpector limits the number of used values to half a 
dozen. If the number of used values is larger, a scrollbar 
enables the user to browse through all values. When the 
cursor hovers over a property placeholder, an animation 
enlarges it smoothly to reveal other used values. 

 
Figure 6. The cursor is over the blue shared value of the fill 

property. Because they don’t have this shared value, the green 
rectangle, the pink circle and the two yellow shapes are dim. 

 

Figure 7. Starting from Figure 5, a) the user drags a “stroke 
thickness: 6pt” sample over the “fill: yellow” shared value. 
Immediate feedback turns the stroke thickness of all yellow 

items to 6pt. b) the user has dropped the sample, the 
modification is applied. 

Since a shared value also reifies a set of objects, hovering 
over a shared value highlights the relevant objects while 
blurring others with a short animation (Figure 6). This 
makes it easy to figure out which set is made of what 
(identify sets R1.4), and to detect outliers and fix them. 
Users can drag a sample (a value) from the sample panel 
onto a shared value (considered as a set of objects) to 
modify at once a property for multiple objects (R2.3 scope) 
(Figure 7). Users can also drag a shared value (value) onto 
another shared value (set) (Figure 8). 

To select objects, users can click on them in the workspace, 
or draw a selection rectangle. In order to refine the 
selection, users can use three meta-instruments (i.e. 
instruments that control instruments, here the selection): 
Remover, Keeper and Extender. The interaction consists in 
a drag and drop of the representation of the instrument onto 
a shared value. Remover throws out of the selection all 

objects that have this shared value (Figure 9). Keeper keeps 
in the selection the objects that have this shared value, and 
throws away the others. Extender adds to the selection all 
objects that are not selected but that possess this shared 
value. The instruments can also be dropped onto an object 
of the scene to add or remove it from the selection. These 
interactions extend the set of example-based queries 
introduced above (R1.3 modify sets). 

 
Figure 8. The user drags the “width: 280” shared value and 

drops it on the “shape: circle” shared value. All circles in the 
selection now have a width set to 280. 

 
Figure 9. The user drags the Remove tool onto the “fill: blue” 

shared value. Blue objects are removed from the selection. 

Explicit structure: the property delegation graph 
Besides ManySpector, we have explored an interactive tool 
that enables users to structure the content explicitly. Users 
can specify that a property of an object (the clone) depend 
on the property of another object (the prototype). A 
prototype is similar to a master in Sketchpad: when users 
change a property of a prototype by dropping a sample from 
ManySpector onto the prototype, all dependent clones are 
changed accordingly (R1.3 modify sets, R2.3 scope). 

The interaction to specify a dependency is as follows 
(Figure 10): by clicking on an object, users can toggle the 
display of the properties around it. They can press on a 
property, draw an elastic link, and drop it onto another 
object as if they were dropping a sample. The clone object 
appearance reflects immediately the appearance of the 
clone for that property. Users can remove a link by pressing 
the mouse button in the blank space, drawing across the 
links to be deleted, and release the button. 



 

The system proposes two ways of creating new objects 
from existing ones: either by copying it or by cloning it 
(R1.3 modify sets). Copying is the regular copy operation: 
properties from the copy are independent from the 
properties of the source. Cloning enables users to get a 
clone, whose properties are entirely delegated to the copied 
object (the prototype) (Figure 11). By creating a clone, 
users minimize the number of actions required to specify a 
single difference with the prototype: if they copied instead 
of cloned, they would have to link all shared properties. 

Explicit structuring is supposed to bring more action power, 
at the expense of increasing viscosity and hindering 
exploratory design since users have to manage a structure. 
We have lowered these drawbacks with a posteriori 
structuring and by leveraging off ManySpector. For 
example, choosing to clone or to copy may be premature at 
the moment of the creation of a new object from an existing 
one. To solve this problem, users can decide to change them 
to a copy or a clone after the creation of the object (R1.3 
modify sets, R3.5 a posteriori structuring). This is made 
possible by tracing the history of objects, and how they 
were created. Toggling between copy and clone only affects 
the properties that were not set explicitly by the user. 
Another problem is to interact with similar objects in order 
to make them depend on a prototype. A viscous solution 
would be to interact with each object and making it a clone 
of the prototype. A more efficient solution consists in 
selecting the objects that are to be clones, and in dropping 
the property of the prototype onto an object of the selection 
(R1.3 modify sets, R3.5 a posteriori structuring). Users can 
also drop the property onto a shared value in ManySpector 
(Figure 12), which links all objects sharing that value to the 
prototype. 

The property delegation graph is an extension of the 
delegation tree found in prototype-based languages [14]. 
However, with a tree, objects cannot have multiple parents. 
For example, the scene tree available in illustrator may be 
helpful to conceptualize the scene, but is unable to help 
specify cross-branches relationships. Conversely to a tree, a 
node in our graph of properties can have multiple parents. 
This enables users to be more specific about the parent that 
holds a particular property: a node can delegate ‘fill’ to a 
prototype A, and ‘stroke-width’ to a prototype B. 

Discussion about the design 
The interactions are consistent: they all use modeless 
interaction based on drag and drop, be it from or on an 
object on the scene, a shared value, or a prototype. With 
immediate feedback and a posteriori structuring, they also 
support exploratory design. The properties are immediately 
visible (no need to devise a query): users can try and test by 
hovering over and off the used values, and assess the results 
thanks to immediate feedback without applying the change 
(button still pressed). 

The interactions we devised can be considered as a kind of 
surrogates [12]. We have expanded them by explicitly 
taking into account the interaction to manage the selection 
and explicit structuring. Furthermore, our version exposes 
not only common properties but also all used values, which 
makes direct the access to more subsets and expands 
notably the scope of interactions. Of course, existing 
systems enable users to obtain the same final results, and 
even by relying on similar concepts (flash, sketchpad). 
Those systems actually provide the same functionalities, but 
not the same interactions. For example, existing tools do 
enable users to perform a graphical search, but with an 
indirect manipulation (through a menu and a dialog box). 
This prevents users from quickly trying and testing changes 
and hinders exploratory design. In addition, interactions are 
not well integrated e.g. in Illustrator, there is a tree view, 
but users can use it only to select a branch then apply a 
limited set of changes on the selection. 

As such, the prototypes have issues. For example, more 
work needs to be done with respect to scalability: 
ManySpector is not able to handle very large sets of used 
values. The solution with a scrollbar and progressive 
disclosure may not be sufficient. The prototype/clone view 
also needs more work: if the links are numerous, the scene 
may result in a mess of tangled links. Again, progressive 
disclosure is a possible solution but we are also exploring 
other representations and interactions [10]. Furthermore, the 
system does not check for cycle when the user tries to link 
two properties. Appropriate feedback is necessary to 
prevent it, such as displaying the links to show a potential 
cycle when hovering over a property. 

  
  

Figure 10. The user draws a link between the fill property 
of the green object (the prototype) into the blue object (the 
clone) to specify a dependency.  The fill color of the clone 

turns to the color of the prototype (green). 

Figure 11. The user has 
selected the clone to see the 

dependency. 

Figure 12. The fill property is 
dragged onto a used value to 

specify that the fill property of a set 
of objects depend on the prototype. 



 

USER STUDY 
We have argued in the previous sections that our tools are 
novel, consistent and effective for performing structure-
based interaction. Assessing those claims is not a 
straightforward task. We were especially concerned with 
the understandability of the used values concept, and the 
fact that they refer either to a value or the set of objects that 
share this value. Would it be too difficult for users to grasp 
the shared value concept and linked properties? Even if 
users understand them, how would they struggle when 
trying to use them to interact with multiple objects? Finally, 
can users translate high-level problems into graphical 
interactions with used values and linked properties? 

 
Figure 13. The scene containing many objects. 

Tasks 
The evaluation session was divided into three parts, each 
dedicated to one of the three questions above. The first part 
was devoted to a tutorial that teaches users about used 
values and links, and how to interact with them in the 
graphical editor. The two other parts are scenarios that were 
designed so that they implement the requirements. 

In the tutorial, we instructed users to create a few objects, 
link them, change their color or stroke thickness, with a 
single object or a set of objects. The tutorial lasted 10min 
and included 15 simple tasks. Users were actually 
manipulating the mouse and performed interactions while 
they were listening to our instructions. The goal of this 
tutorial was not only to instruct users, but also to see if they 
understood the design. We assessed their understanding by 
observing them perform small tasks with no instructions 
and by asking them if they were confident in their 
understanding. We did not assess discoverability since we 
began with a tutorial. This aspect is left for future work. 

The second part of the session was an actual test. The test 
was still using the graphical editor, but this time with a 
scene containing multiple (50) differing objects (see Figure 
13). We asked users to perform more complex tasks such as 
‘change the thickness of all yellow circles to the maximum 
of all thicknesses’. We did not give any instructions, and 
left users perform the tasks by themselves. One of the 
expected benefits of used values is to help users select a set 
of objects with minimal interactions. Hence, we designed 

the tasks to make traditional selection (i.e. a selection 
rectangle, or adding shapes to the selection by shift-clicking 
on them) more and more difficult either because they 
involve multiple objects (scope R2.3), or because they 
involve graphical properties that are not perceptually pre-
attentive (search R1.1, identify sets R1.4). For examples, 
the task “change all circles’ color” is difficult because users 
need to find all circles in a scene, a visual task known to be 
non pre-attentive and that requires a cumbersome one-by-
one scan of graphical objects (try on Figure 13). Users were 
free to carry out the tasks the way they want, either by 
selecting shapes with the traditional way or using 
ManySpector (designate R1.2). The goal of this second part 
was to assess the extent to which users would rely 
voluntarily on used values and links, whether they would be 
able to perform non-trivial graphical tasks (specify action 
R2.1 and parameters) R2.2), and how well they could 
interact with used values and links. 

 
Figure 14. The calendar view. 

The third part involved a calendar application. Users were 
manipulating events on a week view (see Figure 14). Events 
are represented with rectangles with a title text and a start 
hour text. They are placed horizontally according to day of 
occurrence in the week and vertically according to the time 
in the day. The screen is filled with seven columns, one per 
day in the week. Instead of graphical properties, the 
ManySpector window contained calendar-related properties 
such as start, duration, title etc. as in the iCal inspector. 
Conversely to iCal, ManySpector displays used values. This 
allows for modification of unrelated events, while iCal 
allows for modification of multiple repeated (i.e. recurring) 
events only. We provided a partially filled schedule and we 
asked users to act as if they were teachers trying to schedule 
lecture sessions during the week with a schedule “manager” 
(the role we played). For example, we asked them to place a 
2-hour long lecture Wednesday afternoon. Then we told 
them that when we said “place a lecture at 10am”, we 
actually meant “10:15am”, so they had to change all 
“10am” lecture events to “10:15am” (a posteriori 
structuring R3.5). The goal of this third part was to assess 
whether users could translate higher-level tasks to graphical 
interactions with our tools. The tasks were high-level, and 
required users to try R3.1, perceive the consequences R2.4, 
evaluate R3.2 and perform short-term exploration R3.3. 



 

Since the calendar scene contained few elements only 
(~15), we were expecting that users would rely on 
traditional selection. Hence we asked them to use 
ManySpector instead of the traditional selection. 

Subject profiles 
We performed the tests with five subjects. Three of them 
use calendar application in a day-to-day basis, one of them 
was a graphical designer used to applications such as 
Illustrator, and one was a casual user of graphical tools such 
as presentation software. They were all aware about the 
viscosity problem that might occur when using such tools. 
Only the graphical designer was involved in the 
participatory design process, hence four users discovered 
the interactions for the first time. 

Procedure 
We asked subjects to think aloud [7] while they were 
acting. We observed them and logged what they tried, 
whether they struggled, made errors or succeeded. At the 
end of the second and third part, we made them fill a 
questionnaire to rate the difficulty and cumbersomeness of 
the tasks, and the usefulness of the design with a Likert 
scale from 1 (negative) to 5 (positive). Results are given in 
the following, with the mean and the standard deviation. 

Results 
We did not notice serious understandability problems. 
Users were able to manipulate shared properties and links, 
and succeeded in performing simple tasks at the end of the 
tutorial. When asked about their confidence, some of them 
felt that they needed some learning “to do it well”. We 
showed them many interactions, but even if the interactions 
are well integrated, users felt that they could not get 
familiar with them within such a short time. In addition, 
because there were several possibilities to accomplish tasks, 
users were always eager to find the best way of 
accomplishing it, which adds to their feelings. Our 
confidence into users’ understandability got stronger when 
we witnessed that they got more capable as they were 
performing the second and third part. We even observed 
users trying interactions that we did not designed but that 
were perfectly meaningful, such as using selection 
instruments (keep, remove) directly on samples to avoid the 
necessity to perform a selection of the entire scene, 
dropping a value onto a property name to apply it to all 
objects, or dragging a sample next to existing used values to 
extend the selection. This suggests that the design was 
consistent and predictable. 

We did notice some difficulties when users performed more 
complex graphical tasks in the second part (ease of 
translation in graphic scenario: mean: 3.6, stddev: 0.5). 
This can be explained by the fact that users were still 
learning the interaction. They also told us that the tasks 
were rather abstract. In fact, since the tasks were purposely 
complex, they lacked significance (none performed ‘change 

the thickness of all yellow circles to the maximum of all 
thicknesses’ in real-life). They struggled to understand and 
memorize them, which hindered their ability to devise a 
solution. The four non-graphical designers found the 
requests much less difficult in the last part with the calendar 
application and meaningful tasks. Still, all subjects were 
able to accomplish every tasks of the second part by 
themselves. (mean of the easiness of the 9 subtasks of the 
graphic scenario: 4.6; 0.5). 

We were wondering about voluntary use. We observed 
what we expected: with tasks that involve pre-attentive 
properties (such as color-oriented one: ‘turn yellow objects 
into red’), subjects were sometimes still using a traditional 
selection. However, they turned by themselves to used 
values with non-pre-attentive tasks, or when the number of 
objects was too important. They also used links when we 
asked them to repeat an interaction on the same set of 
objects: after a number of repetitions, some subjects turned 
a specific object into a master. This enabled them to be 
more efficient than devising a selection again with the 
ManySpector. All kinds of interaction were performed 
(with samples, used values, links), and all combinations of 
source and destination for drag and drop were witnessed. 

We did not notice difficulties when users had to translate 
higher-level tasks into interactions in the calendar test (ease 
of translation in calendar scenario: 4.2; 0.8). We witnessed 
a tendency to use traditional selection for very simple tasks. 
When we forced users to employ our interactions instead, 
they did not have difficulties to do so (mean of the easiness 
of the 7 subtasks of the calendar scenario: 4.7; 0.5). This 
suggests that the interactions can be applied to other 
contexts than graphical edition. 

Even if we did not plan to evaluate usability, the tests 
revealed some issues such as the difficulty of interacting 
with the text boxes. Users also found limits to the 
interactions we proposed: in some cases, users would have 
liked to keep objects based on a combination of values 
instead of a single one. As expected, links lacked visibility 
and legibility when numerous. 

All in all, the study allowed us to answer positively to our 
concerns: the tools fulfill the requirements since users were 
able to understand the interactions, could perform complex 
graphical tasks with them and could translate higher-level 
tasks into them. Users judged ManySpector very useful 
(ManySpector usefulness: 4.8; 0.4). They liked explicit 
structuring with links though not as much as used values 
(links usefulness: 4.4; 0.9). They also praised the fact that 
there was no imposed strategy and that they could perform 
tasks their way. 

CONCLUSION 
We have tackled the problem of interaction with structures, 
and interaction with content through structures. We have 
defined a set of requirements and have explored a set of 
consistent interactions that provide partial answers to the 



 

requirements: ManySpector, an inspector for multiple 
objects, and explicit delegation links. A study showed that 
users are able to perform complex graphical tasks with 
them. The examples involved a drawing editor and a 
calendar but the requirements and interactions are not 
specific to these applications, and can be applied to others. 

Our interactions suffer from some problems such as 
scalability (though this may not be a problem for e.g. the 
calendar) and legibility. Other designs are possible: we are 
currently investigating other forms of explicit structuring 
with no links. We also plan to assess how well those 
interactions support exploratory design. 
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ABSTRACT 
We reflect upon the design of a paper-based tangible 
interactive space to support air traffic control. We have 
observed, studied, prototyped and discussed with controllers 
a new mixed interaction system based on Anoto, video 
projection, and tracking. Starting from the understanding of 
the benefits of tangible paper strips, our goal is to study 
how mixed physical and virtual augmented data can support 
the controllers’ mental work. The context of the activity led 
us to depart from models that are proposed in tangible 
interfaces research where coherence is based on how 
physical objects are representative of virtual objects. We 
propose a new account of coherence in a mixed interaction 
system that integrates externalization mechanisms. We 
found that physical objects play two roles: they act both as 
representation of mental objects and as tangible artifacts for 
interacting with augmented features. We observed that 
virtual objects represent physical ones, and not the reverse, 
and, being virtual representations of physical objects, 
should seamlessly converge with the cognitive role of the 
physical object. Finally, we show how coherence is 
achieved by providing a seamless interactive space. 

Author Keywords: Tangible interaction; Augmented paper; 
Pen-based UIs; Distributed cognition; Participatory design; 
Ethnography; Air Traffic Control; Transport; Security. 

ACM Classification Keywords: H.5.1. Information 
interfaces and presentation (e.g., HCI): Miscellaneous. 

General Terms: Human Factors; Design; Measurement.  

INTRODUCTION 
Mixed interaction design has been studied through several 
approaches: tangible user interfaces (TUIs) [35, 11], 
augmented reality (in the sense of [26]), and all approaches 
that can be described as reality-based interaction [15]. 
Several models [35, 11], taxonomies [7], frameworks [12, 

35, 15, 21] or guidelines [17, 34] have been published that 
inform the design of mixed interactions. They address its 
complexity, mainly through issues related to coherence of the 
mapping or coupling of physical and virtual elements [35]. 

However, recent literature points out the limits of TUIs. In 
TUI litterature (e.g [21]), coherence is achieved through 
mapping, i.e when the physical and the digital artefacts are 
“seen” as one common object. Mapping-based coherence 
thus involves how representative a physical object is of a 
virtual one. This has been challenged [6]. First, the claim that 
TUIs enable to physically manipulate abstract data has been 
questioned [20]. Second, addressing mixed interaction 
complexity cannot rely solely on a mapping-based coherence. 
In [26], Mackay warns about not spoiling the understanding 
that users have about the laws that dictate the behavior of 
physical objects by a behavior that is dictated by the humans 
who build the virtual system. In [13] Hornecker further 
questions the assumption that affordances of the physical 
world can be seamlessly transferred to computer-augmented 
situations: users actions are not always predictible, nor do 
their expectations about the behavior of the system, and it is 
not obvious for the designer to know which prior knowledge 
of the real world will be invoked. 

We profited from the redesign of an Air Traffic Control 
(ATC) environment, an operational, complex system 
already based on basic mixed interaction, to gather new 
knowledge on mixed interaction design. The system (named 
Strip’TIC [14]) explores a solution that integrates 
interactive paper, handwritten notes and digital data, using 
digital pen and augmented reality technologies. 

This paper presents the results of this investigation. 
Notably, we present how we addressed mixed interaction 
complexity through a view of coherence that departs from 
mainstream TUI models. In our context, physical objects 
and associated manipulations have an inner coherence due 
to their cognitive role as external representations [19], that 
designers must respect. A consequence is that physical 
objects represent mental objects rather than virtual ones. 
Furthermore, the virtual objects actually represent the 
physical ones, and not the reverse, which brings constraints 
on their design. Finally, we show how coherence is 
achieved by providing a seamless interactive space. 
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RELATED WORK 
Our work relates to interface approaches that employ 
physical means of interaction or reality based interaction 
[15]. In this field, following the tradition of metaphor-based 
usability, a first research goal has been to find how to 
design interfaces that mimic the real world: the main idea 
was to build on prior knowledge to foster usability [15]. 
Research work following this goal includes reflection on 
how to give a physical form to digital objects [35], and also 
on mapping and coupling physical objects and their digital 
counterpart to enhance the coherence of the metaphorical 
relationship. An important issue has been to define tangible 
interfaces, either in terms of interaction models, e.g. [35], or 
through frameworks that describe the type and qualities of 
various dimensions, such as levels of mapping, 
metaphorical dimension [7] or concepts of containers, 
tokens and tools [11]. Characteristics of couplings are also 
described: in [7], the embodiment dimension describes the 
level of integration of input and output in tangible systems, 
while [21] classifies coupling according to the degree of 
coherence, as measured through several properties of links 
between virtual and physical objects.  

