
WHIZZ’ED: A VISUAL ENVIRONMENT FOR BUILDING
HIGHLY INTERACTIVE SOFTWARE

Olivier Esteban Stéphane Chatty Philippe Palanque∗

Centre d’Études de la Navigation Aérienne
7 avenue Edouard Belin, 31055 TOULOUSE Cedex FRANCE

E-mail:{esteban, chatty, palanque}@cena.dgac.fr

KEY WORDS: interface design, visual programming, direct manipulation, animation.

ABSTRACT: This paper describes the issues raised by the development ofvisual tools for
the construction of graphical interfaces. It presents Whizz’Ed, an experimental editor for
construction of highly interactive or animated applications. In addition to the features of
traditional interface builders, Whizz’Ed makes it possible to visually describe by direct ma-
nipulation the behaviour of graphical objects and their interrelations. Whizz’Ed encapsulates
basic behaviours in elementary bricks that can be connectedusing a data-flow model. The
flow graph can be structured in order to reuse complex behaviours, thus allowing the designer
to create new reusable bricks at design time.

1 INTRODUCTION
Visual programming has a number of applications
ranging from educational software to specialized pro-
gramming tools, dedicated to domains such as signal
processing or image processing. Most of these ap-
plications exercise the ease of use offered by visual
programming, in order to give access to programming
to non-specialists in computer science (Chang, 1987).
A domain where that ease of use would be greatly
appreciated is user interface design. The design of an
interactive application usually involves human factors
specialists, future users of the application, and occa-
sionally graphics designers. These people usually do
not have an education in computer science, and of-
ten have to rely on highly specialized programmers
for building prototypes of the system they are design-
ing. Furthermore, the design of efficient and usable
interfaces requires many iterations on the design and
evaluation of prototypes. As long as complex pro-
gramming is necessary, the development of high qual-
ity user interfaces will be very costly; besides easier to
use interface construction tools will hopefully allow
to build better interfaces.

However, building visual programming tools for inter-
face construction is still a stimulating challenge, espe-
cially when it comes to developing highly interactive,
direct manipulation interfaces (Shneiderman, 1983).
A number of interactive construction tools have been
developed during the last years, and are now widely
available. These tools, commonly known as inter-
face builders, offer a partial solution to the problem of

∗also with LIS, University of Toulouse, 1 pl. Anatole France
31042 Toulouse Cedex (FRANCE)

building graphical interfaces. They allow their users
to instantiate and customize interactive objects such as
buttons, dialogue boxes or menus, which are usually
called interactors, or widgets. For instance, commer-
cial interface builders such as HP Interface Architect,
TeleUSE or XFaceMaker, are based on the OSF-Motif
widget set (OSF, 1993). Visual Basic for Windows
uses the set of widgets provided by the CUA standard
(IBM, 1991). These tools can be considered as visual,
in that they provide graphical representations of the
objects of interest (the interactors themselves), and al-
low to manipulate these graphical representations in
order to set the parameters of the objects.

But such interface builders can definitely not be con-
sidered as visual programming tools, since setting pa-
rameters is not programming. That lack of program-
ming capabilities can be related to another weakness
of these tools: they can only help to build what we
call static interfaces. Such interfaces are able to re-
act to user’s actions, but in fact, their only differ-
ence from static figures lies in predefined behaviours,
which can hardly be changed. Creating more dy-
namic, highly interactive interfaces, such as iconic
interfaces or MacDrawTM-like drawing tools, requires
more than the instantiation and parameterization of
predefined interactors. Some form of programming
is needed to describe how users can move graphical
objects around, change their shapes, or make copies
of them, for instance. In fact, some of the interface
builders we mentioned earlier offer facilities for re-
programming or enriching the behaviour of their wid-
gets. But for that purpose, they provide specialized
textual programming languages whose manipulation
requires traditional programming skills. The chal-

1



lenge here consists in providing easy-to-use program-
ming facilities, so that interface designers can build
highly interactive applications or prototypes.

The following section describes all the important is-
sues that have to be addressed when building highly
interactive interfaces. The next one describes pre-
vious work on user interface construction and visual
programming. We then present Whizz’Ed, an ex-
perimental visual tool devoted to the construction of
highly interactive or animated interfaces. Finally we
present, with a simple case study, how Whizz’Ed and
its conceptual model can be used for the design of an
interactive application.

