A Making-Movies Metaphor for Structuring Software
Components in Highly Interactive Application

Michelle Jacomi', Stéphane Chatty', Philippe Palanque'’

'Centre d'Etudes de 1a Navigation Aérienne
7 avenue Edouard Belin, 31055 TOULOUSE Cedex, FRANCE
E-mail: {jacomi, chatty, palanque}(@cena.dgac.fr

LIS, University of Toulouse 1,
1 pl. Anatole France, 31042 Toulouse Cedex, FRANCE

ABSTRACT: Structuring full scale, highly interactive applications still involve complex design choices for
programmers. This is because current techniques do not cover the issue of structuring applications at all scales.
Programmers thus have to make choices without a good understanding of their consequences. We consider that this
is similar to the problem encountered by a user who explores a user-driven application and has little guidance on
actions that can be performed. Tn the same way as metaphors have been used to help users anticipate the
consequences of their actions, we propose to use metaphors to help programmers make their choices. This article
describes a making-movies metaphor that provides guidance for organising the interface of an application, but also
its links with the objects of the functional core. We show how this approach can be merged with current software
engineering techniques to specify and build full scale applications. This is exemplified with a graphical editor acting
as an interface to optimisation algorithms, and used for splitting air space into air traffic control sectors.

KEYWORDS: Software architecture, user interface design, metaphors, formal specification.

1. INTRODUCTION

Structuring interactive applications is still by many
aspects an open issue for software engineers and
programmers. General architecture models explain how
the large blocks of an application should be organised,
with little help on how to implement them. At the other

end of the spectrum, object oriented toolkits help
programmers to structure and build the interactive parts
of their applications, but provide little guidance on
how to organise the functional core and weave all the
resulting classes together. Even though novel
approaches such as design patterns try to bridge the

gap between those methods, today's programmers are
still on their own for many design choices. This is
especially painful for highly interactive applications,
because the links between interaction objects and
functional core objects are many, tight and complex.
This explains why programmers often have trouble to
scale up techniques presented in academic papers to
full scale applications.

In addition to current research on software
engineering techniques that would solve those issues,
this paper proposes to use a metaphor as a way of
guiding programmers. Metaphors have been
successfully used for many years for structuring user
interfaces. They have been proposed to prevent users
from getting lost when the complexity of these systems
increases. Indeed, with the advent of user-driven style
of interaction, users are driving the interaction and thus
no guidance (or as less as possible) is provided to
them. In order to fill in this gap metaphors have
appeared as one possible way to help users in
understanding the use and the meaning of interactive
objects. This help is given for example by "providing
paths through the jungle of functionality" (Tscheligi &
Vanaanen 1995).

We believe that the same help that is offered by
metaphors to end users can be offered to software
engineers and programmers, in addition to classical
software structuring techniques. The next section of
this paper is devoted to the presentation of those
structuring techniques. Tt shows that merging some of
them can solve most of the problems encountered
while designing large scale applications. Section 3
introduces a metaphor we have defined and used for
the building of interactive systems. It explains how this
metaphor relates to software architectures and shows
how formal specification techniques can be used to
define both the inner behaviour of objects and their
communication protocols. A large scale case study is
presented in section 4. This case study comes from the
Air Traffic Control (ATC) domain and is mainly
characterised by the large amount of information that
has to be displayed at the same time. In order to
address this problem the application features a new

"shelves-based" user interface with highly interactive
interaction techniques such as movable filters in order
to cope with information visualisation and handling.

2. STRUCTURING TECHNIQUES FOR
INTERACTIVE SOFTWARE

Structuring interactive systems has been recognised
for a long time as a challenging problem (Coutaz 96).
The main problem to solve is to define and organise
the various components and to state clearly their
relationships. The solutions proposed in order to
address this problem usually come from software
engineering techniques customised for interactive
systems. This research work can be subdivided in four
categories according to the kind of approach they
promote: abstraction first, implementation first, reuse
first and global first.