A significant part of tangible interface research aims to 
explain not only prior knowledge or metaphorical scales, 
but also properties and affordances of the physical world 
these interfaces rely on [8, 12, 20]. In [12], Hornecker et al 
propose an analysis of physical interactions through four 
perspectives for the design of tangible interfaces: tangible 
manipulation, spatial interaction, embodied facilitation and 
expressive representation. Affordances of paper have been 
studied in depth by [32]. In [25], Mackay analyzes more 
specifically how paper strips support ATC activity. In [34], 
Terrenghi et al analyze tangible affordances through 
comparisons of different kinds of interactional experiences 
performed by similar physical and digital systems, such as 
comparing multiple items or creating spatial structures, with 
the aim of designing better digital systems. 

Another field of research, instead of metaphorically 
extending digital systems to the real-world, aims at 
extending real-world objects by linking them to digital 
features through augmented reality [26]. This field notably 
includes augmented paper or paper computing research [33] 
which aims at integrating paper and digital documents. 

Several views unify tangible interfaces and augmented 
reality, such as reality based interaction [15]. For designers, 
a more general issue thus becomes the allocation problem to 
either virtual vs physical objects. [17] for instance discusses 
how physical or virtual objects enable various tasks, such as 
disambiguating objects, supporting eyes-free control or 
avoiding mode errors. Some authors compare digital and 
physical according to efficiency in relation to specific tasks. 
In [28], McGee et al evaluate whether a paper-augmented 
system performs as efficiently as a digital system without 
losing the positive properties of paper, but rather focuses on 
the cost of recognition errors than on allocation issues. 

Other approaches broaden TUIs definition. In [12], 
Hornecker et al rethink TUIs as interactive spaces, focusing 
on the quality of the corresponding user experience. In [6], 
tangibility is proposed as a resource for action instead as 
just an alternative data representation. 

ATC ACTIVITY AND ITS INSTRUMENTATION 
As said above, our study on mixed interaction is grounded 
on air traffic control (ATC). Air traffic controllers maintain 
a safe distance between aircraft and optimize traffic fluidity, 
usually working by pair. The planner controller predicts 
potential conflicts between aircraft. The tactical controller 
devises solutions to the conflicts, implements them by 
giving instructions to the pilots by radio, and monitors the 
traffic. Air traffic controllers currently use a combination of 
computer-based visualization (e.g. radar image) and 
tangible artifacts (paper strips) to manage traffic [25]. 

Specific control situation 

 
Figure 1: phases of flight and associated control areas. Final 

approach control manages aircraft from the stack and the IAF 
(Indicated Approach Fix) point before landing. 

We have decided to ground our study on a specific ATC 
situation, the Approach Control (Figure 1). The traffic of 
Approach is complex and dynamic: aircraft are most likely 
ascending or descending; minimum separation in time and 
space between aircraft goes from 5Nm (8km), through 3Nm 
in the Approach area; to 2.5Nm just before landing to 
ensure 2 minutes between two consecutive planes. 
Therefore the time of analysis and action decreases rapidly 
as the aircraft get closer to the field. 

 
Figure 2: a stack and calculation of the  

Estimated Approach Time (EAT). 
For traffic optimization purposes on a busy airfield, 
controllers try to get as close as possible to the maximum 
runway capacity i.e. the number of takeoffs or landings per 
hour (Figure 2). This is challenging since they need to 
optimize aircraft ordering and separation with a mix of 
takeoffs and landings. When the runway capacity is 
exceeded, controllers can delay the arrival of aircraft by 
piling them up into a ‘stack’ and making them perform 
horizontal loops. The first aircraft in the stack is assigned to 



  

the lowest altitude. Each new aircraft entering the stack is 
piled upon the previous one. The first aircraft that leaves the 
stack is the lowest one. When an aircraft leaves the stack, the 
controllers order each remaining aircraft in the stack to 
descend to the next lower altitude. 

The management of the Arrival sector can even be split 
between two controllers: a controller for the management of 
incoming aircraft and the management of the stacks, and a 
controller guiding and sequencing aircraft from the stacks 
to the final axis of the runway. Splitting (or degroupment) 
is a critical phase since controllers have to reallocate a set 
of strips on an additional stripboard. Paper strips can either 
be physically passed between controllers or be duplicated. 
In this case, the last information handwritten on the strips 
must be reported orally to the supporting controllers. 

Current instrumentation and tentative improvements 
Controllers do not feed the system with the instructions 
they give to the pilot, neither through the computer-based 
part of the system, and of course nor through the paper-
based part. This prevents the potential use of automation to 
help controllers regulate the traffic more efficiently and in a 
safer way. However, controllers do hand write the 
instructions on the strips to remember them. This has led 
the Airspace authorities in the EU and the USA to replace 
paper with digital devices (dubbed “electronic stripping” or 
stripless environment) in the hope that the instructions 
could be fed to the system. Although electronic stripping 
has been constantly improving during recent years, there is 
still reluctance to its being adopted. We suspect that such 
reluctance is partly due to the fact that screens do not offer 
the same level of interactivity as paper. In fact, the 
designers of electronic systems have devoted considerable 
effort to replicate interactions on the paper, be they 
prospective [29, 2], or operational (Frequentis SmartStrips 
or NAVCANStrips). 

Considering the previous remarks, mixed interaction may be 
an appropriate approach to the improvement of the ATC 
environment. Caméléon early project [24] explored various 
technological alternatives to electronic stripping: transparent 
strip holders whose position could be tracked on a touch-
screen, a pen-based tablet with no screen but with regular 
paper. However, these early prototypes were built with the 
technology of the mid-nineties and not all possibilities could 
be explored, especially those based on augmented paper. 

Significance for research on mixed interaction 
ATC has a number of properties that may shed a new light 
on mixed interaction. ATC is real: the realness of the activity 
can act as a magnifier of aspects about mixed interaction that 
would be overlooked with artificial activities. ATC is life-
critical: even if accidents are rare (because the way the 
system works helps prevent problematic situations) some 
circumstances can lead to life and deaths situations. 
Controllers involved in the design of tools and procedures are 
constantly aware of their responsibilities, which make them 
cautious and concerned. ATC is time-constrained: since a 

flight cannot stop in the sky, orders must be given under 
constraints. This makes time-performance an important 
concern. ATC is heavily designed for performance: tools and 
procedures have been refined and tuned for years by their 
own users, which has led to a high level of safety and 
capacity. This stresses the usefulness and usability of new 
proposed features. ATC is demanding in terms of human 
cognitive capability, and qualification on a complex area can 
take years. Even subtle aspects of the instrumentation may 
have an impact on cognitive load and deteriorate 
performance. ATC controllers are extremely concerned by 
the instrumentation of their activity. They reflect on the tools 
and their procedures and are eager to improve them based on 
a deep internal knowledge. Even if all aspects are not new 
(e.g. Reactable [16] for real-time and reality), we were 
expecting that the combination of those properties would 
raise the level of implication, reality, deepness and details 
during the discussions. 

PROTOTYPE DESCRIPTION 
We have designed Strip’TIC, a novel system for ATC that 
mixes augmented paper and digital pens, vision-based 
tracking and augmented rear and front projection [14]. The 
paper strips, the strip board and the radar screen are all 
covered with Anoto Digital Pen patterns (DP-patterns). DP-
patterns are small patterns (< 1mm width) used by the pen’s 
infrared digital camera to compute the location of the pen 
on the paper.  

 
Figure 3: Strip'TIC. Top projector, radar screen, strip board, 

and side screen (left). Bottom projector casting images on a 
semi-opaque strip board, two mirrors, infrared LEDs, and 

webcams (right). Black dots depict pen-sensitive areas. 
Users’ actions with the digital pen are sent in real-time to IT 
systems wherever they write or point. Users can draw 
marks (e.g draw information on paper strips), write text 
(e.g. write aircraft headings), and point out objects (e.g. 
point out aircraft on the radar screen). The stripboard itself 
is semi-opaque: this enables bottom projection on the 
stripboard and strip tracking thanks to AR patterns printed 
on the back of the strips (Figure 4). Another projector 
displays graphics on top of the stripboard and on top of the 
strips. (Figure 3). Controllers can manipulate paper strips as 
they are used to with the regular system. 

A cornerstone aspect of Strip’TIC is the mix between real 
and virtual strips. When a paper strip is put down onto the 
strip board, the tracking system recognizes it and projects a 
virtual strip under the paper strip with the bottom projector. 
Virtual strips are slightly larger than paper strips, which 
makes the paper strip borders ‘glow’ and acts as a feedback 



  

for the recognition of the strip. When lifting up a paper 
strip, controllers can use the digital pen to interact with its 
corresponding virtual strip. They can move it by performing 
a drag on its border, and also write on it. When setting the 
paper strip down onto the board, the virtual strip is aligned 
under it. The then-occluded handwritten notes of the virtual 
strip are projected on the paper strip (Figure 6). 

 
Figure 4: Front and rear of paper strip. Each strip 

corresponds to a flight, and displays information such as the 
level of entry, the route and a timed sequence of beacons the 

flight is supposed to overfly while crossing the sector. 

We have implemented numerous features that rely on the 
combination of those devices: highlighting aircraft on radar 
when pointing on a real or virtual strip and vice-versa, 
projecting solid colored rectangles to colorize paper strips, 
adding real-time information on the strips (Figure 5), 
display of recognized hand-written texts, or even expanding 
paper strips with a virtual extension to address strip fixed 
size. Though technologically complex, the system is 
working in real-time and reactive. When introduced to 
Strip’TIC, controllers are usually eager to use it and 
discover all its features. The features that we specifically 
explored are discussed in the next sections. 

 
Figure 5: Paper strip with projected information. Highlighted 

beacon, distance aircraft-beacon, aircraft name, aircraft 
vertical profile and current position, current altitude. 

 
Figure 6: Paper strip with projected handwritten information.  

METHODOLOGY 
Our study was conducted as design-oriented research [5]. 
Hence the goal of our work was not to produce a 'final' 
prototype, but rather to gather new insights about mixed 
interaction through grounded discussions with users about 
the support of their activity by the prototype. 

Designers: users and researchers 
The observation sessions involved nine experienced 
controllers (more than 5 years experience) and six 
apprentices, and the design and walkthrough sessions 
involved nine other experienced controllers. All were 
French controllers involved in the three types of control (en 
route, approach and tower) from Bordeaux, Orly, Roissy 
and Toulouse. Our team is composed of 4 HCI designers 

and researchers (visualization, tangible and paper-based 
interaction, graphic design) and a controller. 

Sessions with users 
We conducted a series of iterative user studies, ranging 
from field observations and interviews, both transcribed and 
encoded, participatory design workshops involving video-
prototyping, and design walkthrough sessions where the 
controllers tried the prototype by running scenarios such as 
ungrouping, conflict detection, stack management, etc. 
During these studies, we observed controllers and discussed 
with them to understand important aspects of their activity 
related to our design. We also experienced technical 
solutions with the Strip’TIC prototype, either to test it or to 
demo it and get immediate feedback. We let controllers 
play with it and react by proposing ideas, in order to get 
insights on how to co-evolve the activity with them toward 
a mixed system. In total, we completed 4 observation 
sessions in real context, 3 observation sessions of training 
controllers, 4 interview sessions, 5 brainstormings and 
prototyping sessions and 4 design walkthrough sessions. 
We also demoed our prototype to 21 French controllers, 
collecting 13 filled-in questionnaires, and to controllers 
from Germany, Norway and UK to get informal feedback. 

Study conduct 
Between the sessions with users, we implemented the ideas 
raised during the sessions. The fact that a feature would 
'improve' the course of the activity was not the sole reason 
for further investigation. Instead, we were attentive to 
users’ reactions and focus, especially when they were 
discussing the status of the artifacts, or if they considered 
them different based on some aspects (e.g. virtual or real). 
We were also attentive to users’ discussions that may spark 
novel findings on mixed interaction and develop prototypes 
to investigate the raised issues further. 

About 30 augmented features have been explored and 
prototyped during two years, using Wizard of Oz, paper, 
paper + video, Flash/Flex, or PowerPoint, and many have 
been implemented. In addition to the features described in 
Prototype section, we explored physical/virtual objects 
lifecycle management involving virtual but also physical 
strip creation (print/re-print), various interactions with 
physical strips (gestures, oral, pen-based) and application 
domain features such strip grouping, conflict or charge 
detection, various computation to support actions and 
decisions (distances, dates...), transitory state management, 
strip extensions, stripboard structure management (stacks, 
runways, simulation), temporal information (timelines, 
timers) (Figure 12), various informational features, macro 
commands, communication between controllers, and 
drawing or annotation on the screen. 

DESIGNING MIXED INTERACTION IN ATC 
We present in this section our reflections and observations 
gathered during the design of Strip’TIC. The first part 
clarifies basic allocation principles in the case of ATC, 
often already reported in the literature, that we review and 



  

supplement in the first part of this section. The second part 
addresses complexity and introduces coherence issues. It 
shows that they relate more to mixed physical/digital 
behavior than to mapping. The third part analyzes ATC 
temporal processes to introduce externalization as an 
important pattern to mitigate allocation problems and to 
design consistent tangible interactions. 

Physical/virtual allocation principles 
Positive properties 
Paper strips exemplify several aspects of physical interaction, 
as described in [12]. Tactile properties make the strips 
graspable and enable lightweight interaction, such as slightly 
shifting a strip to trigger attention. Non-fragmented visibility of 
the stripboard and performative properties of gestures enable 
awareness among controllers. Spatial affordances support 
reconfiguration, and physical constraints with the stripboard 
format make some interactions easier or more difficult. In our 
study, observed affordances of physical strips are also in line 
with findings from [25], either regarding how manipulations of 
the strips helps build the picture of the current situation, or how 
the physical setting supports subtle cooperation and mutual 
awareness, for instance enabling non-intrusive cross-checking 
by working independently on different problems within the 
same collection of strips. Mackay also shows how bimanuality 
enables efficient handling of complex problems and why 
flexibility of paper [32] and handwriting may support rapid 
adjustment to evolving rules. 

   
Figure 7: a) one stack in each hand; b) bi-stack bi-manual 
strip transfer from the planner board to the tactical one. 

In our study, we focused on approach context, which involve 
many physical manipulations. We observed for instance how 
physical constraints were leveraged to help automate 
decisions or prevent undesirable actions [36, 18]: in a tower 
cab position (Blagnac), in case of potential wake turbulence 
after take-off (or landing), the controller encodes a delay 
condition for the next take-off by leaving the departing strip 
(of the aircraft causing the turbulence) above the next (ready 
to depart aircraft), in order to prevent any handwriting on it, 
and thus any take-off authorization. We also observed 
numerous bimanual interactions, for example during an 
approach instruction session where the planner held bundles 
of strips for each stack in each hand (Figure 7). 

Negative properties 
Tangibility also shows some limits [15] - that can 
sometimes be addressed by virtual features - such as strip 
fixed size, static stripboard structure, lack of space or 
manual operations. Lack of space is a recurrent concern 
when the traffic becomes dense, despite the fact that the 
stripboard is well organized, and although the small 
physical size of the control position enhances mutual 

awareness [25]. For instance, in a tower cab context, a 
controller piled strips so as to gain space, and another 
controller complained about badly designed paper forms 
that takes too much space: «Paper, paper, ... a purely 
electronic form would be nice. In Blagnac, we currently 
have a paper sheet to fill in, with 60 lines for each minute... 
half of the sheet is useless. It takes room pointlessly. ». 
During design workshops, lack of space was addressed in 
different ways, for instance through the idea of extensible 
mini-strips. Controllers also complain about some physical 
manipulations. In particular, moving groups of strips is 
tiresome, as may happen when encoding evolving N-S or E-
W flight streams on the board, as in the Bordeaux en-route 
center. In this center, the stripboard has grooves that let the 
strips be moved together, although in one direction only (to 
the top). We designed and discussed a bi-directional board 
with controllers in a workshop (Figure 8a), and their 
reaction was enthusiastic: « This thing that goes up and 
down, yes, I can’t wait to get this! ». Concerning 
handwriting, one of them said: « Let's talk about writing the 
time [on strips]. It takes time, it's heavy, it's a pain! » This 
controller thus suggested to replace handwriting with speech 
recognition. Other problems with physical objects that we 
noticed and that we could address through augmentation 
include access to distant strips difficult to reach without 
disturbing or accidentally moving them, or slippage, that may 
happen with one-handed writing (Figure 8b) [23]. 

    
Figure 8: a) bi-directional grooved stripboard; b) one-handed 

writing when holding a microphone. 

Managing mixed interaction complexity 
We were concerned that augmentation, mixing physical and 
digital laws, brings complexity, and thus had to be carefully 
designed for the users to understand how it works [26, 13]. 
Regarding this matter, we observed a number of issues, but 
we also noticed interesting non-issues. 

Issues 
Some controllers were concerned about the “digital 
consequences” of their once easy to understand physical 
actions [3]: «Does the system understand what I’m doing? 
How do I know? I’m writing something… what can happen 
in case it’s not recognized? […] You have to be aware that 
by mixing electronic and physical systems, you will have a 
more complicated communication between each… this 
makes me anxious… it’s going to be ultra-complex. ». 
Mixing physical interactions and virtual results may lead to 
discomfort. We walked with controllers through two 
prototypes (video and PowerPoint) of a tangible 
computation of an arrival sequence, which can be heavy in 
some settings having several stacks, such as in Orly (Figure 
2): when a strip is laid on a special area of the board 



  

displaying expected final times, the system projects the 
corresponding stack exit time (Figure 12d). While the 
controllers found the idea useful and proposed several 
improvements in a quite participative way, one of them had 
some difficulties with this simulation area. While thinking 
aloud about the interface components he was looking at in 
the video prototype, he said: «I have to forget this, for us … 
you need to get this out of my mind… [while hiding his eyes 
from this part of the board] …». Unpredictable behavior 
may also result from some strips manipulations, such as 
strips askew (Figure 9a) or superposed: in the latter case, as 
illustrated by Figure 9, the system « works», i.e. virtual 
strips are projected, but more or less unrelated to the 
underlying strip. As advocated by [13] such issues have to 
be explored thoroughly and dealt with by the system, even 
if the manipulations, as the ones we mentioned, are unusual. 

  
Figure 9: a) a strip askew; b) superposed strips. 

Non-issues 
By contrast, several concepts related to mixed interaction 
were quite easily accepted. Notably, all controllers played 
with the concept of virtual strips in several ways. They all 
appreciated the virtual strip as the visible counterpart of the 
physical strip laid onto the stripboard. To them, it is the 
main feedback that shows that the system understands what 
they are doing in physical space: « It works, and this is the 
interesting point, that the system knows what we do. » 
Feedback is probably one of the most important functions 
of augmentation (Figure 6, Figure 10). Beyond that, the 
main outcome is that this « understanding » from the 
system may bring support for detecting potential problems, 
such as warning about wrong written clearances or 
degroupment suggestions according to a growing number of 
strips detected on the board; warning from the system about 
possible missing actions, as played by a controller: « Hey, 
you keep moving your strips but nothing has been written 
for a while, what’s going on? » These spontaneously 
proposed features show the importance of a « mutual 
understanding »: users need to understand the system, and 
to know that the system understands their actions. 

As for the virtual strips and their physical counterparts, 
other facts struck us: controllers were quite comfortable 
with the isolated virtual strips – projected strips not 
corresponding to any « true » physical strip. We understood 
that these « informational » strips stand mainly for them as 
awareness during transient or temporary states (e.g sector 
degroupment): « Indeed, having the virtual strip and the 
data on the real flight… it’s just a matter of timing; if he 
[the controller of the adjacent sector] calls, that will save 
us some time! », or for flights that controllers do not have to 

manage officially, such as flights transiently crossing the 
sector or very small tourist planes. 

   
Figure 10: importance of feedback. a) MOD indicates that this 

strip is a modified and reprinted one; b) feedback for a 
handwritten heading. 