2 ISSUES RAISED BY INTERFACE BUILDING
The complexity of user interface software is not re-
lated to algorithmic complexity: pictures used in to-
day’s graphical interfaces are fairly simple, and only
simple geometric computations are necessary. Fur-
thermore, such computations can be encapsulated in
reusable graphical objects (rectangles, splines, poly-
gons, etc.) or geometry managers (alignment con-
straints, graph managers, etc.) that are nowadays well
mastered. The complexity of an interactive applica-
tion actually lies in the behaviour of graphical objects,
and in the many interrelations between them (Myers
et al., 1990). As a consequence, a visual tool for inter-
face construction does not need to provide represen-
tations for sophisticated numeric loops and tests. The
need is rather to identify the correct building blocks for
describing behaviours, interrelations between objects,
to offer structuring mechanisms to help managing the
remaining complexity, and to allow the dynamic man-
agement of objects, as it is common to have very short-
lived objects e.g. ghosts used for feedback informa-
tion in direct manipulation interfaces. The behaviour
is characterized by the reactive nature as each object
is always idle and waiting for events to react to, ac-
cording to events that may be initiated either by user’s
actions or by time pulses. The graphical interrelations
between objects describe relations in the behaviour
of different objects (e.g. two objects moving accord-
ing to the same trajectory) and are calledgeometrical
constraints, while the interrelations between time and
objects are calledtemporal constraints.

3 RELATED WORK
Providing tools that are able to take into account the
characteristics described above is still a challenge.
However, some research has been done in that direc-
tion. The three main approaches are constraint based
systems, the path-transition paradigm, and data-flow
systems.

SketchPad (Sutherland, 1963) was the first drawing
system that used constraints. SketchPad allowed lines
to be constrained by relationships with other lines (per-
pendicular, parallel, etc.). ThingLab extended that
notion by providing a general simulation environment

(Maloney et al., 1989). Constraints in Sketchpad and
ThingLab are bi-directional and allow objects to be
attached and updated simultaneously. Garnet (Myers
et al., 1990) is another constraint based system that
contains a set of tools to assist the design of user in-
terfaces. However, constraint based systems do not
allow the description of behaviours in a very natural
way. Indeed, it is more difficult for designers to ex-
press behaviours in an abstract way (such as needed
with constraints) rather than describing causality links
between objects (such as needed with data-flow based
systems). Moreover, usually constraints are to be
expressed in a textual and thus hard to understand
language (e.g. temporal logics). Indeed, the use of
graphical notations for describing behaviours (as in
path-transitions or data-flow diagrams) is easier and
thus such systems can be used by a broad range of peo-
ple with different programming levels. Tango (Stasko,
1989) is an algorithm animation system based on the
path-transition paradigm in which one describes paths,
attaches graphical objects to them, and then plays
the resulting transitions. Tango contains a WYSI-
WYG demonstrational design tool called Dance for
designing animations. But using the path-transition
paradigm makes difficult the expression of temporal
constraints, as well as geometrical constraints. In
order to allow natural description of behavioural con-
straints (both geometrical and temporal), the data-flow
paradigm has been introduced.

Systems based on data-flows make programs easier
to construct due to the natural understandability of
data-flow diagrams. NL (Harvey and Morris, 1993)
is a visual programming language, based on a data-
flow programming model. A NL data-flow program
is a directed graph. The arcs represent the paths over
which tokens move between nodes,where they may be
transformed into other tokens. NL uses a data-driven
firing rules: a node is fired when each of its input ports
holds a token. NL provides composite nodes which
enable programmers to recode groups of nodes into
comprehensible chunks. InterCONS (Smith, 1990)
is a visual data-flow language in which certain prim-
itives are associated with interactors like buttons or
sliders. A similar approach can be found in Prograph
(Cox et al., 1989) and Fabrik (Ingalls et al., 1988).
Fabrik enhances the traditional data-flow model with
a bidirectional data-flow. This extension permits the
use of nodes that combine several functions (typically
a function and its inverse).

4 WHIZZ’ED
We implemented a visual programming tool called
Whizz’Ed that allows the visual programming of highly
interactive interfaces. The purpose of such a tool is to
allow the creation (by direct manipulation) of interac-
tive objects to build such an interface. This section is
dedicated to the presentation of Whizz’Ed. We will
present the conceptual model of Whizz’Ed, its func-
tioning and its graphical representation.

2



4.1 The conceptual model
The conceptual model of Whizz’Ed is based on data-
flows and a set of predefined elementary components.
The editor is built on top of an underlying library called
Whizz (Chatty, 1992) dedicated to the programming of
highly interactive and animated interfaces. In order to
explain the data-flow model of Whizz, we usually ex-
ploit a musical metaphor. In this metaphor, graphical
objects are called dancers and non-graphical objects
can be either instruments or tempos. Flows between
these objects are made of simple pieces of data such as
integers, colors, positions, etc. Referring to the musi-
cal metaphor, these pieces of data are called notes, and
are produced by instruments. In order to allow com-
munication, each object holds several input and output
slots called plugs. Dancers listen to instruments and
their graphical appearance (shape and aspect) changes
according to the notes they hear. There are different
kinds of instruments, some of which will be described
in the next section. Among them, for instance, instru-
ments called rotors, each producing positions bound
on a circle, thus allowing dancers connected to them
to move along that circle.