2.1 Abstraction First: Models

The kind of research proposes general models more
dedicated to the understanding of interactive systems
than to their actual building. Among them are the
Seeheim model (Pfaff 1985), the Arch/Slinky model
(Arch 1992). The main point of these models is to cope
with complexity by splitting the interactive application
into abstract entities. They are helpful for high level
management of applications but they do not go easily
towards implementation. For example the Secheim
model must not be followed too closely if
implementation is to be object oriented as the
organisation in layers will be against object oriented
principles that promote highly coherent and weakly
coupled objects. For this reason more refined models
such as the one presented in (Hudson 1987) refine the
Seeheim model in order be closer to the
implementation.

Another kind of approach that promotes abstraction
first is the agent one that organise the application into
collection of cooperating agents. Such models can be
used recursively to define the application at different
levels of abstraction. The communicative aspect of
interactive systems provide a basis for further

structuring the system as a network of interactors, each
dealing with different subsets of the human computer
dialogue. The most used of those models are MVC and
PAC (Coutaz 1987). that is now extended to the PAC-
Amodeus model (Nigay & Coutaz 93) which is a
blending of the Arch/Slinky model and the agent
model PAC.

The main drawbacks of these approaches are the
lack of methodology in order to support the top-down
process they promote and the fact that the number of
elements in the model is too small in order to provide
efficient classification of components in real size
applications.

2.2 Implementation First: Toolkits

Toolkits provide functions and primitives for
building interactive systems. Compared to models they
address the problem of structuring interactive systems
in the opposite way. Toolkits are usually based on
conceptual models that impose a predefined way for
organising the code of the applications. For example
event-based environments such as Sassafras (Hill 1987)
or more recently Visual Basic™ organise the code
according to event-handlers. Some development
environments are associated with other kind of
architectural frameworks (InterViews, MacApp). They
need a long time for designers to know how to use
them and are heavily linked to the underlying toolkit
used. Hence, they do not really provide reusable
components and composition rules. The other problem
is that they do not relate to abstract models and thus it
is really hard for designers to have a global
understanding of the application.

2.3 Reuse First: Design Patterns

A new tendency proposes design patterns as models
to construct applications (Buschmann et al. 1996,
Gamma et al. 1995). They provide useful information
about both the structuring of a system and its actual
implementation. These patterns can be seen as a "glue"
between the abstract models and the implementation
ones but they address more "low-level" aspects of the
life-cycle of an application and are more suitable at

implementation step than at conception level. In
(Buschmann et al. 1996) two patterns (MVC and PAC)
are addressing the problem of interactive systems, but
they are only refinements of models used for a long
time in the domain of interactive systems.

2.4 Insight First: Metaphors

A metaphor provides a method by which people can
quickly learn and understand how to use a system.
Through metaphors, users infer the meaning, the
behaviour and the manipulation of objects by mapping
their aspects in the system onto the associated one in
the metaphor. For instance, with the desktop metaphor,
users might infer that a trash can-like object is a
container for objects that are to be discarded, and may
infer that objects can be dropped into the trash without
having to learn explicit instructions on how to throw
away files: the knowledge for throwing away objects is
contained in user's knowledge about trash cans in the
real world (Lundell & Anderson 1995).

Metaphors have not only been used for organising
the presentation of interactive systems. Several toolkits
or development environments have been designed
according to metaphors. A metaphor-based
programming environment helps designers in
organising software components. The need for a
metaphor is even more important for interactive
applications including advanced interaction tools since
they are made up of a huge set of objects dedicated to
the interface and interacting together. Several
metaphors have already been proposed and used for
structuring libraries see for example X1y (Beaudouin-
Lafon et al. 1990) and Whizz which is a library for
building animated interactive applications based on a
musical metaphor (Chatty 1992).

2.5 Discussion

Even though the different models presented before
have proven their usefulness for designing interactive
systems, they do not provide enough information for
structuring the software components needed in a
complex interactive application. Splitting such a
system into agents means creating hundreds of user

interface components. Those components, their roles
and their relationships are difficult to identify for
designers, and this can be even more difficult when it
comes to maintain the system. The main problem with
these approaches is that they only provide information
at a generic level i.e. for all the interactive applications
and no information for a given application that has to
be built, and this particular point is addressed in the
next section.