Virtual strips were spontaneously proposed for incoming 
flights, too. To explain this acceptance, we had several 
explanations. One was that electronic strips are becoming more 
familiar in ATC culture. Another is that controllers clearly 
distinguish between « true » official strips that represent their 
individual responsibility and that belong to the whole ATC 
system with its flight plans, on one hand, and on the other 
hand, informational elements that belong to their own view 
of the traffic and to their own workspace. Another striking 
fact was that, under certain conditions, controllers did not 
bother having physical strip duplicates, either as re-printed 
strips for a given flight, or having a printed counterpart of a 
virtual strip. What could appear as complex, potentially 
leading to inconsistencies, in fact did not. This situation 
seemed in fact acceptable as long as the reprint of the strip is 
requested by the controller themself, or if the system informs 
about the status of a reprinted strip (Figure 10). 
As for any systems, mixed systems need consistency. Users 
exploring the prototype during workshops insisted on how 
confident they are with the homogeneous space that is 
provided by the system, where all the interacting areas 
(screen, stripboard, paper) work the same way, with the 
Anoto pattern and digital pen: « You have built a unique 
system for the radar screen and the strips, this goes toward 
harmonization, this is the way to go. » Notably, the system 
enables users to interact with the strip even when it is 
removed from the board, which is not possible with an 
interactive surface. This is essential [34]: controllers often 
take one or more strips in their hands, and point onto the 
paper with the pen, while either staring at the screen or 
standing next to the control position, and discuss the current 
situation (Figure 11a). In this setting, tracking is no longer 
available, so that projection is understandably disrupted, but 
pen input and control still works (Figure 11b). 
[26] warns about a digital system presenting either too much 
or too little information to the controllers, arguing also that 
the physical strips let controllers themselves adjust how 
much or how little of their mental representation is off-loaded 
into the strips through annotations and spatial manipulations. 
In an augmented setting, this physical adjustment is still 
possible, but we were aware that augmentation should not 
spoil this positive aspect, and that « just enough » digital 
information should be added onto the physical objects in 
order not to increase reading time and interpretation and their 
potential safety implications. Virtual objects of the prototype 



  

do not have the same status in this regard: indeed, bottom 
projection can be occluded by paper strips, while top 
projection cannot. Interestingly, paper cannot occlude top 
projection either, which may lead to positive effects, when 
critical information, such as alarms, have to be visible, in as 
much that top projected objects are not opaque. By contrast, 
bottom projection is best suited for informative, less critical 
information that can be displayed in the strip extension. 

  
Figure 11: a) Controllers holding paper strips and pen, and 

pointing onto it while discussing with other controllers 
standing in the control room; b) using Strip’TIC: the strip is 
still digitally interacting with other strips laid on the board. 

Choosing between virtual or tangible interactions to 
support ATC temporal processes 
This last part reports on more specific design issues related 
to the support of temporal processes. Current system 
developments in ATC such as [1] provide tools that use 
time-based information to manage trajectories.  Maestro [2] 
already provides the controllers in Roissy with a tool to 
compute their arrival sequence according to explicit time 
slots. We explored whether augmentation could provide 
useful support to time-related features.  

Structure of temporal processes in ATC 
For air traffic controllers, safety means managing real-time 
events: planes arrive at their destination or take-off at given 
times. A critical part of the controller’s task is to manage 
these events in real-time by talking to the pilots to give 
clearances. Another critical task is full preparation in order 
to ensure that these real-time actions will unfold properly 
and effectively. [22] describes ATC activity as a subtle 
combination of two modes of control: a proactive mode that 
consists – often for the planner – in building an efficient 
encoding of the problems so that they can be resolved very 
quickly and without errors, and a reactive mode which is 
often performed by the tactical through reactions to events 
(pilot calls, clearances, potential conflicts).  

The two parallel modes occur at different timescales, as 
explained by a controller: «the tactical […] is dealing with 
a problem at 15 nautical miles and we speak here about a 
conflict that will happen in 15 minutes». Proactive mode is 
related to data encoding (flight integration, arrival sequence 
preparation), transition management tasks (sector 
degroupment, team replacement), and also problem encoding 
(filtering, searches, annotations, strip specific layouts). 
Reactive mode, characterized by fast context switches 
where data for problem solving must be at hand, is related 
to actions and decisions through physical gestures and 
tangible artifacts. ATC activity thus involves constant 
phasing between two timescales: that of the controllers, 

during which they organize their work, and real time, where 
real traffic occurs. 

Temporal processes physical encoding 
In [18], Kirsh describes how spatial arrangements support 
expert activities involving a preparation phase, and a high 
tempo execution phase. For instance, experts ensure that 
information needed to act quickly is available locally, and 
that actions can be performed almost automatically. To 
achieve this, they pre-structure their workspace physically 
to simplify choices, discard unrelated decisions, encode pre-
conditions, and highlight the next action to take. For Kirsh, 
space also naturally encodes linear orders: items arranged in 
a sequence can be read off as the order they are to be used 
in. We observed similar orders in approach control with 
stacks and arrival sequences. In [10], Harper et al highlight 
how these arrangements encode an ordered set of tasks to 
perform: “ATCO work is not like an assembly line in which 
a recurrent sequence of steps has to be followed through, 
but one in which the work consists of putting the tasks to be 
done into a sequence of steps that can be followed through. 
[…] This is how the ATCO is looking at the information 
presented in the strips, the radar and the R/T; to see what 
needs doing 'now', 'in a moment', 'sometime later on', and so 
on”. These spatial orderings implicitly connect the two 
timescales we mentioned above: taken as traffic sequences, 
they correspond to the planes flying in real-time, but as 
tasks to perform, they also correspond to the control 
timescale. To be as precisely on time as possible, 
controllers also rely on their knowledge of action duration 
according to various contexts (including their own cognitive 
load): «It’s your internal clock, you know how long it takes 
you to perform standard actions.»  

Experimentation of time-based mixed tools 
Based on this analysis, we explored how to turn these 
implicit relationships into a more explicit design of virtual 
temporal objects. We designed and implemented several 
prototypes, where time-related information was provided for 
various purposes, for instance to help calculate a stack exit 
time (Figure 12d). This was inspired by a kind of paper ruler 
that is used by Orly approach controllers as rough paper that 
helps visualize free time slots and calculate mentally (Figure 
12c). We also implemented a tool to compute the time to 
reach a beacon (Figure 5) or to fly a given trajectory drawn 
as a polyline on the radar. In addition, we designed a timeline 
representing several flights heading to a common beacon [9] 
to analyze potential conflicts. Such tools are meant to add 
explicit time-related information to the already spatially 
structured linear orders. Time can also be visualized as 
dynamic, providing a sense of passing time through 
information that evolves visually, such as a timer to manage 
wake turbulence (Figure 12b), or progress bars (Figure 12a). 
We see these tools as complementary instruments to support 
phasing between the two timescales that we described above. 
What we observed however is that controllers quite 
efficiently rely on their own skills using physical and spatial 
tools both to adapt to real time and to schedule their actions. 



  

In anticipation mode, approach controllers are in fact not so 
much interested in explicit time, but rather on ordering: «You 
don’t care about arrival time, what matters is that they [the 
planes]… are in a sufficiently spaced out and coherent 
order… not too close, not too far… ». 

  

  
Figure 12: a) colors (light grey, yellow, dark grey) indicate 

past, present and future flight levels; b) wake turbulence take-
off timer (green circle): the next departing plane has to wait 
for the AFR608 (indicated as heavy (H)) to move away; c) a 

rough paper ruler on the back of a strip to allocate an arrival 
sequence; d) tangible computation of an arrival sequence: 

allocation within projected time slots (blue), computed stack 
exit times (red), strips linked to their projected stack level 

(white - crossing links show a misordering). 
One controller was in fact more interested in dynamic 
augmented features, as long as they are real-time, tactical 
control oriented, and help program timing or actions. While 
we were discussing an arrival timeline, he spontaneously 
proposed the idea of a countdown timer [4] to trigger action 
reminders: « …10 ...9 …8 …0 …-1 …-2 … something to 
remind the tactical controller that it’s time to act, to give an 
order to the pilot, and then even how much he is behind. » 
This type of timer links control time and real-time by 
supporting the controllers in scheduling their actions. 

DISCUSSION 
In this study, we have chosen a tangible interaction 
perspective to analyze our observations, rather than an 
augmented paper one. As argued by [37], paper-based 
interfaces can be considered as TUIs, since they provide 
users with a physical modality of interaction and propose a 
close mapping between input and output. In addition, paper 
strip “thingification” makes them more relevant as physical 
cardboard handles, than as paper documents. Finally, a 
reason for adopting our perspective is that tangible 
interaction provides design models for coherence, that we 
wanted to investigate to address mixed interaction 
complexity. In this section, we first reflect upon our 
observations in terms of coherence, and more specifically in 
terms of representation. Then we describe how Strip’TIC 
addresses complexity through a seamless interactive space. 

Challenging mapping and metaphorical coherence  
in TUIs 
What do physical objects actually represent? 
To date, as noticed by [20], one of the main stated concerns 
of tangible interfaces is how representative a physical 
object is of a virtual one. This explains why a mouse cannot 

be considered as a tangible interface: it does not represent 
any object of interest [35]. In [7], Fishkin describes tangible 
interfaces according to how closely physical input and 
virtual output are tied together (embodiment dimension) 
and how similar they are (metaphoric dimension). Unless 
used as tools, Holmquist [11] also describe physical objects 
as representing digital objects: a container potentially 
represents any virtual object, while a token stands for it. In 
these approaches, it seems that representation must be 
understood as both a statement of likeness and one of 
semiotics, where the physical object behaves as a sign, i.e 
something that stands for something else [35]. 

During the design of Strip’TIC, we were faced with this 
representation issue in a slightly different manner. What do 
physical strips actually stand for in this environment? For 
the controller, physical strips stand for flights crossing their 
sector and for their associated responsibility. They do not 
stand for virtual strips: the bottom projected strips mostly 
act as feedback, not as objects to manage. They do not stand 
for the flights displayed on the radar screen either: tracks on 
the screen and strips are different objects serving different 
purposes. The radar screen provides a view of real-time 
traffic, whereas the stripboard represents traffic and task 
achievement. Pointing onto a strip does in fact select the 
corresponding aircraft, but this just provides a visual 
transition between complementary views. 

In the previous section, we have described spatial 
arrangements as an encoding for a set of control actions to 
perform, or for problems such as conflict detection. The 
physical layout and associated handwritten annotations of 
strips provide a structure that helps coordinate thoughts and 
build an image of the state of the system. What Kirsh in [18] 
describes as external representations enable memory to be 
offloaded (as stated for strips in [25]). In addition, they help 
to build persistent referents to internal information, that can 
be rearranged to perceive aspects that were hard to detect and 
to improve perception of semantically relevant relations [18]. 

Virtual objects representing physical objects 
Virtual strips deserve a separate comment regarding their 
representational status. During phases where physical strips 
are missing on the control position, such as degroupment, it 
is the virtual strip that stands for the physical one, and the 
controller can interact with it as if it were the physical one. 
This status is important because it shows that virtual strips 
provide redundancy and thus robustness in cases of absent 
strips. The metaphorical expressivity of virtual strips also 
builds on prior cultural knowledge [15] that controllers 
have gained on electronic strips, as described in the 
previous section. 

Toward a convergent design to support externalization 
through tangible interaction 

Physical interactions supporting externalization and control 
So, while physical strips do not seem to stand for any 
virtual object, they do stand for a responsibility for an 
aircraft and act as external representations of this 



  

responsibility. At the same time, Strip’TIC provides a true 
tangible space, i.e. a space where manipulations in physical 
space trigger events in the virtual space: moving strips on 
the board moves the associated projected data. Therefore, 
we can identify the two relationships described by the 
MCPrd model [35]: the physical strip controls digital data 
projection, but stands for an internal representation. On one 
hand, the physical strip acts as a tangible “window” to 
control the output projected onto the paper (Figure 13b). On 
the other hand, the physical strip acts as a cognitive handle to 
project and build [19] a mental picture (Figure 13c). Through 
physical manipulations, each of the two dimensions builds an 
image: a projected image, and an internal image of the 
current state of the situation. It should be noted that the 
projected image comes at no cost: controllers are not aware 
of this “window management” activity. 

 
Figure 13: tangible strips (b) acting as controls and as 

containers for augmented data (a) and as representations and 
tokens for cognitive elements (c). 

Implications for allocation of physical and virtual components 
This analysis sheds light on our choices of allocation. As 
we described in the previous section, physical objects and 
associated manipulations have their inner coherence. So, as 
long as physical objects are able to provide the controller 
with external representations of their concerns, there is no 
need to overload them with additional explicit information. 
As described in the previous section, physical and spatial 
tools provide a sufficient encoding of objective time, orders 
and internal clock. By contrast, augmented data (Figure 
13a) are needed to provide real-time perception and 
dynamic information on the current state of flights. Our 
analysis also helps to understand potential complexity 
issues, where the physical manipulations, such as tangible 
computation of stack exit times, did not exactly correspond 
to current practices, i.e., at least for some controllers, to 
externalizations on which they rely today. 

A seamless and understandable interactive space 
Complexity is also dealt with through the properties and the 
behavior of the components. Several of our observations 
highlight this aspect, both in terms of interaction devices 
and of human-system communication [3]. Controllers often 
commented on the homogeneous Anoto patterned 

environment, providing a uniquely addressable system. 
They also reacted particularly well to the system showing a 
« mutual understanding » through constant attention to user 
input (strip moves, handwriting recognition) and continuous 
feedback. Continuous feedback notably addresses issues 
discussed by [26] and [13], such as user understanding and 
expectations about the system behavior. The system shows 
additional kinds of continuity: 1) in the strip itself, which 
can be described as an inherent mixed object, combining a 
physical nature (paper) with a virtual content (printed 
information which can be re-printed on demand). This 
provides a mixity that might blur the frontiers between 
physical and virtual, as advocated in [31]. When data are 
projected onto the strip surface, a fine-tuning of luminosity 
may produce the effect of a composite rendering of printed 
and projected data. 2) merged displays: projected data 
cannot occlude printed information and vice versa, which 
adds to this seamless combination of tangible and virtual 
dimensions. Finally, coherence in Strip’TIC does not 
assume a constant coupling between physical and virtual 
components: disrupting strip tracking by removing a strip 
from the board does not prevent continuous use of the 
system, and most importantly, disrupting Anoto does not 
break the system either, since handwriting still works. 

CONCLUSION 
The Strip’TIC system provides us with the ability to 
explore mixed interaction in a context where physical 
interactions are effective and secure. Throughout our design 
reflections, we have seen that unlike usual TUI approaches, 
which rely on mapping and coupling of physical objects to 
virtual objects, coherence in Strip’TIC is based on other 
aspects. First, it relies on the mapping of virtual to physical 
objects that play a primary role as externalization of 
controllers internal concerns. Second, coherence 
consequently relies on a seamless connection of cognitive 
and tangible spaces that help the users to build a physical 
and virtual image of the situation. Third, the properties of 
the interactive space components and continuous feedback 
help users understand the mixed behavior of the system. 
Thus, compared to existing TUI models, our approach is 
complementary: we include the understanding and 
integration of artefact cognitive mechanisms as part of our 
design choices. Future work involves exploring issues about 
how augmented data may support externalization too, since 
this matter seems to be overlooked in current research. We 
also plan to investigate further about multitouch gestures 
combined with handwriting and pen-based interaction. 
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Abstract. Interactive systems evolve: during their lifetime, new functions are 
added, and hardware or software parts are changed, which can impact graphical 
rendering. Tools and methods to design, justify, and validate user interfaces at 
the level of graphical rendering are still lacking. This not only hinders the de-
sign process, but can also lead to misinterpretation from users. This article is an 
account of our work as designers of colors for graphical elements. Though a 
number of tools support such design activities, we found that they were not 
suited for designing the subtle but important details of an interface used in cog-
nitively demanding activities. We report the problems we encountered and 
solved during three design tasks. We then infer implications for designing tools 
and methods suitable to such graphical design activities.  

Keywords: User interface, graphical rendering, graphical design, color design, 
design study, critical systems. 

1   Introduction 

Visualizations of rich graphical interactive systems are composed of a great amount 
of graphical elements. Perception of graphical elements is highly dependent on multi-
ple interactions between visual dimensions such as color, area, shape etc. and display 
context such as type of screens and surrounding luminosity. Understanding these 
interactions involves multidisciplinary knowledge: psychophysics, human computer 
interaction, and graphical design. How can visualization designers make sure that they 
minimize the risk of confusion? How can they be sure that any modification done on a 
20 years old system will not hinder the perception, and hence the activity, of the us-
ers? How to convince users and stakeholders? In general, how can they design, vali-
date, check, assess, and justify their design?  

This kind of questions has been addressed at the level of the design process for the 
functional core, with methods such as Rational Unified Process or with Design Rationale 
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tools [9], or at the level of code, using tools based on formal description of interaction, 
such as Petri Nets [1]. However, tools and methods to design, justify, and validate user 
interfaces at the level of graphical rendering are still lacking. A number of past studies 
addressed this problem, but their results did not quite apply to the specific kind of user 
interfaces we design: those that contain multiple, overlapping elements, the perception of 
which are very dependent on subtle details, and that users scrutinize during long periods 
of time in a demanding cognitive context. Good examples are the latest generation of 
jetliners, in which pilots interact with graphical elements on liquid crystal displays (LCD) 
to manage the flight, or air traffic controllers who rely mostly on radar views with multi-
ple graphical elements, to space aircraft within safety distance. As these interactive sys-
tems are used in critical situation, the need for sensible, justified, and verified design is 
even more important.  

In order to design such tools and methods, one must identify the relevant dimen-
sions of the activity that they are supposed to support. This paper is a report of 
graphical design activities for interactive systems. We present our experience as de-
signers during various design activities we conducted. We then discuss important 
considerations one has to take into account during such activities, or if one wants to 
design tools and methods to support it.  

2   Related Work 

Graphical design issues have been studied by organizations like W3C [16], FAA [7] 
and NASA [13]. They have established a batch of guidelines about UI graphical de-
sign and recommendations about common visual perception issues. Researchers in 
information visualization worked on efficient representations [5,17]. Graphical semi-
ology introduced visual variables (size, value, color, granularity, orientation and 
shape) together with their ability to present nominative, ordered or quantitative data 
[2]. Brewer [3] proposed tools to help design harmonized color palettes for cartogra-
phy visualizations. Lyons and Moretti analyzed current color design tools [11], and 
designed a tool for creating structured, harmonious color palettes [10]. We exten-
sively used guidelines from NASA and Lyons & Moretti molecules approach. They 
help guide the design process, and help structure the colors used. However, NASA 
guidelines are short on precise guidelines with subtle but important rendering prob-
lems. In addition, the molecules tool does not provide much help for the kind of con-
straints and needs we had during the process. 

3   Studies and Experience Feedback 

In this section, we present three design tasks that we conducted. We redesigned inter-
active systems that support air traffic controllers. In order to understand the design 
process, we first set the context by briefly presenting air traffic control (ATC) and the 
three tasks we had to accomplish as designers. We then report on our experience.  

3.1   Air Traffic Control Activity 

All our tasks dealt with graphical design issues pertaining to the main French radar 
screen software used by the air traffic controllers. The software main goal is to display  
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three-dimensional aircraft positions as if seen from above. The air space is divided into 
“sectors”: complex three-dimensional airspaces criss-crossed with various routes. Each 
sector is managed by a team of 2 controllers: the tactical controller, who monitors air-
craft through the radar screen and give vocal orders to pilots through a radio link, and 
the planning controller who organizes flights arriving from neighboring sectors. Con-
trollers rely on flight plans, requests by pilots, requests from other sectors, current 
weather and traffic conditions to manage the air traffic, making judgments about the 
most efficient and safe way for aircraft to proceed through the air space while keeping 
within safe distance from each other. Each controller faces a radar screen displaying the 
sector under his/her responsibility. Each aircraft is represented as an icon showing its 
current position and smaller icons showing a few of its past positions. The current posi-
tion is linked to a label with the flight identifier, current speed and flight level. In accor-
dance with the controller’s preferred settings, each screen might have a different  
configuration (zoom level, pan, visible layers, etc). 

In ATC, the graphical information displayed has a high level of criticality. A control-
ler may hold the fates of several thousand people during his work shift and his judgment 
is based on well-established work practice, his experience, and his perception of the 
displayed information. Therefore, all information has to be coherently displayed, in a 
very accessible but not intrusive fashion in order to spare the cognitive resources. 

3.2   Design Process 

As the tasks are mostly concerned with designing colors, we present the approach we 
used in terms of color model, tools, and methods. 

Color models, calibration, and tool 
RGB is the color model used in graphic computer-cards for encoding color. RGB is 
based on additive syntheses of colors using 3 primaries: red, green and blue. Software 
developers often use this model to specify color. RGB is a “machine-based” model: it 
is difficult to manipulate, and hinders the structuring of color choices. Other color 
spaces, such as models proposed by the Commission internationale de l'éclairage 
(CIE, International Commission on Illumination) and specially CIE LCH(ab) are 
“human perception-based” model. We used the LCH color space for two reasons. As 
LCH is a mostly linear perceptual model, it allows predictable manipulations. Fur-
thermore, the L (luminosity), C (saturation), and H (hue) dimensions are semantically 
known color dimensions which further structured design: it helps organize colors (and 
hence conceptual entities) with three mostly orthogonal dimensions. In the remaining 
of the paper, we call “color” the perceptual phenomena referring to a particular LCH 
or RGB combination (and not simply the hue). We applied a calibration process on 
each monitor we used, so as to minimize the effects of bad rendering chain settings. 
Furthermore, we defined a reference ICC profile [8], and used it while designing 
colors, so as to maximize consistency between design sessions. 

During our tasks, we designed and used our own tool to choose and modify colors. 
The tool can import a set of colors, sort colors into group, and display them around a 
hue circle using the LCH model and the reference ICC profile. It also allows to ex-
press constraints with “molecules” of color [10], or to modify directly their hue, their 
level of saturation, or their level of luminosity (Fig. 1). We will not describe further 
this tool, as it is not the purpose of this paper and is only a draft of what should  
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Fig. 1. The ad hoc tool with the color palette, color wheel, color spaces and color samples 

become a genuine instrument. However, it helped us identify relevant aspects about 
the design activity and about desirable features of an efficient tool. 

Context of the design 
During the first task, we designed colors directly in the control room. We had to work 
on specific displays that were installed in control centers in order to design with real 
activity conditions in mind. In addition, we had to take the controllers’ opinions into 
account and iterate with them to reach an agreement and validate our work. As previ-
ously said, a control position comprises two screens. We kept an image of the old 
configuration on one display and applied modifications to the other so that we could 
compare the results of the transformation and discuss them with the controllers. We 
also displayed the old configuration on the old CRT monitors to compare between 
color renderings. Using an actual configuration also allowed us to check if looking at 
the screen from different visual angles did not influence too much color perception. 

The colors were then translated to RGB and inserted in the radar view configura-
tion file, in which color names are matched with their RGB hexadecimal code, e.g. 
(name "Orange") (value 0xd08c00). When drawing a graphical element, the 
software refers to colors by their name e.g. ConflitEtiquette#N_Foreground: 
MC#Orange#NColorModel. Using this indirection, designers can share the same 
color between different elements. For example, when an alarm has to be applied both 
to a radar track and to an information panel (Fig. 2}, a designer can tag these two 
elements with the named color orange. Thus, if the hexadecimal value of orange color 
is modified, all orange elements will be changed. The configuration scheme is a way 
for the designers to structure color-coding. As such, it makes the task of configuring 
the radar view easy, and enables the system to accommodate unexpected changes or 
important security fixes. For the two other tasks, we worked on our computer on 
which we imported the palette to be changed. 
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Fig. 2. Two elements: same color code but not identically perceived 

3.3   Design Activities Study 

Our team includes a graphic designer, an experimental psychologist, and two HCI 
specialists. The tasks we present are real-world tasks: they are part of an industrial 
process, as changing such systems must follow precise steps. We were then con-
strained in the amount of modifications we were able to recommend. 

First task: updating a global color design 
Our task was to adapt the color settings of the main radar view software. presents the 
interface: the control panel on the left side, the main radar view in the middle, and the 
flight lists on the right side. The left panel present manifold options for choosing pan 
and zoom level or slices/layers of the sector to displayed, for example. On the main 
view, different areas are represented in the background with different colors, while 1 
pixel wide lines represent flight routes. Flights current and past positions are repre-
sented by 3 to 5 pixel wide squares. A tag with textual information about the flight 
(callsign, level, speed etc.) is linked to the shape with a 1 pixel wide line.  The right 
panel is reserved for alarms and a list of flights. Selected flight information is dis-
played at the bottom of this panel. 

Three kinds of sectors: 

military, current and neighbor sectors 

Radar tracks of 
current sector

Radar tracks 
of other sectors

Control Panel 

Information 

and alarm zone 

 

Fig. 3. The main visualization for air traffic control 
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We had to adapt the color settings because the system evolved both technologically 
and functionally. The CRT displays on which the application runs have been replaced 
with LCD displays. Color rendering on LCD differs from CRT: they are more satu-
rated, while the beam is narrower. The difference in rendering completely changes the 
overall appearance of the visualization. Furthermore, the CRT displays are square 
while LCD displays have a 16:10 ratio, which changes the proportional amount of the 
different graphical elements. Beside hardware evolution, the activity regularly 
evolves, with the addition of new functionalities, new control procedures or new sec-
tor arrangements. This results in stacked modification, with no real global design.  

On the one hand, we had to hold the perceived color constant while moving from 
CRT and LCD display. On the other hand, we had to harmonize color palettes be-
tween configurations from five air traffic control centers. Each one has its own color 
palette, due among others to traffic particularities. This specific task may seem trivial 
(changing colors); but to achieve it, we had to modify almost all colors of the applica-
tion, and a lot of questions and problems were raised. 

Second task: organizing flights into categories 
The second task was to add new colors to an existing color palette. This requirement 
came from a new need in approach control activity. Controllers doing “approach con-
trol” regulate air traffic around airport areas. They needed to distinguish three categories 
of flights around Paris, those concerning Orly airport, those concerning Roissy airport, 
and in transit flights. They also needed to separate flights into two flows, e.g. Orly or 
“Orly-associated” airports. Together with users, a team of engineers had previously 
designed and installed a palette with three named colors (“green”, “pink”, “blue”). We 
had to harmonize the palette, while keeping identifiable colors. 

Third task: redesign of an interface 
The third task consisted in the entire redesign of the prototype of a future radar view. We 
were less constraint by historical constraints, and freer to test original configurations. 
Even though this task is still in progress, it has brought some valuable information. 

3.4   Design Accomplishment and Teaching 

This section presents a description of our work as designers. The description is organ-
ized around the similar issues we encountered during the three tasks. For each issue, 
we describe our goals, the constraints driving our choices and the solutions we even-
tually chose. 

Surrounding sectors 

Sector under control

Foreground elements 
Specific sectorarea under control 

other area 

L=29% L=34% 

 

Fig. 4. Representation of the graphical elements’ luminosity 
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Information visibility, luminosity and background 
The first issue concerns information visibility (am I able to see an entity?), discrimin-
ability (am I able to differentiate between two entities?), identifiability (am I able to 
identify an entity among a known set of entities?) and legibility (how easily read is 
the text?). We first worked on luminosity. All the colors we designed are achromatic: 
there is no perceptible hue information. In the LHC model, it is implemented by set-
ting color saturation to null. 

Luminosity difference enables separation of juxtaposed and layered objects. Sec-
tors are large, uniform surface juxtaposed on the background. Controllers must  
discriminate and identify them so as to see if a flight is about to enter or leave their 
controlled sector. Layered objects include sectors (background), routes, beacons, and 
flights (foreground). Routes and beacons must be visible, while flights must pop out 
and be legible.  

We first designed sectors luminosities, since they end up acting as the background 
for most objects, and foreground colors can only be set according to the background. 
Fig. 4 shows the resulting distribution of the gray luminosities of the different sectors: 
a gray for the controlled sector, another gray for the surrounding sectors, and a last 
gray for a special area. The sector under control is the darkest: this sector is the most 
important for the controllers, and flights should be maximally visible here. The sur-
rounding sectors are thus lighter. In bi-layered sector, controllers have to distinguish 
between two areas in the sector under control. We spread apart two grays around the 
gray of the sector under control. The second area luminosity is farther from the con-
trolled area luminosity than the surrounding sector luminosity because it is more im-
portant to identify the controlled area than the others. However, the second layer gray 
must also be different enough from the surrounding sector gray. The four grays are 
very close in luminosity (range L=5%). 

This example highlighted a problem with the possibilities of choosing a color in a 
relatively small range. This issue comes from imposed constraints about gray and 
from the fact that the 8bit-per-channel RGB color space used by the system is poor; it 
does not contain enough values to express all the shades of a color range. On a ma-
chine color model, grays are made by mixing equally R, G and B. Thus, between 
white and black there are only 254 possible grays. Furthermore, we precisely tuned 
the set of grays by incrementing or decrementing RGB values one by one, as the con-
version between LCH and RGB was not precise enough. We had to work with the 
system color space instead of the perceptual color space. 

Some graphical objects must be more than simply visible. For example, alarms 
must grab attention when they are displayed. Even though other visual dimensions 
such as animation help grab the user’s attention, we chose to separate them from 
background or others grays elements with one additional color dimension, the satura-
tion. Indeed, alarms have specific hues that reflect the emergency level. We gave 
alarms object a high level of saturation to accentuate the discrimination from back-
ground objects. 

Some areas, such as military zone, can be considered as an “alarming” area. To dif-
ferentiate them from civil area and give them an alarming appearance, we decided to 
slightly color them with a reddish gray. 
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Confidence and comfort 
The global image must be harmonious: even if it is difficult to formally quantify it, 
the satisfaction resulting from using a good-looking image nevertheless matters. 
Moreover, it improves the controllers’ confidence into the system. For example, the 
planning controller typically configures the zoom level to have a global view of future 
flights arriving in his sector. However, for narrower sectors,  a lot of gray flights not 
under this controller’s responsibility become visible on both sides of the current sec-
tor, because the new screen has a 16/10 ratio. These flights tend to raise the object 
density of the image too much. The global scene perception is spoiled and controllers 
are less confident in their ability to analyze the image. This resulted in uncomfortable 
situations, where controllers were afraid to miss an important event, and felt obliged 
to constantly check the image. This issue never arose with square screens.  

Global comfort of the scene is also an issue when designing alarms. On the one 
hand, alarms must interrupt the user and be remembered, so they are intrinsically not 
comfortable. On the other hand, if an alarm comes to persist on the screen (e.g. the 
controllers have seen the alarm but they have to finish some other actions first, or 
because no action allows the controllers to get rid of them), it should not hinder the 
controllers’activity. In order to increase comfort with such persistent alarms, we had 
to decrease their saturation level, and make them less “flashy”. 

Categorizing and ordering graphical objects 
One important point in the design process is categorizing and ordering objects. In the 
second task, we had to group flights in categories and flows. The three main catego-
ries had color hues that had been decided in a past design: green, pink and blue. The 
controllers proposed a separation into two sub-flows. They designed a solution by 
using various color dimensions, which resulted in heterogeneous colors. We worked 
with the LCH color space in order to homogenize the design choices. We set apart the 
three hue angles by 120 degrees and we distributed the sub-flows around each main 
hue. In order to see the results and finely tune the design, we built an image contain-
ing 6 examples of the exact shapes to be colored. We embedded this image in the 
tools we used, as can be seen at the bottom left of Fig. 1. 

We tried to match the conceptual hierarchy with the perceptual hierarchy. For ex-
ample, the two kinds of flights displayed match their relative importance for the con-
troller. Flights that the controller has currently in his charge are represented in a bright 
color and others, controlled by neighboring sectors, are in a darker gray.  

Alarms are also graduated: according to their importance, they have a certain hue 
and saturation level. We had to conform to alarm hierarchy and cultural color habits 
(such as red for danger). 

Surface does matter: perception and software design limitation 
We observed that surface influences perception: according to the surface on which a 
color is applied, the perception of this color is different. For example, we designed a 
color for small/medium size military sectors. The color is a gray with a hint of red 
(which name is “lie de vin”). We later used the color palette in another control center, 
embedding a larger military zone. When this same color was applied to this surface, 
the reddish gray seemed too saturated (i.e. too red). We had to decrease the saturation 
in order to make sectors look grayer when they are big, but still keep a distinctly red-
dish nuance when they are smaller. Fig. 2 shows a second example with two elements 
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displayed with the same alarm color code. The first element is a 1 pixel wide text; the 
second one is the background of an information panel. Due to surface and/or pixel 
arrangement, the same orange color applied to both these graphical elements does not 
appear to be the same when a text or a background. 

We have been able to accommodate the problem in the first example with a single 
color. But it proved to be impossible in the second example: we had to design two 
colors. It follows that the configuration file is not as structured any longer: if one 
decides to change the orange in the future, one has to change two colors instead of 
one. This matter is linked to the use of the indirect method for coding colors that we 
presented above. With a simple indirect color-coding scheme, there is no means to 
accommodate for differences in color perception due to the amount of surface. This 
example shows that the coding method can hinder the controller’s activity: there is a 
risk that a color is not identified as corresponding to a particular state, or that two 
elements cannot be associated through their color. 

Another issue concerns very small elements like one pixel-wide lines or glyphs. 
When we applied low saturated colors to such elements, their hues did not come out 
very well. These observations can be explained by the fact that, with this kind of 
small elements, some pixels may end up being isolated on a background color. They 
are thus “eaten” by background colors and lose some of their properties [14].  

Human subjectivity: naming color, acceptability opinions. 
The next issue is about color perception properties. In the LCH color space we used to 
organize colors. L, C and H dimensions are supposed to be orthogonal, i.e. if a de-
signer changes a color along a single dimension, the perception of the other dimen-
sions should not change. However, if some colors can be modified in saturation or 
luminosity without losing their essence (think of light or dark blue), some colors can-
not be easily modified without impacting perception of hue. Red for example is iden-
tified as such only for a medium luminosity level, otherwise it is identified as 
ochre/brown with low luminosity, and pink with high luminosity. We experienced this 
problem when we tried to lower the saturation of alarms, because they were too sharp: 
when we applied the modification, the element was not perceived as red any longer, 
but as ochre, which completely disabled its identification as an alarm. We had to 
change both saturation and hue to keep a color identifiable as red. This phenomenon 
shows that colors cannot be modified automatically, or at least without precaution. 

A related issue concerns the naming of colors. In their activity, controllers use 
color name so as to identify graphical elements. For example, they use the name of 
the color to refer to a particular flight status instead of referring to the status itself, as 
in “can you check the bathroom green airway?”. In such circumstances, if a color has 
to be modified, it must be kept recognizable and identified as the same named color to 
accommodate historical use. 

Human subjectivity is also an issue. For example, there is a large diversity of opin-
ions about the saturation thresholds between a comfortable color and an uncomfort-
able one. This depends on human perception and sensation but also on the hue value. 
Furthermore, opinions vary in time, because of habituation or fatigue: the same per-
son can disagree with a design choice at some time, and then agree with it later. 
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Display context  
The perception of colors is dependent on the type of monitor. Nowadays, controllers 
use multiple screens: a radar view, but also a list of flights view, displayed on an 
almost horizontal screen under the radar view. The colors used on this screen must 
match the colors used on the radar view, as some of them allow elements to be 
grouped. However, even after calibration, it proved to be difficult to get exactly the 
same colors on both screen. For example, there were situations where up to four dif-
ferent blues were displayed on the screen. All four colors were very close in terms of 
LCH. The problem was worse when we took into account the second screen: we had 
to spread apart further the hue of each blue so as to allow recognition and association 
within the two screens. However, we did not explore further the problem, as our  
assignment was only to work on the main radar view. Fortunately, there are other 
contextual information that allow the controllers to discriminate between the status 
reflected by the colors. Nevertheless, this problem should not be overlooked. 

The temperature of the display also influences perception. For example, we changed 
the saturation and hue of a slightly colored gray from C=3% to C=2.92% and from 
H=156° to H=206° to make the values coherent with other colors. We did it offline, 
and to our surprise, when users saw the new result, they said it was too colored. We 
learned three things. First, a 50° modification of hue with saturation as low as 3% is 
noticeable (and hindering). Second, offline modifications are harmful, even if based on 
sensible reflection made by an experienced graphical designer. Third, this is another 
example that shows that specifying a gray with R=G=B is harmful, because it does not 
take into account every parameter that influences color rendering and perception. 

A lasting, iterative activity 
Even though it is possible to roughly describe the workflow we used (design luminos-
ity first, then saturation, then small objects), the actual activity was done in an iterative 
manner. Besides, as any design activity, the tasks took us some time to accomplish. 

First, we had to fix problems introduced by our own new settings: it was difficult 
to know the impact of a modification, to remember the dependencies between con-
straints, and to check every possible problem all along the process. Furthermore, we 
had to explore several configurations, going back and forth between intermediate 
solutions, which was not an easy task to do with the tools we were using. Besides, 
designing needs maturation and understanding of the context, for both the designers 
and the users. For example, designing the right warning orange required the designer 
to really integrate the conditions of apparition and the context of use of such orange. 
Regular discussions around the examples and the tools really helped designers and 
users to achieve a successful result. Finally, designing a color palette is highly subjec-
tive. This is not to say that users do not know what they want, but diversity between 
users, fatigue due to hours of design, changing context conditions etc. make the de-
sign subject to unexpected modifications, at best local, at worst global. As designers, 
we had to react accordingly. For example, in the first task, we worked with users so as 
to get their feedback and fix problems as soon as possible. After one day of designing, 
we had a new palette that was satisfying to both the users and the designers. When we 
came back the following day, the users found that the new configuration made the 
image too uncomfortable because it was too luminous. We had to lower the luminos-
ity of each color one by one to fix this problem.  
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4   Implication for Design 

In this section, we sum up the experience we gained during our tasks. We identify the 
relevant dimensions to take care of, when designing tools and methods to support 
graphical elements design. 

Design with actual, controllable examples 
Actual color design tools allow control of color dimensions and checking of the re-
sults on a square displaying the resulting color [11]. However, to really design a color, 
we had to configure the application with the newly designed color, and check it in an 
actual scene, in our case a radar view. This takes time and prevents an efficient itera-
tion loop. In our ad-hoc tools, we tried to solve this problem by embedding a sample 
of the flights that were supposed to be organized in flows and sub-flows. This allowed 
us not only to check the results, but also to completely change the way we handled 
designing, as we could test multiple solutions quickly, and adjust swiftly and pre-
cisely each color. In fact, color-design tools should use an imaging model, not a color 
model as they do today [6].  

Design with multiple examples at once 
An object may be involved in multiple situations. For example, when designing the 
color of a flight, we had to take into account all the backgrounds over which it could 
be displayed. This forced us to go back and forth between different configurations of 
the application. Thus, a color tool should not only embed controllable examples, but it 
should also allow an easy switching between examples (either by juxtaposing them, or 
progressively disclosing them). 

The global scene is important 
We highlighted the importance of designing on real scene samples. However, it is im-
portant to keep in mind that these samples are only parts of a global graphical scene. All 
individual elements build up the perception of the global scene, and global rendering is 
the only mean to check the global comfort of the UI. Inversely, the global scene influ-
ences the perception of a single element. In order to experience these interactions, a 
designer must work on real scenes, and not just approximate or simplistic ones. 

Foster explorative design 
Making a design successful requires exploring and comparing alternative solutions. 
Our tools hinder exploration, as they require to save the configuration and to relaunch 
the application, to compare with early designs. Fortunately, we could use two screens 
to compare our designs with the configuration currently in use in control centers: this 
scheme must be generalized to any intermediary configuration, whether it concerns a 
single element, or a set of elements. Sideviews is an example of such style of  
design [15].  

Foster constraints expression 
We also noticed the importance of expressing constraints and reifying them. During the 
design phases, remembering all constraints is difficult. Actually, color molecules im-
plement a kind of constraints, enforced with graphical interactions [10]. Such graphical 
constraints would have made group settings easier: it would have allowed us to lower 
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the luminosities of several elements at once. In addition, constraints expressed with 
formulas would check that a change of a parameter does not violate a previously ful-
filled constraint. However it is sometimes difficult to express constraints, either 
graphically, or even prosaically: the constraints between the sectors gray are complex, 
and a tool that would enforce them would be too cumbersome to use. 

Expressing and structuring colors 
The LCH model, together with calibrated displays, is the right tool to express color. 
The LCH color space allows for predictable manipulations and structured design. 
However, when designing very precise values, the resolution of the machine color 
model hinders tuning. We were obliged to tune the final RGB values to find the right 
set of gray level for background. A right tool would facilitate expressing and manipu-
lating the structured relationships between colors while at the same time allowing 
small adaptations using the final color model. 

Even if based on the perceptual system, the LCH model is not perfect. The dimen-
sions are mostly orthogonal, but not perfectly orthogonal. The LCH model does not 
allow for modifications that would guarantee that a named color is still perceived as 
the same. Color expression and constraints must take into account the specificities of 
named colors, and provide suitable interaction to help designers manipulate them.  

Not just about design: integrate all purposes 
During our design activities, we found that our task was not only to reach a final pal-
ette, but also to help users express their needs, to help us justify our choices and con-
vince users, and to help accept the new settings. In the justification phase, by giving 
quantitative arguments, constraints would enable to argument for the choice eventu-
ally made. A list of constraints would also act as a proof that criterions required by a 
specification document are respected, and would help define an experimental plan to 
experimentally assess the design choices [12]. 