3. THE MAKING-MOVIES METAPHOR

We had to design an interactive application
integrating new interaction techniques such as movable
and specialised filters, according to the principles of
the Magic-Lenses™. We wused a metaphorical
architecture framework for interactive application
based on PAC model. Of course, as stated by (Lakoff
& Johnson 1980) "metaphors do not imply a complete
mapping of every concrete detail of one object or
situation onto another". This section is thus devoted to
present the metaphor and several aspects that can be
found in making-movies will be emphasised and other
will be suppressed.

3.1 Context

As a starting point we were using the Xy -Whizz,
toolkit for the implementation of the application. The
TV metaphor proposed in Xy allows designers to
structure most of the components of an application.
However, this metaphor does not provide a basis for
describing their behaviour and the relations between
these components and those of the functional core. We
thus extended the metaphor to address those problems.
However, the resulting making-movies metaphor is not
only dedicated to model components of the library but
to describe precisely all the components that are to be
part of the application.

3.2 The metaphor

All objects are articulated around the user and
coordinated by a global object identified as the
Director. Tts role is to ensure the global coherence of

the application according to its specification and its
current state.

The director is helped in its tasks by assistants, that
play as sub-directors for specific parts of the
application. They are classified in two categories:

* Assistants linked to the Functional Core of the
application, dealing with the communication and
coherence between the Interface part and the
Functional Core. The file manager in the desktop of the
Macintosh™ could have been designed as an assistant
linked to the functional core (the actual management of
files).

¢ Assistants linked to the Interface, and dedicated
to specialised interactions with users. They encapsulate
a whole interactive functionality of the application.
The help management in the desktop of the
Macintosh™ could be designed as a assistant linked to
the interface.

This distinction between assistants comes from the
abstract models presented in section 2.1 and is really
important as it preserves independence between the
functional part and the presentation part of the
application.

Bcenary Actors

Special Effects

ﬁ—
o' 5

Functional Core
External Data

Interactive Actors

‘Smse

Figure 1: The Making-Movies metaphor

The different objects of the making-movies
metaphor can be seen in Figure 1. The objects of the
interface, named Actors, have predefined characters
and behaviours, and may also react to user's actions or

events emitted by other actors. Actors are organised on
virtual surfaces named Stages, and can be viewed by
users through objects named Views (i.e. windows).

Several stages may be displayed in a view. Their
contents is organised consistently with the functional
aspects of the application. In order to provide designers
with more precise information the metaphor
distinguishes four kinds of actors:

1. Interactive Actors are entities that can be
manipulated by the user and usually correspond to
application domain concepts displayed on the
interface.

2. Walkers-on are actors whose appearance and/or
behaviour evolve according to the current state of the
application, but cannot be manipulated by users.
Walkers-on are only dependent from the application,
and not directly linked to users’ interactions.

3. Special effects are temporary actors dynamically
created wused for providing feedback during
interactions. The feedback is either visible or audible.
For example, in the desktop metaphor, a temporary
actor is created when the user drag a file on the screen.

4. Scenery, are non-interactive graphical objects
defining the static appearance of the interface. Their
appearance never changes during a session. They
constitute the "background" of the display such as the
pattern on the background of the desktop of the
Macintosh™.

For each actor a scenario describes its behaviour
according to its internal state and the current state of
the application handled by the director.

However, neither the internal structure of the
objects nor the communication mechanism among
them are described by the Making-Movies Metaphor.

3.3 Decomposition of Actors

In order to describe the internal structure of the
objects, we applied and refined the principles of the
PAC model (Coutaz 1987). Figure 2 presents the
graphical representation of this refinement.

e The Control describes the communication
between objects. Two mechanisms are available. The
first one, called distribution is used when the sender

does not know the receiver (kind of broadcast). The
other one called client-server, when the sender holds
the reference of the receiver and directly invokes one
of its services (public functions). Those
communication mechanisms have been formally
defined (Palanque & Bastide 1994).

PRESENTATION

ABSTRACTION

Internal | Application
Contral

Distributed

CONTROL
Figure 2: Refinement of the PAC model

* The Abstraction is made up of two parts called
Application and Internal. The first one contains
attributes and functions linked to the application
domain. The second one handles the internal state of
the object, and contains attributes and functions
ensuring the inner consistency of the object.