A tool to help designing should not be used only once, but also as an instrument 
that would accompany the configured system all along its lifetime. Actually, the tool 
itself would play the role of the configuration file of the target application. Such a tool 
would reify the design choices and justifications and help designers understand and 
respect past constraints that led to a particular design. As such, it would serve as a 
design rationale tool, and would extend the notion of active design documents [9, 4]. 

5   Conclusion and Perspectives 

In this paper, we reported about our experience as designers of colors for graphical 
elements. We showed that interaction between visual dimensions and display context 
makes the design very dependent on small details. We reported how we handled vari-
ous technical, cultural, and perceptual constraints. Based on this experience, we  
devised a set of implications for designing future instruments to support graphical 
design activities. 

Notwithstanding the specificity of cognitively demanding ATC activities where 
even the smallest detail is important, the set of implications for design we devised 
should be of interest in other contexts. For example, web design requires defining a 
palette, but for a design to be coherent and harmonious, the same concerns that we 
expressed here should be taken into account. The features of the tool we envision 
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would be of the same usefulness, whether as a design tool, as a design rationale tool, 
or as an evaluation tool.  
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Research Paper

Visual scanning as a reference framework
for interactive representation design

Stéphane Conversy1, Stéphane Chatty2 and Christophe Hurter3

Abstract
When designing a representation, the designer implicitly formulates a sequence of visual tasks required to
understand and use the representation effectively. This paper aims at making the sequence of visual tasks
explicit in order to help designers elicit their design choices. In particular, we present a set of concepts to
systematically analyse what a user must theoretically do to decipher representations. The analysis consists of
a decomposition of the activity of scanning into elementary visualization operations. We show how the analysis
applies to various existing representations, and how expected benefits can be expressed in terms of elemen-
tary operations. The set of elementary operations form the basis of a shared language for representation
designers. The decomposition highlights the challenges encountered by a user when deciphering a repre-
sentation and helps designers to exhibit possible flaws in their design, justify their choices, and compare
designs. We also show that interaction with a representation can be considered as facilitation to perform the
elementary operations.

Categories and subject descriptors
H.5.2 User Interfaces – evaluation/methodology, screen design.

General terms
design, human factors

Keywords
visualization, infovis, design rationale, visual design, interaction

Introduction

Designing representation is often considered to be a

craft. The design activity requires multiple iterations

that mix ad hoc testing, discussions with users, con-

trolled experiments, and personal preferences. These

ways of designing are either costly (controlled experi-

ment), error-prone (ad hoc testing), or lead to non-opti-

mal results (personal preference). Although a number of

theoretical works help to explain the strengths or weak-

nesses of a representation,1–7 no systematic method

exists that would help designers to assess their design

in an a priori manner, i.e. before user experiments. As

suggested by Munzner,8 such a method would help not

only for formative purposes, but also as a summative

evaluation before actual user experiments.

When designing a representation, a designer implic-

itly formulates a way to understand and use the repre-

sentation effectively. For example, reading a city map

requires scanning it, finding noteworthy locations

(metro stations, connections, etc.), devising a path to

go from one point to another, and so on.9 For a user,

except for very specialized graphics and narrow tasks,

figuring out a representation is like interacting using

the eyes only: a user has to figure out a solution to his

task at hand by scanning the picture, seeking graphics,

memorizing things, etc. The succession of these small

visualization operations induces a cost that deserves to

be evaluated before acceptance of a final design.

We suggest that most design decisions can be

explained by the willingness of the designer to

reduce the cost of deciphering the representation.
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However, there is no common core of concepts that

allows designers to precisely express the rationale

behind a design decision. This hinders the design pro-

cess because it makes it hard for designers to explain to

users and stakeholders why a representation is suitable

for their tasks (justification) and how a new prototype

is better than a previous one (comparison).

Furthermore, they cannot justify their choices in a

design rationale document, which makes the decisions

susceptible to disappearance in future evolutions of the

system.

This paper presents a set of concepts for analysing

how a user deciphers a representation. It relies on and

extends previous works about visual scanning and

design elicitation. The goal of the paper is not to

show better designs for a particular problem. Rather,

the goal of the paper is to present an analysis that

exhibits the steps required to figure out a particular

representation, and helps to justify design choices

and compare representations.

Related work

We based our work on previous studies that can be

roughly divided into three groups. The first group con-

cerns eye gaze, representation scanning, and models of

visual perception; the second concerns visual task

taxonomies; and the third concerns design

formulation.

Eye gaze, scanning, and visual perception

Eye tracking enables researchers to analyse what users

look at when solving a problem. However, a large part

of the literature is devoted to how to process tracking

data in order to analyse it.10–12 Furthermore, the state

of the art in this field still experiments with very low-

level designs and abstract graphics,9,13 far from the

richness of today’s visualizations. A number of findings

are interesting and may help the design of representa-

tions, but they are hard to generalize and use in a pre-

scriptive way.14

The Adaptive Control of Thought – Rationale

(ACT-R) model aims at providing tools that simulate

human perception and reasoning.15 However, the tool

is not targeted towards designers, as its purpose is to

model human behaviour so as to anticipate real-world

usage. It does not take into account some arrange-

ments such as ordered or quantitative layout, nor

does it support a description of how a representation

is supposed to be used. ACT-R has tentatively been

used to carry out autonomous navigation of graphical

interface, together with the SegMan perception/action

substrate.16 However, the interfaces used as testbeds

are targeted towards WIMP (window, icon, menu,

pointing device) applications, which do not exhibit

high-level properties available in rich visualization.

UCIE (Understanding Cognitive Information

Engineering) is an implemented model of the pro-

cesses people use to decode information from gra-

phics.17 Although targeted on graph visualization,

UCIE relies on perceptual and cognitive elementary

tasks similar to the ones presented here. Given a

scene, UCIE can compute a scan path and an estima-

tion of the time needed to get information (with mixed

results). However, this work is more targeted at show-

ing the effectiveness of the predictive model than at

describing the tasks with enough details to enable

designers to analyse their own design and justify it.

Furthermore, the tasks do not include operations

such as entering and exiting, or following a path, and

their descriptions lack considerations on interaction.

The semiology of graphics is a theory of abstract

graphical representation such as maps or bar charts.4

It describes and explains the perceptual phenomenon

and properties underlying the act of reading abstract

graphics. In his book, Bertin defines three levels of

reading a representation: the elementary level, which

enables the reader to ‘unpack’ visual variables of a

single mark, the middle level, which enables the

reader to perceive a size-limited pattern or regularity,

and the global level, which enables the reader to grasp

the representation as a whole, and see at a glance

emergent visual information. Bertin4 pointed out the

problem of scanning in what he terms ‘figuration’ (i.e.

bad representation). He briefly depicts how the eye

scans a graphic. During scanning, the eye jumps

from one mark to the next, while experiencing pertur-

bation by other marks. The eye then focuses on par-

ticular marks to gather visual information.

Cleveland has presented a model for studying dis-

play methods of statistical graphics.18 Three visual

operations of pattern perception are defined: detection,

assembly, and estimation. Three visual operations of

table look-up are defined – projection, interpolation, and

matching. Similar to our work, the model addresses the

method for displaying information. Some operations,

such as projection (also named scanning in the paper)

pertain partly to our concerns. However, Cleveland

focuses on the efficiency of low-level perception

(such as aspect ratio) of statistical information, while

we focus on the decomposition in operations for any

visualization.

Visual task taxonomies

Casner designed BOZ, a tool that automatically gen-

erates an appropriate visualization for a particular

task.19 BOZ takes as input a description of the task

to support and relies on a set of inference rules to

2 Information Visualization 0(0)
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generate a visualization that maximizes the use of the

human perceptual system. In the following, we use the

set of perceptual operators embedded in BOZ, such as

‘search (an object with a given graphical property)’,

‘lookup (a property given an object)’, and ‘verify

(given a property and an object, that this object has

the property)’.

Zhou and Feiner20 designed IMPROVISE

(Illustrative Metaphor Production in Reactive

Object-orientated visual Environments), another auto-

matic tool to design representations. Zhou and Feiner

have refined the visual analysis into multiple levels:

visual intents, visual tasks, and visual techniques.

Visual tasks include emphasize, reveal, correlate, etc. A

visual task may accomplish a set of visual intents, such

as search, verify, sum, or differentiate. In turn, a visual

intent can be accomplished by a set of visual tasks. A

visual task implies a set of visual techniques, such as

spatial proximity, visual structure (tables, networks),

use of colour, etc.

Previous works pertain to visualization analysis

tasks, such as retrieve value, filter, find extremum, sort,

etc.21,22 Even if the tasks are presented as low level

(compared with higher, more data-related tasks),

authors do not discuss how the tasks are ‘imple-

mented’ in the visualization. Although our framework

can be qualified as even lower level, it comes as an

addition, because it aims at providing concepts to

help discuss the implementation in terms of visual

operators.

Design formulation

The GOMS (goals, operators, methods, and selection

rules) Keystroke-Level Model (KLM) helps to com-

pute the time needed to perform an interaction.23 The

Complexity of Interaction Sequences (CIS) model

takes into account the context in which the interaction

takes place.15 Both KLM and CIS are based on

descriptive models of interaction, which decompose

them into elementary operations. They are also pre-

dictive models, i.e. they can help compute a measure-

ment of expected effectiveness and enable quantitative

comparisons between interaction techniques. These

tools have proved to be accurate and efficient when

designing new interfaces.15,23 We relate our work to

KLM in the section where we discuss the relationships

between visual scanning and interaction.

The speech acts theory,24 originally aimed at ana-

lysing the human discourse, was extended for describ-

ing the user’s multimodal interaction with a computing

system.25 It provides a successful example of using a

model that captures the essence of an interaction

modality (speech) and extending it to describe combi-

nations of this modality and others (such as gestures).

Our approach to the combination of visualization and

interaction can be compared with this.

Green26 identified cognitive dimensions of nota-

tion, which help designers share a common language

when discussing design. The dimensions help make

explicit what a notation is supposed to improve, or

fails to support. Cognitive dimensions are based on

activities typical of the use of interactive systems

such as incrementation or transcription. However, they

are high-level descriptions and do not detail visualiza-

tion tasks. Our work has the same means and goals

(description and production of a shared language) as

cognitive dimensions, but specialized to visualization.

Idealized scanning of representation

As previously stated, when designing a representation,

a designer implicitly formulates a method required to

understand and use the representation effectively. The

work presented here is an analysis of this method that

provides a way to make it explicit.

When trying to solve a problem using a representa-

tion, a user completes a visualization task by perform-

ing a set of visual and memory operations. A

visualization task can be decomposed into a sequence

of steps pertaining to the problem at hand (e.g. ‘find a

bus line’). Each step requires that a sequence of ele-

mentary visualization operations be accomplished.

Operations include memorizing information, entering

and exiting from the representation, seeking a subset

of marks, unpacking a mark and verifying a predicate,

and seeking and navigating among a subset of marks. As

we will see below, operations are facilitated by the use

of (possibly) adequate visual cues, such as Bertin’s4

selection with colour, size, or alignment. In terms of

the model proposed by Munzner8, we target the encod-

ing/interaction technique design box.

In the following, we analyse idealized scanning of

representations. We use ‘idealized’ in the sense that

the user knows exactly what she is looking for, knows

how to use the representation so as to step through

with the minimum necessary steps, and uses only the

available information in the representation otherwise

stated. Thus, we do not take into account other phe-

nomena such as learning, understanding, error,

chance, or personal perceptual disabilities (such as

colour blindness). This is similar to the approach

taken with the KLM: when applying a decomposition,

the designer analyses an idealized interaction.

In fact, the model enables either comparing multi-

ple scanning strategies for a given task and a given

representation or comparing multiple representations

for a given task and the most efficient scanning. In the

following, we focus on representation comparison, and

we assume that we have found the most efficient

Conversy et al. 3
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scanning for each representation. The next section

uses an example to illustrate how to perform an anal-

ysis of representation scanning. Based on this, we fur-

ther detail the steps and operations required, and what

factors affect users’ efficiency at achieving them.

A first glimpse: A tabular bus schedule
representation

There is no such thing as an absolutely effective rep-

resentation; to be effective, a representation must min-

imize the amount of work required to fulfil a task.19 In

the following example, the problem to be solved by a

user is to answer the following question: ‘I am at the

IUT Rangueil station and it is 14:18. How long will I

have to wait for the next bus to the Université Paul

Sabatier station?’ The user knows that two bus lines go

to the destination (Nos. 68 and 108). Figure 1 is an

excerpt of a typical representation of a bus schedule.

The display is a physical panel at the station booth, on

which lies paper sheets, each with a table for one bus

line that displays the time of departure from each

station.

The drawings overlaid on the representation show

the idealized visualization tasks a user must perform

when trying to answer the question. A circle depicts an

eye reading, an arrow an eye movement. Memory

operations are depicted with a blue ‘M’. The step

numbers are in the form xyz, which means that step

y is the yth substep of step x, and step z is the zth

substep of step y. A check mark depicts the last oper-

ation of a substep, together with a green circle. Figure

1 also shows two different scanning strategies to

answer two instances of an intermediate question

(‘when is the next bus for line 68 (resp. 108)?’).

. Step 0: The user should memorize the two compat-

ible bus line numbers and the current time.

. Step 1.x: The user should find an appropriate bus

line. The number of the line is represented in large

boldface text at the top-right corner of each paper

sheet.

. Step 1.2.1: The user should find his current loca-

tion (‘IUT Rangueil’) among the list of stations.

The list is a subset of marks of kind ‘text’, aligned

vertically, with no marks in between. The stations

are ordered according to their location along the

bus line.

. Step 1.2.1.x: The user must find the next departure

time. He has to navigate through a row of texts that

displays the hour and minute for each bus depar-

ture. As the x dimension is multiplexed (or ‘folded

on’) y, the user may not find a compatible time in

the first row examined: in this case he has to

start step 1.2 over by moving to the next row

(Step 1.2.2). Finally, the user finds the next depar-

ture when he identifies the first departure that is

later than the current time.

. Step 1.3.x.x: The user tries a different scanning

strategy than the linear approach above, where

only the first time in the row is checked, until a

time later than the target is found. The user then

performs a back step to the previous row (Step

1.3.3.2). This strategy is often faster, but requires

one more memory operation to memorize the pre-

vious mark position.

. Step 1.3.3.2: The user finds that this row does not

contain relevant information, so he performs a back

step to the previous row. This requires memoriza-

tion of a previous mark position.

. Step 1.2.2.x, 1.3.2.x, green circle: The user finds a

compatible bus in each line and thus has to perform

mental computation (a difference between two

times) to find the duration before the next bus,

and memorize it to compare with previous or sub-

sequent findings.

Elementary operations

This section details the various elementary operations

required to implement the steps. To define the set of

operations, we analysed a number of different visuali-

zations from multiple domains (various ATC (air traf-

fic control) systems, time scheduling such as tables,

clocks or calendars, widgets, visual languages, etc.)

We also based our analysis on existing literature

when available, supplemented by interviews with visu-

alization designers. Together, the set of operations we

came up with is sufficient to explain most design

choices, but further, more systematic work may be

needed to make the set more comprehensive.

For each operation, we detail it and give elements

that aid or hinder operation achievement. We also

compare our operations to the BOZ and

IMPROVISE taxonomies and explain the differences,

mainly in terms of elements that may aid or hinder the

operation.

Memorizing information

To solve problems, users have to know what informa-

tion to seek. They have to memorize this information,

so as to compare it with the information that arises

from the representation. As we will see in the exam-

ples, different representations require different num-

bers of memory ‘cells’. For example, in the tabular

bus scheduling view, users need three cells of informa-

tion at the beginning (current time, 68 and 108), two

4 Information Visualization 0(0)
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cells for intermediary results, and one cell for a previ-

ous location. Memory requirements are often over-

looked when comparing visualizations: the more cells

required, the harder it becomes to solve a problem.

Memory fades with time, so for long scanning tasks

users may have forgotten important information

before the end of the scanning. Forgotten information

that is available on the representation can be

compensated for by additional seeking operations or

by adding the equivalent of a selectable visual property

(e.g. a hand-written mark or a pointing finger).

Entering and exiting representation

A representation is rarely used in isolation. Users are

surrounded by different representation from various

Figure 1. A bus schedule representation with the required steps to find particular information.

Conversy et al. 5
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systems. For example, air traffic controllers (ATCos)

employ radar views, various lists of flights, paper

strips, etc. When they solve a problem, users may

have to switch representations. This may require trans-

lating the input of a representation into the visual lan-

guage of another representation and translating the

information found back into the problem.

In the bus schedule example, users may have to

translate the representation of a time seen on a

watch into numbers in the form hh:mm so as to

comply with the ordered-by-time menu-like vertical

representation (entering). They also have to get the cor-

rect bus line somewhere (i.e. a map representing the

public transportation network) and translate the infor-

mation (a textual number or a colour) into the visual

language of the representation (entering). The informa-

tion to find is the waiting time for the next bus. The

tabular representation does not give this information

directly and thus requires a mental computation (exit-

ing). In the city map example, translating map direc-

tion to real-world direction and recognizing street

layout is easier if the map is orientated to the terrain

(i.e. north of map matching the actual north direc-

tion). Taking into account this step is important

when a switch of representation does not require trans-

lation, as this makes the second representation easier

to understand.

Seeking a subset of marks

When users search for bus line information, they have

to search for a subset of the marks in the representa-

tion. In order to find the correct line, the user has to

navigate from line number to line number.

Perceiving a subset is made easier with selective (in

the sense of the semiology of graphics4) visual vari-

ables: marks can be extracted from the soup of all

marks at one glance, which narrows down the

number of marks to consider. For example, the

number of the bus line is represented in text, with a

large font size and boldface, placed at the top-right

corner of the sheet. The size and position of bus line

number make the marks selectable. Furthermore, when

elements in a subset are close enough together, no

other in-between element perturbs the navigation

from mark to mark. The list is even easier to navigate

in, since the marks are aligned horizontally and verti-

cally (or in other words, marks differ by only one

dimension (x or y)).

Conversely, perceiving a subset can be harder in

presence of similar marks that do not belong to the

considered subset. In the tabular schedule example,

all time information has similar visual properties

except for the start time of each bus, which is set in

bold. If the start time were set in regular, it would be

harder to find at a glance. Seeking a subset corre-

sponds to the search-object-* perceptual operator in

BOZ.19

Unpacking a mark and verifying a predicate

When the user sees a candidate mark, he or she has to

assess it against a predicate. In the tabular bus sched-

ule example, the user has to find a line number that

matches one of the correct buses. Assessing a predicate

may require extracting (or unpacking4) visual dimen-

sions from a mark. This is what Bertin calls ‘elemen-

tary reading’.4 This operation also corresponds to the

lookup-* and computation perceptual operator class in

BOZ.19 However, assessing a predicate may also

require cognitive comparison to memorized informa-

tion (‘Is the bus number I’m looking at one of the

memorized ones?’) or visual comparison with another

mark (example in the following). In BOZ the difficulty

of accomplishing the operation depends on the visual

variable used, but not on other considerations such as

memory or visual comparison.

Seeking and navigating among a subset of
marks

Within an identified subset, a user may search for a

particular mark. If marks are displayed in random

positions, finding a mark requires a linear, one-by-

one scanning of marks, with a predicate verification

for each. The time needed is O(n). If marks are

ordered (as in the ordered-by-time schedule), a user

can benefit from this regularity to speed up navigation,

for example by using a binary search approach, which

leads to a time needed of O(log(n)). If marks are dis-

played at quantitative positions, we can hope to

achieve O(1). However, this may require secondary

marks such as a scale ticks and legends. In this case,

scanning is split into two phases: navigating into the

scale first, then into primary marks.

Navigating inside a list of texts is equivalent to read-

ing a menu, for which performance may be predicted

quite accurately.27 However, some graphical elements

may hinder navigation. For example, navigating in a

row surrounded by other rows, as in a table, is difficult.

This is the equivalent of a visual steering task:28 it

requires that the eye be able to stay in a tunnel.

Some representations are supposed to aid this (e.g.

think of a spreadsheet where every other row is col-

oured). Performance depends on the width and the

length of the tunnel. Navigating inside a vertical list

of text is easier than navigating in a horizontal one, as a

horizontal row is as narrow as the height of a glyph.

Furthermore, in particular cases, navigating may

require a step back to a previous mark, which in turn

6 Information Visualization 0(0)
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requires memorizing a previous location (see step

1.3.2.x in Figure 1).

No BOZ perceptual operator corresponds to this

operation. IMPROVISE generates scales for quantita-

tive data, but no mechanism facilitates ordered data.

None of the taxonomies in BOZ and IMPROVISE

handle navigation or take visual steering into

consideration.

Formulating design rationale

We argue that a designer implicitly designs a required

sequence of elementary operations when inventing a

new representation. We also suggest that most expla-

nations given by designers can be expressed in terms of

elementary operations, and in particular in how a par-

ticular design improves operation performance. In the

following, we present various designs for bus schedules

and ATC paper strips. We explain the expected gains

of each design using the concepts presented above. We

balance the claims by our own analysis and possible

loss of performance due to a lack of support for over-

looked operations.

Bus schedule

Ordered-by-time linear representation. One bus

company proposes the representation in Figure 2 on

its website. This displays an ordered list of time of

departure at the chosen station along the x dimension,

with the corresponding bus line indicated by a cell

containing a background colour and white text. The

required steps are:

. Step 0: Memorize the current time and appropriate

bus lines (entering and memorizing), possibly trans-

lating time from an ‘analogue’ watch to a text in the

form hh:mm (entering).

. Step 1: Find the ordered list of time (seeking) and

the first time later than the current time (navigating

and predicate).

. Step 2: Find the next appropriate bus (predicate, or

seeking a mark if using bus colour).

. Step 3: Find the associated time (seeking a mark).

. Step 4: Compute the waiting time before the depar-

ture (exiting).

Compared with the tabular representation, the fol-

lowing operations may be aided. . .:

� Seeking and navigating among a subset of

marks: times of departure are displayed in a

ordered manner which may ease navigation.

� Seeking a subset of marks: the user can easily

select elements to the right of the element

found in step 2 (later times, using selection

based on location).

� Memorizing: there is less information to memo-

rize (two vs. six chunks). . . .and there are no

apparent drawbacks.

Spiral representation. SpiraClock is an interactive

tool that displays nearby events inside a spiral (instead

of a circle, like a regular clock).29 Time of event is

mapped to angle, and thanks to the multiplexing of

the angle over the radius, other information emerges

(periodicity, closeness through radius) (Figure 3, left).

The clock also displays the current time and adapts the

event occurrences accordingly. The occurrence of an

event is actually depicted by the ‘most recent’ limit of a

‘slice’. Duration is a relative angle, or a curvilinear

distance, which is quantitative representation, more

precise on the exterior of the spiral (i.e. for close

events) than in the interior. There is also a scale

depicted with black squares along the circle.

SpiraClock’s designers argued that adding textual

information about hours would be useless, since the

design uses a well-known reference (a watch) and since

the visualization is focused on current time. If we rep-

resent the bus timetable on SpiraClock (as in Figure 3,

left), the steps required to answer the question are:

. Step 0: Memorize two bus colours (entering and

memorizing).

Figure 2. An ordered-by-time bus schedule.

Conversy et al. 7
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. Step 1: Find the end of minute hand (seeking a

mark).

. Step 2: Find the next matching coloured mark (i.e.

corresponding to line 68 or 108) (seeking a mark).

. Step 3: Evaluate the distance between the matching

mark and the minute hand, and estimate the waiting

time (unpack and exiting).

Compared with the ordered linear representation,

the following operations may be aided. . .:
Entering: The current time is directly visible thanks

to the hands.

Navigating: Since the time is visible, navigating to

the next correct bus is shorter.

Exiting: With SpiraClock, a rough idea of the wait-

ing time is directly visible (no computation needed), as

it is proportional to distance and the design uses a

culturally known scale. . . . and there are no apparent

drawbacks.

Quantitative linear representation. Figure 4 shows a

representation based on a linear quantitative scale.

Each coloured rectangle represents the departure of

a bus at the chosen station. The horizontal position

of a rectangle corresponds to the time of departure

and is multiplexed along the vertical dimension. To

aid navigation, a linear scale is provided, with textual

information about hours and small ticks to mark quar-

ters between hours.

. Step 0: Memorize two bus colours (memorizing),

possibly translate time from a watch to a text for

hour, and then to a position among ticks for min-

utes (entering).

. Step 1: Find the hour (seeking a mark).

. Step 2: Find the correct quarter-hour among the

ticks (seeking a mark).

. Step 3: Find the next compatible bus (i.e. corre-

sponding to line 68 or 108) (seeking a mark).

. Step 4: Evaluate the distance between the matching

mark and the minute hand, and estimate the waiting

time (no computation is needed) (unpack and

exiting).

Compared with SpiraClock, the following operation

may be aided. . .:
Navigating: Thanks to the linear layout and the sup-

plemental space between rows, the steering task is

easier to perform (especially comparing the narrow

tunnel configuration of Figure 3, right). . . . at the

expense of the entering operation (there is no current

time visible since the representation is not dynamic).

The equivalent radial visualization is shown in

Figure 3, right: the amount of information is the

same (all events in a day are displayed), and a scale

of hours helps readers navigating into the visualization.

Discussions about both designs can revolve around the

ease with which a viewer can navigate in a narrow

tunnel, be it linear or spiral.

ATC strips

The activity of ATCos includes maintaining a safe dis-

tance between aircraft by giving clearances to pilots –

heading, speed, and level (altitude) orders. ATCos

must detect potential conflicts in advance. To do this

they use various tools, including a radar view and flight

strips.30 A flight strip is a paper strip that shows the

route followed by an aeroplane when flying in a sector

(Figure 5).

Figure 3. SpiraClock. Left: visual scanning. Right: a configuration that displays more information.
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The route is presented as an ordered sequence of

cells, each cell corresponding to a beacon, with its

name, and its time of passage. Controllers lay paper

strips on a strip board, usually by organizing them in

columns. The layout of strips on a board, although

physical, can be considered as a representation.

Some planned systems aim replacing paper strips

with entirely digital systems so as to capture clearances

in the database (currently the system is not aware of

clearances from the controllers to the pilots). These

systems partly replicate the existing representation

and we show in subsequent sections how they compare

with respect to representation scanning.

Regular strip board. One of the activities of a control-

ler is to integrate the arrival of a flight into the current

traffic. To do this safely, the controller must check that

for each beacon crossed by the new flight, no other

flights cross that beacon at the same time at the

same level. Figure 6 shows the required idealized scan-

ning, with typical paper strips organized in a column.

The steps are:

. Step 1: Find the flight level and memorize it (seeking

and memorizing).

. Step 2.1: Find the beacon text on the arrival strip

(seeking), and for each beacon (horizontal text list

scanning, with no perturbation), do the following

steps (navigating).

. Step 2.2: Memorize the beacon text, find the

minute information (hour is usually not important)

(seeking) and memorize it (memorizing).

. Step 2.3: For each other strip (vertical rectangular

shape list scanning), do the following steps (seeking

and navigating).

. Step 2.4.1: Find the beacon text, and for each

beacon (horizontal text list scanning, with no per-

turbation), do the following steps (seeking and

navigating).

. Step 2.4.2: Compare the beacon text to the one

memorized in step 2.2 (predicate).

. Step 2.4.3.1: If it is the same, find the minute text,

and compare it to the one memorized in step 1.2 (�

5 min) (predicate).

Figure 4. A linear, quantitative bus schedule representation.
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Figure 5. An ATC paper strip.
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. Step 2.4.3.2: If the number is about the same, find

flight level, check it and compare it with the mem-

orized level (predicate).

. Step 2.5.1.2: If it is the same, do something to avoid

a conflict (predicate and exiting).

Strips in coloured holders. The strip look and layout

in the previous section is specific to the en route con-

trol centre in Bordeaux, France. In other en route con-

trol centres, people use rigid, coloured holders for each

paper strip. The look of the strips is different, as the

coloured frame of the holder surrounds each strip.

Figure 7 shows an idealized scanning with coloured

strip holders: here red is for north–south flights (odd

flight level), while green is for south–north flights

(even flight level). Because of the different level assign-

ments, controllers can be sure that red and green

flights will never enter into conflict. Red holders can

quickly be extracted from green ones (selection based

on colour). Hence, coloured strip holders enable

controllers to narrow the set of flights to compare

with a new one, and reduce the number of required

steps accordingly (step 2.x, with x� 3, seeking and nav-

igating). Holder colours can also ease predicate verifica-

tion: holder colour of the arriving strip can be matched

easily to holder colour of other strips, without requir-

ing the controller to determine if the strip is a north–

south or a south–north flight.

Dynastrip. Dynastrip displays beacons in a quantita-

tive way, mapping time to the horizontal dimension

(Figure 8).31 All time scales are aligned across strips.

The main goal of Dynastrip is to display the position

relative to the planned route in the strip, which adds

information. Dynastrip designers also hoped that this

representation would assist controllers to identify con-

flicts: if beacons with the same text are vertically

aligned, it means that multiple flights pass over the

same beacon at the same time.

. Step 1: Find the flight level (seeking) and memorize

it (memorizing).
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Figure 6. Scanning on regular ATC paper strips.
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. Step 2.1: Find the beacon texts on the arrival strip,

and for each beacon (horizontal text list scanning

(seeking and navigating), do the following steps.

. Step 2.2: Memorize the beacon (memorizing), steer

visually through a tunnel (� 5 min) (symbolized in

grey on Figure 8 but not shown on the actual inter-

face) (seeking and navigating), and compare each

beacon found with the memorized one (predicate).

. Step 2.2.1: Find the flight level, check it and com-

pare it with the memorized level (predicate).

Compared with the regular strip boards, this design

may aid. . .:
� Seeking and navigating: thanks to a steering task,

beacon search is facilitated.

� Verifying a predicate: the time limit is directly vis-

ible. . . . at the expense of a supplemental inter-

action to reach beacons not yet visible on the

time scale.

Validity and limitations

Idealized scanning is only theoretical. We have not ver-

ified experimentally the degree to which actual

scanning corresponds to our model, which raises ques-

tions about the validity of the work presented here.

However, we suggest that designers rely implicitly on

idealized scanning, although their expectations do not

always stand against reality.32 A deeper understanding

of the phenomena is thus necessary to make design

choices and expected benefits (explicit), and to get a

reasonable confidence in the design.

Bertin’s semiology of graphics and Furnas’ Effective

View Navigation33 have not been fully validated exper-

imentally. Nevertheless, their concepts permeate a large

number of visualization designs. These approaches

allow identification of relevant concepts and dimen-

sions when analysing or designing new visualizations.

We think that the elementary operations we identify in

this paper will serve as a similar framework for repre-

sentation rationale. In the same way, we have not veri-

fied experimentally whether navigation in an

ordered set is easier than in a random set, and whether

navigation in a quantitative set is easier than in an

ordered set. Again, a number of visualizations rely on

these assumptions: making the assumptions explicit

helps designers think about the effectiveness of their

designs.
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Figure 7. Scanning with paper strips in coloured holders.
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The absence of a distinction between ‘beginners’

and ‘experts’ in our analysis seems problematic as

well. This is clearly the case in the ATC example: we

know from previous observation that ATCos do not

scan the strips in the same way as we described the

process above. Instead, they rely heavily on their

knowledge of the sector, recurrent problems, and

recurrent aircraft to detect conflicts. Again, our

description aimed at eliciting what the visualization

enables for a reader that only uses information

extracted from the representation. However, during

normal operations, ATCos regularly do what they

call a ‘tour of the radar image’ or a ‘tour of the strip

board’ in order to check ‘everything’. In this case, they

are supposed to scan heavily both representations and

they may exhibit some of the theorized behaviour.

Furthermore, we observed that ATCos make more

errors when training on a new sector, at least partly

because of representation flaws. These flaws are com-

pensated for by expertise, which is somewhat related

to knowledge in the head and memory (in some cases,

ATCos are considered as experts on a sector only after

2 years of training). However, in high-load situations,

with many aircraft, or with particular problematic con-

ditions such as unexpected storms, the representation

becomes more important and controllers seem more

likely to exhibit the theorized behaviour.

Visual scanning and interaction

Very few serious visualization applications are devoid

of any interaction with the user, whether for saving

data, searching, modifying data, or changing the rep-

resentation itself. Even bus schedules printed on paper

are often bound in leaflets that the user must browse to

find the appropriate page. Zooming and panning,

changes of view point, data filtering, and similar

operations are often involved to help the user navigate

in the data representation. Considering visual scan-

ning as interaction that occurs through the eyes, this

can be understood from two equivalent theoretical

points of view: actions as part of reading a representa-

tion, or visual scanning as part of interaction in gen-

eral. Or, from a more practical perspective, it can

be considered as the choice of a new representation

by the user.

In this section, we first explore the more practical

perspective and use examples to demonstrate how the

user, by interacting with the representation, plays a

similar role to the designer: she selects a new represen-

tation that makes visual scanning simpler for the task

at hand. We then discuss the more abstract perspec-

tives, outlining how these users’ actions could be

described in the same framework as the visual scan-

ning itself, thus allowing designers to reason about
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how their overall design will be used and not only the

individual representations.

Interacting for better representations

Pen-based digital stripping system. Figure 9 shows a

digital pen-based system that adds an interaction

which allows the controller to press a beacon cell so

as to highlight in red the time of passage over that

beacon on other strips (the system cannot automati-

cally detect conflict because the data on the strips are

not always current). This facilitates seeking and navi-

gating in step 2.x as it reduces the subset of marks to

consider when comparing times and memorizing (one

vs. three cells).

Progressive disclosure. Progressive disclosure dic-

tates that detail be hidden from users until they ask

or need to see it, in order to avoid overwhelming users

with information.34 Progressive disclosure is often

implemented with simple property boxes, on which

properties can be expanded (using a ‘show more’

button, or a ‘disclosure triangle’ in Mac OSX toolbox).

As such, this design principle can be considered as a

way to ease navigation between important elements,

before explicitly hardening it when navigating has

been achieved successfully.

Switching views. Calendar systems (such as Apple

iCal or Google Agenda) often offer multiple views on

events information. In a month view, events are

ordered on the y screen dimension, whereas in a

week view, events are displayed in a quantitative

manner on the y screen dimension. Switching from

month to week view enables users to unpack the dura-

tion information of events more easily. Switching from

week to month view enables users to visualize more

events (the month view is denser) in an ordered

manner, and thus facilitate navigating.

Brushing and selection. Brushing enables users to

select a subset of displayed data in a visualization

system. The feedback of such an interaction usually

highlights the brushed data, by changing their colour

for example. Brushing in a matrix scatterplot can be

used to detect patterns in other juxtaposed
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Figure 9. A pen-based digital stripping system that enables highlighting of information.
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scatterplots, but it also can be used to find a particular

plot in other juxtaposed views. The last case can be

considered as a way to facilitate exiting and entering

between two juxtaposed views.

Progressive transition between views. With calendar

systems, switching makes a new view replace the cur-

rent one: views are at the same place, converse to jux-

taposed views. The switch is instantaneous, which

disturbs the optical flow of users. Hence, users are

forced to scan the new visualization to find again the

particular information they were looking at in the pre-

vious view. Thus, to perform a switch of views, users

have to exit the first view by unpacking and memorizing

conceptual information (day, hour) and entering the

new visualization.

On the other hand, a progressive transition between

views enables users to track moving marks during the

time of the transition. For example, ScatterDice35 use

an animated three-dimensional (3D) rotation between

ScatterPlots. Progressive two-dimensional (2D) inter-

polations also provide transition between scenes.36,37

Both transitions (2D or 3D) enable users to track a

particular moving item and see its final position in

the final view. Hence, progressive, animated transi-

tions enable users to get rid of exiting and entering

views that occupy the same place. Moreover, tracking

a moving mark is like guiding the eye of the user, by

controlling it (in the sense of control engineering). The

goal is the same with a spreadsheet where every other

row is coloured.

Discussion

The concept of interacting to perceive better is not new:

in fact, this is a concept that is shared among psychol-

ogists of action and perception.38 Designers adapt the

representation to make it easier to answer specific pre-

established problems. Users also adapt the representa-

tion to make it easier to answer a problem at hand.

Hence, interacting to change views is of the same

nature as designing. In both cases, the present work

is helpful as an account of the visual task at play, but it

is not helpful at describing the ‘design manoeuvre’26

required to get a better design. There may be new

concepts remaining to be identified, in both the

design space and the user space, which would form

the basis of a prescriptive method for designing

better (interactive) representations.

Designing an interactive representation cannot be

as simple as taking into account visual scanning

alone, nor can it be as simple as counting the

number of KLM operators alone. The design

must be analysed as a whole, and actions to switch

from a representation to another should be taken

into account. Interestingly, KLM, despite being

focused on the users’ actions, accounts for its percep-

tion and memorization activities through its operator

M. One could consider our work on visual scanning as

a first attempt at describing some aspects of this oper-

ator in more detail. One can use this perspective to

extend our approach to representations that the user

can manipulate, indifferently considering actions as

part of the scanning process or scanning as part of a

global interaction process. One way of proceeding

would be to add an interaction operation to the

visual scanning language. This would provide user

interface designers with two dual languages for analys-

ing their designs: one focused on the user’s physical

actions, with operator M used to capture other types of

interaction, and the other focused on visual scanning,

with operator I used to capture other types of interac-

tion. At a finer level of analysis, the two languages

would then appear to be simplified and practical ver-

sions of a common language that describe all interac-

tion operations on the same foot.

Note that considering scanning as interaction is not

as artificial as it may seem. On the one hand, at the

physical level there is some interaction through the

emitted light, and it does indeed trigger significant

changes in the user. And on the other hand, the use

of speech that acts to describe multimodal interaction

has shown that combining different interaction modal-

ities in the same abstract framework can provide

designers with an adequate description language.

Finally, proponents of enaction think that perceiving

is acting: ‘the content of perception is not like the con-

tent of a picture; the world is not given to conscious-

ness all at once but is gained gradually by active

inquiry and exploration’.39 If this theory proves true,

the total costs of adapting the view and scanning

would be difficult to estimate with a method as

simple as summing the cost of individual operations.

A finer language that accounts for the concurrency

between operations might prove more suitable with

this regard.

Conclusion

In this paper, we presented a method to analyse ideal-

ized scanning of graphical representations. The

method relies on a set of elementary operations,

which includes operations from previous taxonomies

and new ones (entering, exiting, memorizing) together

with new considerations (back steps, visual steering,

and the use of ordered or quantitative arrangement).

We argue that rationale for design can be expressed in

terms of these elementary operations. We showed in

various examples how such an analysis can be achieved

and how gains and losses can be explained with
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elementary operations, including when considering

interaction as a change of representation. The set of

elementary operations forms the basis of a shared

common language that helps designers justify and

compare their choices.

In its current form, the method is descriptive, not

predictive. We believe that we are still far from a fully

predictive model of human performance in represen-

tation use, if only because performance depends on

multiple external factors, as demonstrated by

Lohse.17 Instead, we take another perspective: we

argue that a descriptive-only method is useful for

designers, since the decomposition highlights the chal-

lenges encountered by a user when deciphering a rep-

resentation. The benefit is equivalent to one of the two

benefits of KLM: in addition to predicting completion

times, KLM helps designers to understand what a user

must do to accomplish an interaction task. Similarly to

KLM, this makes our model a comparative one, as it

helps designers to choose designs based on a sound

analysis.

In addition to the examples presented here, we have

successfully applied our analysis method presented to

other representations, such as item rating by cus-

tomers in online stores, widgets, and radar images.

Work is certainly needed to expand the set of opera-

tions and the elements that aid or affect their realiza-

tion. For example, we do not yet take into account the

fact that tasks can be aided when externalizing con-

straints into the real world,40 nor did we take into

account representations that ease mental computa-

tion.41 Furthermore, different acts of mental compu-

tation and memorization may exhibit very different

costs. In addition, while we tackled the ‘what to do’

question in this paper, we did not tackle the question

of ‘how to do it’. Eventually, we need to propose a

systematic method that will help designers find for

themselves the steps and considerations to take into

account when evaluating the effectiveness of a partic-

ular representation.
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Abstract
Header: The textual and visual representation of code should not
be considered an art, but should be driven by the capabilities of the
human visual system. Key Insights: Firm principles which can be
relied on to analyze and discuss textual and graphical code repre-
sentations are still missing. ScanVis, an extension of the Semiotics
of Graphics that describes the perception and scanning of abstract
graphics, can help describe, compare and invent code representa-
tions. This shows that the gap between textual and graphical lan-
guages is narrow, and why true visual languages should rely on the
capability of the human visual system.