* The Presentation holds the graphical attributes of
the actors. Those attributes can only be manipulated by
functions according to the communication mechanisms
described above.

4. A FULL SCALE APPLICATION

Osmose is a tool developed at CENA for dividing
airspace into control sectors. It combines optimisation
techniques with a direct manipulation editor. The users
of Osmose are flow management experts. They load
traffic data extracted from flight plans, select a
geographic area and ask Osmose to propose a set of
sectors with balanced workloads. Then they use the
interaction capabilities of Osmose to explore the results
and adjust it if necessary.

The Figure 3 shows the interface of the Osmose
application. The metaphor used for the presentation of
Osmose is based on shelves, closets and boards with
3D effects.

Figure 3 : The user interface of the Osmose application

The Osmose interface consists in three areas: the
editing board, the post-it boards (status data), and the
set of closets and shelves.

* The editing board is aimed at presenting ATC
information to the users and allowing them to interact
on the objects presented. Data such sectors, airports, or
air-traffic flows can be modified by users by direct
manipulation. In Figure 1, the black dots on the maps
represent the airports the polygons the sectors and the
thick lines the flows between airports.

* The post-it boards (upper right corner of Figure 1)
contains several indicators on the application status and
displayed information: current activated function, scale
used, mouse position in latitude/longitude coordinates,
etc.

e The graphical objects that trigger Osmose
functions are displayed as objects standing on shelves,
enclosed in closets. A closet is devoted to objects from
the same "group": one for General Services such as
print or save functions (the bottom left one), one for

Sectors Tools (the middle right one). one for ATC tools
(the bottom middle one), etc.

Movable filters for instance, provide the ability to
focus on a selected area by visualising detailed
information while simultancously keeping the global
context displayed. In Figure 3, two movable filters are
instantiated:

* one located above Corsica displays only the map,
airports and airports names,

* one on the Atlantic only displays the map, the
sectors borders, the vertices identifiers, and the sectors
names.

This user interface presents several characteristics
that fit the requirements of the Osmose application:

* Modularity is easily supported as adding or
removing a functionality to the application will
correspond to removing one element on a shelve.
Group of functions can be handled as a whole by
interacting directly with closets.

* Customisability is fully supported as users can
dynamically change the appearance of the interface by
moving the "graphical-objects" from one shelve to
another one shelve according to their convenience
(frequency of use, etc.). Using movable filters, this
customisation is reinforced as not only the visualisation
of functions but also data can be dynamically specified
by the users.

5. IMPLEMENTATION

The making-movies metaphor presented above has
been fully used for the structuring of the object classes
used in Osmose. Thus any software component that has
been built comes from the interpretation of the
metaphor.

Tegend

(O— Optional @ orone)
O———Ts compased of
(@) PAC elerrents

AT Assistant. Tnde/Redo Assistant.
<>
Afpart. Assistant Reacon Assistant Flight plan Assistant ‘ View ‘ ‘ Stage ‘

‘ View H Stage ‘ ‘Amr‘ﬂTmsmereArmr‘

Figure 4: A subset of the class hierarchy in Osmose

The Figure 4 presents the hierarchy of classes of
our application. The director OsmoseHandler is
associated to Assistants such as ATCAssistant or
HistoryAssistant inherating. An Assistant is made-up
of: views that manage the display, stages that organise
the displayed information, and acfors that represent the
interactive entities. The fact that each interactive actor
is built according to the PAC model is represented by
the composition relationship at the bottom of Figure 4.
The right hand part of the Figure has been cut for space
reason, but the same composition is applied to all the
interactive actors.

6. CONCLUSION

In this paper, we have described the use of a
metaphor to help programmers structure their highly
interactive applications. We also have exemplified the
use of that metaphor through the construction of a full
scale application developed at CENA for air traffic
experts.

Using a metaphor has shown to provide at least
three kinds of help to programmers:

* as the metaphor is by definition object-oriented
all the advantages of this approach such as reuse,
reliability and encapsulation are fully supported by this
approach.

* help in identifying presentation objects,
functional core objects, and their relations. This is
useful both at design time and at maintenance time,
because it helps programmers navigate through the
organisation of the application.

* help in distributing programming tasks in time or
among programmers. Using the metaphor leads to
easier integration.