1. Introduction
An implicit but important aspect of programming languages is that
they must support the production of readable programs [1]: “Pro-
grams must be written for people to read, and only incidentally for
machines to execute. [2]” Programmers read a program by looking
at its ‘code’, i.e., the representation of the program on the screen,
perceptible by the eyes of a human. Both textual and so-called ‘vi-
sual’ representations of programs on the screen employ various
graphical ‘features’: texts, shapes, alignments, colors, arrows, etc.
(fig. 1). Those visual features are often considered ‘aesthetic sugar’
that do not map to semantics (e.g., a colored representation of tex-
tual C program), but they can also be part of the syntax (e.g. in-
dented Python code, arrows in state machines, colored Petri-nets).

As with any visual scene, the performance of programmers
reading textual or visual programs depends on their performance
in perceiving the visual features presented on the screen. However,
few works exist that help analyze those features and their impact on
performance (an exception is [29]). Instead, programming special-
ists mention ‘aesthetics’ or ‘personal preferences’ [1, 3] and warn
about the possible ‘danger of religious wars’ when dealing with the
topic [4]. The use of such terms signals a possible lack of founda-
tion for addressing the phenomenon of code perception and how
this may help or hinder programmers’ performance.

This paper tackles the principles of programming languages
that underpin the practice of code representation: we aim to find
the science in the art, rather than finding the art in the science
as advocated in [3]. We show how ScanVis, an extension of the
Semiotics of Graphics that describes the perception and scanning

[Copyright notice will appear here once ’preprint’ option is removed.]

start
hyst

drag
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Release Drag > d

Drag

Release

CStateMachine sm = new CStateMachine(canvas) {
    CElement toMove = null;
    Point2D lastPoint = null;

    public State start = State() {
        Transition press = PressOnShape(">> hyst")};

    public State hyst = State() {
        Transition drag = Drag(">> drag");
        Transition release = Release(">> start")};

    public State drag = State() {
        Transition stop = Release(">> start");
        Transition move = new Drag(BUTTON1)}};

Figure 1. Two representations of the same program using various
graphical features.

of abstract graphics, helps describe, compare and generate visual
representations of programming languages with respect to human
perception. The expected benefits of this work as a scientific point
of view are a better understanding of the phenomenon of code
perception, the unification of the concepts used in the literature,
and accurate definitions of these concepts. The outcome for end
programmers would be better designed programming languages
and IDEs with respect to this concern.

We focus on the representation of ‘a single page’ of code.
Though current trends in this area focus on the management and
representation of large-scale programs, representation at the level
of the page is overlooked: understanding a single page of code is
still required since the very act of programming (i.e., editing code)
is often done at this level. In addition, while we appreciate that
interaction with code is important [5, 6], we focus solely on the
visual perception of code.

2. Framework
ScanVis is a model that relies on Semiotics of Graphics. This
section presents first the Semiotics of Graphics, then ScanVis.

2.1 Semiotics of Graphics
The Semiotics of Graphics is a theory of abstract drawings (i.e.,
drawings that do not imitate a natural scene) such as maps and bar
charts [7]. A part of this theory describes and explains the percep-
tual phenomena and properties underlying the act of visualizing 2D
abstract drawings. The Semiotics of Graphics relies on the charac-
terization of data to be represented (the data type: nominal, ordered,
and quantitative), and the perceptual properties of the visual vari-
ables used in a drawing, such as color or shape.

Drawings are a set of 2D ‘marks’ (points, lines or zones) ly-
ing over a background. Marks vary according to visual variables
such as position (Xpos and Ypos), shape, color, luminosity, size,
orientation [7], enclosures and lines that link two marks [8]. Visual
variables are characterized by their perceptual properties, and can
be: selective – enable a viewer to assimilate and differentiate marks
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instantaneously (e.g., all red marks) (fig. 2); ordered – enables a
viewer to rank marks perceptually (e.g., from light to dark) (fig. 3);
and quantitative – enable a viewer to quantify differences between
marks perceptually (e.g. twice as large) (fig. 3).

Figure 2. By default all marks are circular and light. Left: Some
marks are dark to produce an H. Luminosity is selective: the H letter
emerges because the eye discriminates two groups of marks (light
and dark) instantaneously. Right: Marks at the same locations,
forming the H, are square. Shape is not selective so the H letter
does not emerge.

All visual variables but shape and link are selective (fig. 2). All
visual variables but shape, link and color are ordered (colors are or-
dered in a limited spectrum only). Xpos, Ypos, angle, length, size
are quantitative to various degrees, as experimentally evidenced
[9]. The performance of readers at selecting, ordering or quanti-
fying depends on the number of values differentiable by them (e.g.,
5 levels of luminosity for selection, 20 levels of luminosity for or-
der), the difference between each value (the less the worse) and the
spatial distance between marks (the more the worse).

10% 20% 40% 80%

10% 20% 40% 80%

0%

0%

Lum

Xpos

Figure 3. Top: Luminosity is ordered but cannot be perceived
quantitatively. Bottom: Position is quantitative: one can perceive
the ratio and the difference between various X positions (pos. 80%
is 2x pos. 40% and 4x pos. 20%).

2

1 bus line 
current time

1 2 3

4

M

M

M bus line 
current time time !X:O

bus# !Color:S, T:N

time !X:Q
bus# !Color:S

M

M

M

Figure 4. Two visualization and the visual operations for the task
“find how long I have to wait for the next bus.” [6] Right: mapping
between data and visual variables (e.g. ‘time → X : O’ means
that ‘time’ is mapped to Xpos in an Ordered manner).

2.2 ScanVis
The Semiotics of Graphics may help design a representation that
enables users to perceive multiple information elements at a sin-
gle glance. Nevertheless, however well designed a representation
is, it cannot be absolutely efficient: a representation may be well
suited to a particular task, but may not be suitable for all tasks a
user’s activity requires. For such tasks, instead of perceiving the
representation at one glance, the user falls back to scanning the
representation to discover information. For example, fig. 4 shows
two different representations of a bus schedule. The overlaid arrows
and circles depict the visual scanning required on each to answer
the same question: “how long will I wait for the next bus?”. De-
pending on the representation (in this case ordered or quantitative),
the amount and the nature of visual scanning operations will differ.

ScanVis is a descriptive model of this kind of representation
scanning [6]. It enables a design to analyze and assess a represen-
tation effectiveness with respect to a task. ScanVis relies on the
decomposition of representation scanning into elementary visual
operations: enter into the representation by transforming the con-
ceptual task at hand (“how long will I wait?”) into a reading task
(“find the time corresponding to my bus lines”), seek a subset of
marks (“find the marks corresponding to my bus lines?”), seek and
navigate among a subset of marks (“navigate into a row of text
representing time in a time-table”), unpack a mark and verify a
predicate (“what datum does this position reflect, and does it an-
swer my question?”), exit from the representation (“this bus passes
at this time, I need to compute the waiting time”), and memorize
information (“I have to wait 2 minutes for this bus; remember this
to compare with another bus”). Given a task and a representation,
a designer can infer the required sequence of visual operations to
accomplish it.

ScanVis’ elementary operations may be facilitated by the use of
adequate visual properties as described by Semiotics of Graphics
e.g. selective visual variables to support seeking and navigating
among a subset marks: if one wants to find out the next bus #51
in the representation at the bottom of fig. 4, one can visually select
a subset of marks that are yellow (a selective variable) and that lie in
the area whose position (a selective variable) corresponds roughly
to the current time. One can then scan through the marks of this
subset and hop from mark to mark until the next bus is found.

3. Application to Programming Languages
ScanVis and Semiotics of Graphics (together referred as ‘the frame-
work’) have already been applied to charts or visualizations of in-
formation. The remainder of this paper is devoted to their applica-
tion to programming languages. In order to help the reader assess
the significance of the proposed framework, we will describe its de-
scriptive power (what are the phenomena that the framework cap-
tures?), its comparative power (how can it help assess or compare
particular code representations?) and its generative power (how can
it help explore the design space of code representation?).

As illustrated in the ScanVis section, assessing a particular
visual representation of a program requires identifying the set of
reading tasks performed by the programmer. In the following, we
present a number of visual representations together with tasks.
Since reading tasks have seldom been clearly stated in the literature,
we have had to devise them with reference to interesting aspects of
the representations. We believe that the tasks are appropriate but we
do not claim perfect validity; the reader of this article may disagree.
In fact, a desired outcome of this paper is to initiate work on the
elicitation of reading tasks. The tasks presented here are a first step
in that direction.
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4. Describing Visual Features Of Languages
The goal of this section is to show how popular sayings about code
(e.g. “as an art”) can be appropriately deconstructed and translated
to the concepts and vocabulary (in italics) of the framework. If cor-
rect and comprehensive, such a translation is the first step toward
the validation of the significance of the framework.

4.1 Visually structuring the code
“Lots of Irritating Superfluous Parenthesis.” Lisp uses parentheses
to structure code. Lists are designated with spaced expressions sur-
rounded by opening and closing parentheses. Function composition
uses compound parenthesizing.

(defun fac �n▷ �if ♢<= n 1♢ 1 ♢* n ♡fac ☞- n 1☜♡♢▷)
(defun fac (n) (if (<= n 1) 1 (* n (fac (- n 1)))))

Figure 5. Delimiters varying in shape. Top: parenthesis, bottom:
other shapes.

Lisp is reputedly difficult to read ([10] p65). The difficulty
comes partly from the fact that list boundaries are depicted with
two shapes (opening and closing parentheses, see fig. 5, top) which
prevents fulfilling the task “figure out the [lisp] expressions” effi-
ciently. This can be explained with the selectivity concept: since
shape is non-selective, use of parentheses prevents the perception
of Lisp expression boundaries at a single glance and forces the pro-
grammer to scan the code linearly to discover them. The bottom
line of fig. 5 uses a unique boundary shape according to the level of
depth of enclosure. One may think that such a representation could
help the reader match the boundaries of expression since the use
of unique symbols should prevent the reader to mismatch opening
and closing boundaries. However, it is not better than the repre-
sentation with parenthesis because of the same phenomenon: the
non-selectiveness of symbols prevents matching at a single glance
e.g. finding the diamond which closes the multiply expression is
difficult and requires a careful horizontal scan.

(defun
   fac (n)
   (if
      (<= n 1)
      1
      (*
         n
         (fac
            (- n 1)))))
(fac 5)

(defun
   fac
   (n
   )
   (if
      (<=
         n
         1
      )
      1
      (*
         n
         (fac
            (-
               n
               1
            )
         )
      )
   )
)

(fac 5)

(defun
      fac (n)
      (if
            (<= n 1)
            1
            (*
                  n
                  (fac
                        (- n 1)))))
(fac 5)

(c)

(d)

(defun
 fac
 (n
 )
 (if
  (<=
   n
   1
  )
  1
  (*
   n
   (fac
    (-
     n
     1
    )
   )
  )
 )
)

(fac 5)

(a)

(b)

Figure 6. Delimiters varying in Xpos and Ypos, which are both se-
lective visual variables.(b) A smaller difference between Xpos val-
ues hinders selection. (c) Improving Xpos selectiveness by short-
ening spatial distances in Ypos or (d) with a larger indentation, at
the expense of visual scanning, depicted with circles and arrows.

“Indentation makes structure obvious.” In fig. 6 (a) the level
of nesting depth is mapped to the Xpos visual variable. Matching
parentheses are “vertically aligned”, which is another way of ex-
pressing an assimilation of Xpos values. Since Xpos is selective,
the perception of expression boundaries is better than when using a
shape. Selectivity depends on the amount of difference between val-
ues: shrinking the size of the indentation lowers the selective ability

of Xpos (b). Reserving a line for a closing parenthesis alone length-
ens the Ypos spatial distance with the matching opening parenthe-
sis and weakens the selective property of the Xpos visual variable
(i.e., it is difficult to perceive vertical alignment) (a and b); ignoring
the parenthesis matching problem altogether shortens the distances
and improves Xpos selectivity (c); more indentation improves se-
lective perception of Xpos (d). However, the assumed improvement
is supposedly accomplished at the expense of longer scanning from
the beginning of a block to its first instruction, as experimentally
assessed in [20]. Note that since Xpos is ordered, such a represen-
tation also facilitates the task “figure out the hierarchy of expres-
sions”.

“LabView’s G language is intuitive.” G mixes large boxes that
enclose other objects to specify a hierarchical structure (fig. 7), and
links that connect the components inside and outside boxes (see
[24] for more details). Enclosures may be “intuitive”, but a more
appropriate qualification is that they are selective: one can grasp in
a single glance which elements are part of a parent. Enclosure is
also ordered and help perception of a containment hierarchy.

Figure 7. G language from LabView.

“Syntax highlighting improves readability.” Fig. 8 shows a
‘syntax-colored’ textual representation of Java code in the Net-
Beans editor. Blue glyphs correspond to reserved keywords of the
Java language and gray ones to comments. A yellow background
corresponds to a variable on which the mouse pointer points.

until they find the right, and find and seek all transitions from 
this state. With circles and arrows, one can consider that large 
white circles are selective compared to other marks (because of 
their size and luminosity). With SwingStates code, the 
indentation is also selective. Hence both representations help 
seek a subset of marks. Finding ‘out’ transition is more 
efficient in SwingStates code since all transitions are out 
transitions. With circle-and-arrows, one has to differentiate 
between links with and without arrowhead laid around the 
circles. Links without arrowhead may be more difficult to 
differentiate than other marks. 

 
Figure 14.  ScanVis for the task: “what are the out transitions for state ‘hyst’?” 

 
Figure 15.  ScanVis for  the task: “what are the in transitions of state ‘hyst’?” 

Figure 15. illustrates the visual operations required for the task 
“what are the in transitions for a particular state?” For the 
circle-and-arrows representation, the operations are almost 
similar to the operations required in the previous task. Finding 
the ‘in’ transition may be facilitated by the fact that arrowheads 
are dark and thus selective. With the SwingState code, the 
visual operations are very different: one has to find the name of 
the states inside a transition. Most of those names are on the 
right part of the code, which helps seek and find them. Still, 
since they are texts, it may be difficult to navigate without any 
risk of missing one. 

 
Figure 16.  ScanVis for task: “go to the state following a transition ‘Drag’ on 

state ‘Hyst.’” 

Figure 16. illustrates the visual operations required for the 
task “go to the state following a transition ‘Drag’ on a 
particular ‘Hyst.’”. One has to find the first state, find the 
transition, and go to the state following this transition. After 
having found the transition, it may be easier to follow a link in 
the case of circle-and-arrows than find a text (the name of the 
next state) in the case of the SwingState code. 

VI. GENERATING NEW DESIGNS 
This section introduces a number of design principles to make 
new designs emerge and illustrates them with a number of 
examples. I devised the design principles by examining how 
existing designs improve over former ones. 

Seek selectivity. Figure 17.  shows a ‘syntax-colored’ 
textual representation of Java code with the NetBeans editor. 
Blue glyphs correspond to reserved keyword of the Java 
language, and gray ones to comments. A yellow background 
corresponds to a variable at which the mouse pointer points. 
// replicable pseudo random generator 
Random rpos = new Random(456); 
Random r = new Random(321); 
double[] sizes = new double[6]; 
double a = 10, b = 5; 
for (int i = 0; i < sizes.length; ++i) { 
   sizes[i] = a * i + b; 
} 
float[] tricol = new float[3], rgb, lch; 
lch = tricol; 
lch[0] = 40; 
lch[1] = 100; 
lch[2] = 45; 
Color c1 = srgb.fromLCHtoColor(lch); 
[…] 
System.out.println(“[debug] color is”+c1); 
// compute each symbol hue 
for (int i=0; i<hue_symbol.length(); ++i) { 
   lch[2] = (float)(i*360./hue_symbol.length()); 
   colors[i] = srgb.fromLCHtoColor(lch); 
   hue_shapes.add(buildShape(g, hue_symbol.substring(i,i+1), w, h)); 
}||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Figure 17.  Colored editor 

Coloring all appearances of a variable the mouse is pointing 
at does make sense as a programming task point of view: this 
enables the programmer to efficiently grasp all occurrences of 
this variable thanks to selectivity. Similarly, adding a colored 
background to a brace enables the programmer to quickly see 
where the corresponding one is and assess the scope of a block. 
The gray color is lighter than the other ones. Luminosity is 
selective and enables user to rapidly assimilate and 
differentiate code from comments, and rapidly navigate 
between sections of the code. Hence this removes the need to 
scan the first letters of a line to check if it begins with two 
slashes, a much more demanding visual task since shape (‘//’) 
is not selective. In addition, the order of luminosity indicates 
an order of importance between code, comments, and 
background. 

Identify the task and seek selectivity only if needed. Using 
color for keyword is not related to any task the programmer 
should accomplish. Of course, one can argue that it helps 
assess that a keyword has been recognized as the user types it, 
and that no lexical error has been made. Nonetheless, fulfilling 
this task does not require a selective variable such as color. 
One should fall down to elementary reading instead, by using a 
non-selective variable such as a shape, or a typeface e.g. 
‘unrecognized’ in ‘italic’, ‘recognized’ in ‘regular’. This would 
reserve color, a scarce resource, for a more efficient use. 

Figure 8. Colored editor.

Coloring all appearances of a variable the mouse is pointing
at does make sense from a programming task point of view: this
enables the programmer to efficiently identify all occurrences of
this variable thanks to selectivity. Similarly, adding a colored back-
ground to a brace enables the programmer to quickly see where the
corresponding brace is and assess the scope of a block. The gray
color is lighter than the other ones: since luminosity is selective,
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this enables user to rapidly assimilate and differentiate code from
comments, and rapidly navigate between sections of the code. This
removes the need to scan the beginning of a line to check whether
it begins with two slashes, a much more demanding visual task
since shape (‘//’) is not selective. In addition, the order of luminos-
ity indicates an order of importance between code, comments, and
background.

4.2 Understanding control flow
“The control flow in C is visible.” In a block of C instructions,
a sequence of texts separated by semicolons denotes a sequence
of instructions (9). However, as a shape, semicolons are not se-
lective, and do not help discriminate between instructions. Often,
instructions are organized one per line. In this case, the Ypos vi-
sual variable maps to the ordered sequence of the program counter.
This helps the programmer visualize the evolution of the program
counter path by scanning the textual instructions vertically. Thus,
the task “given an particular instruction, what is the next instruc-
tion to be executed?” is efficiently supported by the representation
since it uses a selective, ordered variable. However, function calls
and gotos are not as visible since they are indicated by name (a
shape), which is not a selective visual variable. In order to perform
the “next instruction?” task for a call instruction, the reader has to
scan the representation and seek the answer.

extern void printf(char*,...);

int fact(int n);

int main(int argc, char* argv[]) {
  int res = fact(argv[1]);
  printf("fact %s: %s\n",argv[1],res);
  return 0;
}

int fact(int n) {
  int res=1;
  while (n) {
    res *= n;
    n-=1;
  }
  return res;
}

function decl ! Y:O
function def ! Y:N
instruction flow ! Y:O
loop/branch/jump ! Text:N

call function ! Text:N
block ! X:O
block ! shape(X,Y)'{''}':N

Figure 9. C language classification.

“Arrows make the instruction flow explicit” Fig. 10 shows a
circle-and-arrow description of a Drag’n’Drop interaction with
hysteresis [11]. There are three states (‘start’, ‘hyst’ and ‘drag’),
one transition from state ‘start’, and two each from states ‘hyst’
and ‘drag’. The instruction flow is depicted with marks: arrows. To
fulfill the task “figure out the flow”, a reader must seek a subset
of marks (links) and navigate visually by following arrows, which
may be slow especially when arrows are numerous and entangled.

start
hyst

drag

Press

Release Drag > d

Drag

Release

state ! circle:S
transition ! link:S
out transition ! link/L:S
in transition ! link/L:S
instruction flow ! link:scan

state name ! text:N
transition clause ! text:N
PC ! N/A

Figure 10. Box-and-arrow representation of a state machine.

Code Bubble is an IDE that presents code with function snippets
inside individual windows resembling ‘bubbles’ [12]. Users can
juxtapose bubbles that contain related code. One use is to display
the code of a callee in a bubble to the right of a bubble containing

the caller. Hovering over a bubble highlights the connections and
code lines that lead to it by changing the color or luminosity of the
links. This turns a non-selective variable (link) selective (colored
link) and helps readers figure out the flow and navigate between
instructions that belong to related functions.

call function ! Arrow:N
block ! X:O
block ! shape(X,Y)'{''}':N

function decl ! Y:O
function def ! Y:N
instruction flow ! Y:O
loop/branch/jump ! Text:N

Figure 11. Code Bubble classification.