However, though they have shown their usefulness
in our developments, we are conscious that metaphors
are only a help that cannot replace classical methods
for structuring software. Our future research in that
direction will focus at integrating such a metaphor with
tools and methods for structuring interactive software,
along several different lines. One of our approaches
will consist in specifying more precisely the behaviour
of objects (actors in our metaphor) with formal
methods in order to perform static analysis of that
behaviour (Palanque & Bastide 1995). Another
approach will take the toolkit approach, and extend a
graphical toolkit and its corresponding interactive
editor (Esteban et al. 1995) to the description of the
behaviour of objects and their relations.

7. REFERENCES

(Arch 1992) A metamodel for the runtime architecture
of an interactive system. The UIMS Tools
Developers Workshop, SIGCHT Bulletin vol. 24,
n°l, pp 32-37.

(Beaudouin-lafon et al. 1990) Beaudouin-Lafon M.
Berteaud Y. Chatty S. Creating direct manipulation
interfaces with Xry. EX'90, European conference
on X Window.

(Buschmann et al. 1996) A system of patterns. Wiley
Publ.

(Chatty 1992) Chatty S. Defining the behaviour of
animated interfaces. Engineering for Human
Computer Interaction Conference pp. 95-109, North
Holland.

(Coutaz 1987) Coutaz J. PAC an implementation
model for dialogue design. Proceedings of the
Interact'87 conference. North Holland. pp. 431-437.

(Coutaz et al. 1996) Coutaz J., Nigay L. Salber D.
Agent Based architecture for modelling Interactive
Systems. Critical Issues in User Interface System
Engineering, pp. 191-209, Benyon & Palanque
(Eds.), Springer Verlag..

(Esteban et al. 1995) Esteban O., Chatty S. Palanque P.
Whizz'Ed: a visual environment for building highly
interactive software. Proceeding of Interact'9s
conference Chapman et Hall. pp. 121-126.

(Fekete 1996) Fekete J.D. Un mod¢le multicouche
pour la construction d'applications graphiques
interactives, PhD thesis, Université Paris Sud.

(Gamma et al. 1995) Gamma E., Helm R_, Johnson R.
Vlissides J. Design patterns. Addison Wesley.

(Hill 1987) Hill R. Supporting concurrency,
communication and synchronisation in Human-
Computer Interaction. The Sassafras UIMS.
Proceedings of ACM CHI'87 pp. 241-248.

(Hudson 1987) Hudson S.E. UIMS support for direct
manipulation interfaces. Computer Graphics vol.21
n°2. pp120-124.

(Hussey 1996) Hussey A. & Carrington D. Comparing
two user-interface architectures: MVC and PAC.
FAHCT'96, Springer Verlag.

(Lakoff & Johnson 1980) Lakoff G. & Johnson M.
Metaphors we live by. The University of Chicago
Press.

(Lundell & Anderson 1995) Lundell J. & Anderson S.
Designing a "Front Panel" for Unix: The Evolution
of a Metaphor CHI95 ACM p.573-579

(Nigay & Coutaz 1993) Nigay L. & Coutaz J. A design
space for multimodal systems: Concurrent
processing and Data fusion. Proceedings of
INTERCHTI'93, ACM Press, pp. 172-178.

(Palanque & Bastide 1994), Palanque P & Bastide R.
Petri net based design of User-Driven Interfaces
using the Interactive Cooperative Objects
Formalism. Proceedings of Design, Specification
and Verification of Interactive Systems, Springer
Verlag, pp. 383-400.

(Palanque & Bastide 1995), Palanque P & Bastide R.
Verification of an interactive software by analysis
of its formal specification. Proceeding of
Interact'95 conference Chapman et Hall. pp. 191-
196.

(Pfaff 1985) Pfaff GE. et al. User Interface
Management Systems, G.E. Pfaff Ed., Eurographics
Seminars, Springer Verlag.

(Tscheligi & Vanaanen 19935) Tscheligi M. & Interface System Engineering, pp. 249-263, Benyon
Viidninen-Vainio-Mattila. Metaphors in User & Palanque (Eds.), Springer Verlag.
Interface Development: Methods and Requirements

for Effective Support. Critical Issues in User