0&>:1-:v v *_$.@ 
  ^    _$>\:^

0&>:1-:v v *_$.@ 
  ^    _$>\:^

stack n-=1 pop & multin out

instruction flow ! X,Y:O+Symbol:N
loop/branch/jump ! Symbol:N
call function ! N/A
block ! Symbols Containment:N

Figure 12. Factorial in befunge (top); explanation of the flow
(bottom).

“Befunge is an esoteric language” Befunge is a 2D textual lan-
guage in which the flow is indicated by the four shapes <, >, ^, and
v, which resemble arrows pointing in the four cardinal directions.
Branching is specified by - (equivalent to < if the condition is true
and to > otherwise) and | (equivalent to ^ if the condition is true
and to v otherwise). However, not only is the flow not graspable at
once (real arrows and links help a little in the bottom part of the
picture), but directional shapes are not selective and cannot be per-
ceived instantaneously. As such, Befunge is perhaps not so esoteric
since it can be considered a missing link between textual and visual
languages. This illustrates the unifying aspect of the framework.

4.3 Understanding functionality: “Icons are easier to use
than text”

Icons are often considered easier to interpret than text. Fig. 8 in
[26] illustrates the use of an ‘analog’ [26] iconic vocabulary in Lab-
View’s control-flow structures. In this case, icons are differentiated
with shapes (arrowheads, page corners, spirals, ‘N’ and ‘I’). When
icons vary according to shape only (a non-selective variable), one
can only perform a slow elementary reading of a scene. In other
visual languages, icons vary in shape but also along other visual
variables, which may turn them selective. For example, the third
line of fig. 13 uses a set of shapes with which selection and order-
ing seem to ‘work’: this is because they do not contain the same
number of pixels and exhibit different levels of luminosity, a selec-
tive variable.

5. Comparing Code Representations
This section shows how the ScanVis plus Semiotics of Graph-
ics framework helps compare code representations with respect to
tasks.
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5.1 Luminosity, color and position of enclosing symbols
In fig. 13, the first line maps depth of nesting to unique colors.
Since color is selective, this enables the reader to assimilate at
one glance all parentheses with the same level of depth. However,
one has to wonder if the task “assimilate level of depth” is worth
facilitating: even if a reader correctly detects each opening and
closing parenthesis, one must remember the discovered structure
to make sense of it. If an appropriate visual variable was used
instead, the programmer could use that as an externalization of
memory to recall the structure by accessing it immediately, in
one glance. For example, the second line uses luminosity alone.
Luminosity is selective (and helps match parentheses), and ordered
(helps perceive relative depth). One cannot perceive the exact depth
since as opposed to Xpos luminosity is not quantitative. However,
ordering may be sufficient for the task at hand.

(defun fac �n▷ �if !<= n 1! 1 !* n "fac #- n 1#"!▷)

(defun fac (n) (if (<= n 1) 1 (* n (fac (- n 1)))))
(defun fac (n) (if (<= n 1) 1 (* n (fac (- n 1)))))

Figure 13. Delimiters varying in hue, luminosity, and shape+lum.

5.2 Ypos versus Arrows
As we have seen above, instruction flow can be depicted using Ypos
or links and arrows. Links and arrows are not selective visual vari-
ables: the reader is forced to follow the chain of links to figure
out the flow (fig. 14-a). This can be supplemented with alignment
cues, e.g., using the selective property of Ypos. In this case, the
visualization is equivalent to indented code in a C program (fig.
14-b). It is not necessary to show the arrows between successive
instructions as this is redundant with the Ypos-aligned representa-
tion (fig. 14-c) However, keeping an arrow for the loop helps the
reader scan up to the beginning of a loop, similar to box-and-arrow
languages. Scratch [13] is a visual language with connectors on
blocks suggesting how they should be put together. The connectors
are similar to the arrows: they guide a reader following the instruc-
tion sequence (fig. 14-d). The start of the loop can be perceived
selectively with color and containment. These examples show how
different representations can be unified with the same underlying
principles.

int fact(int n) {

  int res=1;

  while (n) {

    res *= n;

    n-=1;

  }

  return res;

}

int fact(int n) {

  int res=1;

  while (n) {

    res *= n;

    n-=1;

  }

  return res;

}

(a) (b) (c) (d)

int fact(int n)

int res=1;

while (n)

res *= n;
n-=1;

return res;

Figure 14. Arrows could have been used in C (b), as in box-and-
arrow languages (a). Since arrows are redundant with the ordered
Ypos visual variable, they can be removed, except for the loop (c).
Scratch uses similar visual variables (d).

Arrows are often said to be an explicit representation of instruc-
tion sequence. To be more precise, they are an explicit representa-
tion of sequence direction. However, they are no more explicit on
the order of the sequence than Ypos, since the selective visual vari-
able Ypos explicitly shows sequence already (both in the C version
and the Scratch version).

5.3 Comparing representations with multiple, more
demanding tasks

Code representations are used to fulfill multiple reading tasks.
When comparing them, it is helpful to enumerate a realistic set of

CStateMachine sm = new CStateMachine(canvas) {
    CElement toMove = null;
    Point2D lastPoint = null;

    public State start = State() {
        Transition press = PressOnShape(">> hyst")};

    public State hyst = State() {
        Transition drag = Drag(">> drag");
        Transition release = Release(">> start")};

    public State drag = State() {
        Transition stop = Release(">> start");
        Transition move = new Drag(BUTTON1)}};

state ! X:S?
transition ! X:S?
out transition ! text:N
in transition ! text:N
next state ! text:N

state name ! text:N
transition clause ! X:S
instruction flow ! Y:O

Figure 15. 1D Text representation of the state machine.

tasks and assess how each representation rates with respect to each
task.

Fig. 15 shows the SwingState code describing the same Drag’n’drop
interaction as in Fig. 10 [11]. SwingStates is a textual language for
describing state machines [14]. It relies on Java’s anonymous class
facility to be embedded seamlessly in regular Java code. The code
is indented to facilitate perception of the states, the transitions from
each state, and the clauses associated with the transitions.

Fig. 16 compares the visual operations required for the task
“what are the ‘out’ transitions for a particular state?” in the circles-
and-arrows and SwingStates representations. In both, readers need
to seek and navigate among states until they find the state of in-
terest, then seek all transitions leaving this state. With circles-and-
arrows, one can consider that large white circles are selective com-
pared to other marks because of their size and luminosity. In the
SwingStates code, indentation is also selective. Hence both repre-
sentations help seek a subset of marks. Finding ‘out’ transition is
more efficient in SwingStates code since all transitions are out tran-
sitions. With circle-and-arrows, one has to differentiate between
links with and without arrowheads, laid around the circles. Links
without arrowheads may be more difficult to differentiate than other
marks.

start
hyst

drag

Press

Release Drag > d

Drag

Release

CStateMachine sm = new CStateMachine(canvas) {
    CElement toMove = null;
    Point2D lastPoint = null;

    public State start = State() {
        Transition press = PressOnShape(">> hyst")};

    public State hyst = State() {
        Transition drag = Drag(">> drag");
        Transition release = Release(">> start")};

    public State drag = State() {
        Transition stop = Release(">> start")}};

M "hyst"M "hyst"

Figure 16. ScanVis for the task: “what are the ‘out’ transitions for
state ‘hyst’?” .

CStateMachine sm = new CStateMachine(canvas) {
    CElement toMove = null;
    Point2D lastPoint = null;

    public State start = State() {
        Transition press = PressOnShape(">> hyst")};

    public State hyst = State() {
        Transition drag = Drag(">> drag");
        Transition release = Release(">> start")};

    public State drag = State() {
        Transition stop = Release(">> start");
        Transition move = new Drag(BUTTON1)}};

start
hyst

drag

Press

Release Drag > d

Drag

Release

M "hyst" M "hyst"

Figure 17. ScanVis for the task: “what are the ‘in’ transitions of
state ‘hyst’?”

Fig. 17 illustrates the visual operations required for the task
“what are the ‘in’ transitions for a particular state?” For the circle-
and-arrows representation, the operations are almost identical to the

short description of paper 5 2013/2/5



operations required in the previous task. Finding the ‘in’ transition
may be facilitated by the fact that arrowheads are dark and thus
selective. With the SwingState code, the visual operations are very
different: one has to find the name of the target states inside the
transitions. Most of those names are on the right edge of the code,
which helps seek and find them. Still, since they are textual, it may
be difficult to navigate without risk of missing a name.

6. Generating New Code Representations
This section introduces a set of design principles that can be used
to make new code representations emerge and illustrates them with
a number of examples. We devised the design principles by exam-
ining how existing representations improve over previous ones.

Identify the task and apply selectivity only where needed. In the
colored code fig. 8, using color for all keywords may not be related
to any task the programmer needs to accomplish (e.g., find all ‘for’
loops). Of course, one can argue that the distinction helps assess
that a keyword has been recognized as the programmer types it
and that no lexical error has been made. However, fulfilling this
task does not require a selective variable such as color. Instead,
elementary reading with a non-selective variable such as a shape,
or a typeface (e.g., ‘unrecognized’ in ‘courier’) is sufficient. This
would reserve color, a scarce resource, for a more important use.

Try swapping visual variables. One way to generate representa-
tions is to explore the design space of code representation by swap-
ping visual variables for unused ones. Fig. 18 illustrates alternative
representations using size and Ypos as visual variables instead of
color. Since these visual variables are selective and ordered, they
help the reader visualize the structure of the code, similarly to the
more traditional use of the Xpos visual variable (indentation).

(defun fac (n) (if (<= n 1) 1 (* n (fac (- n 1)))))
(defun fac                                        )(n) (if          1                    )(<= n 1) (* n              )(fac        )(- n 1)

Figure 18. Using size and Ypos as visual variables.

Shorten spatial distance. As mentioned previously, reducing
spatial distance may improve selectivity. Fig. 6(c) shows a repre-
sentation that shortens spatial distance, but does not support paren-
thesis matching, which can be annoying when trying to add a miss-
ing parenthesis. Fig. 19 is a representation that shortens the spatial
distance while enabling easy parenthesis matching. Remarkably,
while the parentheses match perceptually according to the Xpos
visual variable, they do not match conceptually: for example, the
opening parenthesis at the beginning of the ‘defun’ function con-
ceptually matches the rightmost closing parenthesis on the penulti-
mate line of the code, but is aligned with the closing parenthesis of
the call to factorial. This illustrates that perception can prevail over
the conceptual model, as long as semantics is preserved.

(defun
   factorial (n)
   (if
      (<= n 1)
      1
      (*
         n
         (factorial
            (- n 1)
)  )  )  )

(factorial 5)

Figure 19. Shortening spatial distance: parentheses match percep-
tually, but do not match conceptually.

Another representation that reduces distance is shown in Fig.
20. With a debugger, the user can step inside the call of a function.
This can be performed with a toggle arrow: when toggled, the code
of the function unfolds under the call of the function. A similar
feature could be used for static code; this would help understand
how functions compose without the need to memorize the code
surrounding the call of a function and to switch visually between
the distant representations of the two functions.

(defun
   factorial (n)
   (if
      (<= n 1)
      1
      (*
         n
         (factorial (- n 1)))))

(factorial 5)

▶

(defun
   factorial (n)
   (if
      (<= n 1)
      1
      (*
         n
         (factorial (- n 1)))))
         (if
            (<= n 1)
            1
            (*
               n
               (factorial (- n 1)))))

(factorial 5)

▶

▶

Figure 20. ‘Debugger view’ of code.

One asset of such a ‘tree-view’ is that it shortens the distance
between instructions before the call and instructions at the begin-
ning of the function being called. However, it also expands the dis-
tance between the instructions before the call and after the call,
especially when multiple functions are deployed. A ‘browser’ view
ala SmallTalk can help show details and contexts of the call and
shorten both distances (Fig. 21). CodeBubbles can be seen as an
attempt to shorten the distance between calling and called code.

(defun
   factorial (n)
   (if
      (<= n 1)
      1
      (*
         n
         (factorial (- n 1)))))

(factorial 5)

▶

(if
   (<= n 1)
   1
   (*
     n
     (factorial (- n 1)))))

▶

Figure 21. Browser view of the ‘factorial’ function.
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end

start
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end
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sync1
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enddd

start

bbbbb
bbbbb
bbbbb
bbbbb
bbbbb

sync1

bbbbb

sync2
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bbbbb
bbbbb
bbbbb
bbbbb

enddd

thread a thread b

Figure 22. Left: Ypos used as a selective variable: instructions are
aligned when synchronized, and misalign when not synchronized.
Right: Ypos used as a quantitative variable: the number of cycles
is mapped to the distance between instructions (aaaaa: 2 cycles,
bbbbb: 1 cycle).
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Explore and leverage properties of visual variables. In a typical
imperative language, Ypos is used in an ordered but not quantitative
manner. Since the distance between instructions has no meaning,
a representation could vary distances to misalign statements and
align synchronization statement only. In Fig. 22-left, the selectivity
of the Ypos variable helps show at a glance the synchronization
points and removes false information conveyed by perfectly aligned
statements. Distance can also be used to convey quantity. Fig. 22-
right illustrates a representation that uses Ypos as a quantitative
variable to depict two concurrent sequences of instructions. The
number of cycles taken by each instruction is mapped to the Ypos
dimension. The larger the space after an instruction, the larger the
number of cycles it takes to execute it. This gives a sense of the time
spent on some parts of code, and can help balance the instructions
in order to minimize wasted cycles while waiting for the concurrent
process when synchronization is needed.

7. Threats To Validity
The proposed framework relies on models, and as such is a sim-
plification of reality. Even if the framework allows us to describe
a number of the perceptual phenomena underlying the perception
of code, some important phenomena may not have been identified
because of the limited capability of the framework, or because their
explanation or cause is different (a hammer and nail problem). Vi-
sual perception is complex and some visual operations may be by-
passed because of specific conditions such as layout or the number
of items involved. Further, code representation is not the only factor
that contributes to program understanding. Other cognitive factors,
such as learning, expertise, API usability and documentation [19]
contribute to program understanding, and may influence the way
the user perceives or scans the code.

8. Related Work
Reading code is a complex process that involves many aspects. We
have selected a number of works that address formatting, perfor-
mance at reading, differences between textual and visual languages,
and frameworks to analyze them.

8.1 Formatting and pretty-printing
‘Formatting well’ is often advised and discussed in early funda-
mental papers about programming languages (e.g., the discussion
in [15]): “Code formatting is about communication, and communi-
cation is the professional developer’s first order of business” [4]. In
a recent work, formatting is still referred to as an ‘art’ [3]. Actu-
ally, the problem of program representation goes well beyond code
formatting and refers to the more general problem of the visual per-
ception of the code by the programmer.

8.2 Performance at reading programming languages
A number of visual designs have been proposed to improve reading
performance [16–19]. Indentation length has been experimentally
shown to have an impact on the comprehension of code: 2- and 4-
space indentation makes readers better at understanding the code
than 6-space indentation, for both novice and expert readers [20].
Eye tracking has been used to observe programmers but only to
measure switching between a view of the code and a view present-
ing an animated algorithm [21].

Moher et al. observed that “performance was strongly depen-
dent to the layout of the Petri nets. In general, the results indicate
that the efficiency of a graphical program representation is not only
task-specific, but also highly sensitive to seemingly ancillary is-
sues such as layout and the degree of factoring” [22]. Green et al.
found that textual representations outperformed LabView for each
and every subject [23]. Their explanation is that “the structure of

the graphics in the visual programs is, ‘paradoxically’, harder to
scan than in the text version”. LabView and its G language have
been studied “in the wild” [25]. Respondents declared that G is eas-
ier to read than textual programming languages since it provides an
overview (a gestalt view) and clarifies structure. However, respon-
dents also say that it is very easy to create messy, cluttered, hard to
read spaghetti code and that sequence structures tend to be cryptic
or obscure.

8.3 Differences between textual and visual languages
Researchers have already wondered where the actual differences
between textual and visual languages lie. In [26] Petre argues that
the differences in effectiveness between textual and visual lan-
guages “lie not so much in the textual-visual distinction as in the
degree to which specific representations support the conventions
experts expect.” As Petre observed, programmers can find gestalt
patterns in textual representations [26]. Much of “what contributes
to comprehensibility of a graphical representation is not part of the
formal notation but a ‘secondary notation’: layout, typographical
cues and graphical enhancements.” Petre adds that “the secondary
notations (e.g., layout) are subject to individual skills (i.e., learned
ones) and make the difference between novices and experts. What
is required in addition is good use of secondary notation, which
like ‘good design’ is subject to personal style and individual skill”
[26]. We take an alternative point of view: we argue here that even
if skills can be learned, the basic visual capability of humans is
enough to explain much of the ease or difficulty programmers ex-
perience in deciphering a program.

8.4 Analysis frameworks
There have been several attempts at building metrics for software
readability. In the metric from [27], a few features can be consid-
ered perceptual (commas, spaces, indentation), but most are based
on the semantics of the code. The cognitive dimensions of nota-
tion (CDN) is a framework that helps designers analyze interac-
tive tools, including programming environments and languages [5].
CDN targets cognitive and interactive aspects as opposed to per-
ceptual aspects: the graphic and perceptual concerns are addressed
partly in the secondary notation and visibility dimensions. Gestalt
is a well-known framework that explains the phenomena underly-
ing pattern perception. Gestalt can be used to explain how program-
mers may perceive patterns in their code, but we found that Gestalt
could not report about all perception phenomena. So-called pre-
attentive features also have a role in the perception of code [28].
The Semiotics of Graphics encompasses pre-attentive features and
addresses other levels of perception than Gestalt.

The Physics of Notations framework focuses on the perceptual
properties of notations [29] and partly relies on the Semiotics of
Graphics. Our work offers a finer and more complete account of
how the Semiotics of Graphics apply to graphical and textual code
representation. Nevertheless, the Semiotics of Graphics alone can-
not be used to assess code representation: the use of ScanVis and
its emphasis on image scanning and precise task elicitation (e.g.
“match parenthesis” vs “figure out the hierarchy of expressions”,
or “what is the next bus?” vs “how long will I wait?”) makes the
analysis finer and helps design more efficient representations.

9. Why does it matter?
We have successfully captured a large set of phenomena pertain-
ing to code representation at the level of “the page of code” with
the Semiotics of Graphics and ScanVis. For a framework to de-
scribe and corroborate existing phenomena is a first level of val-
idation. Furthermore, this success shows that there are important
issues at stake when a programmer reads code. It shows that code
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representation is not about aesthetics but performance, and should
not be an art but a science following principles from visual per-
ception. To foster understanding of a program, a representation of
code that follows those principles is not accessory, but mandatory.
Therefore the account presented in this paper extends the set of im-
portant aspects underlying programming languages: lexical (what
concepts are), syntactical (how concepts articulate), semantic (what
concepts mean), but also perceptual (how efficiently concepts are
represented, with respect to programming tasks). This should be a
concern for all educated computer scientists and programmers, be
they academic or practitioner, as much as basic knowledge about
programming such as “functional and imperative programming”,
or “static and dynamic typing”.

Another perspective opened by this work is the unification of
existing concepts. Unifying concepts has been a traditional goal in
science (e.g., Maxwell’s equations unifying electricity and mag-
netism, or the Curry-Howard correspondance between types and
proofs) because this may lead to important discoveries and insights.
Here the framework brings together many aspects of visual layout
and appearance of programming languages and contradicts the tra-
ditional opposition between visual and textual languages. It also
contradicts the usual wisdom that visual languages are by essence
better than textual languages: most textual languages are displayed
using positional variables and thus may use the perceptual system
efficiently, while some so-called visual languages may use visual
variables (icons (shapes), links) quite inefficiently. This should be
of interest for any educated computer scientist, including software
engineers who often use various UML diagrams (a visual language)
to document their software.

In addition, the fact that the framework is comparative should
encourage programmers to expect justifications from language de-
signers. They should be compelled to explain why and how the
language designed is better than another with respect to objective
criteria. This should diminish the risk of “religious wars”, since us-
ing a shared, consistent set of reference concepts would make the
comparisons and justifications claims better supported.

Finally, the generative power of the framework may enable lan-
guage designers to find new ways of representing the code. The ex-
amples and the provided design principles can help explore the de-
sign space of code representation. Even if a complete and detailed
method is still missing, what the framework suggests is that such
a method should use a “Programmer-Centered Design” approach:
it should emphasize the act of designing with end-programmers’
tasks in mind, and not designing the representation alone. A follow-
up on this work is thus both to gather the reading tasks that are sup-
posedly supported by today’s language representation and the over-
looked reading tasks that a programmer constantly fulfills in order
to program. The outcome for end programmers would be more ef-
ficient code representation.
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