Time-based behaviours are implemented by tempos
that produce notes called pulses at regular time inter-
vals. Tempos can be used to drive instruments. For
each beat of a tempo, the instruments connected to it
produce a note, then received by the dancers connected
to them. There is no one-to-one relation between in-
struments and dancer as several dancers can listen to
the same instrument, and one dancer can listen to sev-
eral instruments at a time. Tempos can also be shared
amongst instruments. This makes it possible to easily
describe synchronized behaviours. For instance, in a
text editor, when a user depresses one of the arrows
at the ends of a scrollbar, the cursor of the scrollbar
moves while the text is scrolled. These two synchro-
nized behaviours can be obtained by connecting the
text and the cursor, which are two dancers, to two in-
struments that describe their movements, and that are
connected to the same tempo. Finally, other sources
of movement than tempos can be used. Special instru-
ments spontaneously emit the successive positions of
the mouse, or the characters typed on the keyboard.
Other instruments behave as active values, and can be
used to communicate between Whizz constructions
and other pieces of software: they are variables, that
can be modified in a program, as well as instruments,
that emit their new values when modified. Flows
from different sources can be combined, for instance
when using several input devices at a time: Whizz
has been successfully used to implement two-handed
input (Chatty, 1994).

When building highly interactive or animated systems,
specifying the movement of objects is not enough. It
often happens that one wants to perform an action
when an object has finished its movement, or when
it passes a border, or even when it meets another ob-

ject. Such events are generally difficult to compute
beforehand, and it is much more pleasant to be noti-
fied when they occur. The model provides a numberof
active zones (or fields) in order to detect such events.
They range from linear borders to elliptical fields or
grids. They can emit events such as crossing, entering,
leaving, etc. This allows for example the easy build-
ing of a labyrinth interface. Walls are built from these
kinds of active zones and are automatically impassable
by user’s actions. Similar zones can be used for the
building of a slider to represent the interface of a ther-
mometer. Events may also be emitted by instruments
when their part is finished, or when a particular time
is reached. This enables us to use the event model that
has proven to be useful for interactive applications.

The underlying data-flow model of Whizz is based
on two types of information propagation: streams,
used for evolutions which represent a continuous phe-
nomenon and events, used for isolated evolutions.
Events are similar to these used in many graphical
toolkits and represent a less structured way of commu-
nication than streams. With this stream-event model,
user’s actions and animation can be mixed since the
model has a unique information propagation scheme.
Events may also be attached to callback functions that
may reconfigure the flow graph, by creating or de-
stroying bricks, or changing connections. This allows
events to change at run-time the behaviour of an ob-
ject, or to fire animations.

Whizz’Ed provides a kit of components that can be
wired together to build new components. This tech-
nique is usually called the building game metaphor.
This name comes from the Lego-Logo (Resnick,1993)
construction kit which is a rich construction environ-
ment which allows the building of creatures with elec-
tronic bricks like sensors, motors, lights, and-gates,
flip-flops, etc. Several visual programming systems
use this efficient building concept linked with a direct
manipulation editor (for example see Fabrik (Ingalls
et al., 1988)). Whizz’Ed provides a set of elementary
bricks that can be dancers, instruments or tempos and
allows the building of higher level bricks that can be
seen as reusable components. When two bricks are
graphically wired by the designer, these two bricks
are connected and the data-flow is either created or
dynamically reconfigured.

Graphically Whizz’Ed proposes a visual language rep-
resenting objects (instruments, tempos and dancers)
by icons that can be animated and data-flow by lines
connecting these icons. Plugs are graphically rep-
resented by small rectangles coupled with the icon
representing the object. The notes are put in these
plugs, and the type of the note must correspond to the
type of the plug. Graphically, the shape of the plug is
different according to its type.

3



4.2 The interactive editor
Whizz’Ed consists of three main parts: the palette, the
editing area and the simulating area.

• The palette contains the graphical representation of
the objects (cf. Figure 1). This part is devoted to the
elementary bricks that are supplied to the designer.
The chaining of these elementary bricks allows to
build complex behaviours avoiding the limitations in-
troduced by the use of complex bricks. However it
is possible for the designer to build compound bricks
and to declare them as elementary bricks, thus increas-
ing the set of bricks primarily proposed. The palette
is divided into three parts: the set of instruments, the
set of dancers and the set of other bricks that are only
used by designers to relate instruments or dancers.
• The editing area allows to program the highly inter-
active or animated interfaces using elementary bricks
(cf. Figure 1). The interface designer can use the
palette (as in classical drawing tools) by direct ma-
nipulation, selecting an icon in the palette, dragging
it to the working area and dropping it at the desired
place. Data-flow between bricks is also built using
direct manipulation, by selecting a plug of a brick and
dragging and dropping it over another one. The arc is
then automatically represented. The editor checks au-
tomatically that the type of the plugs are compatible.
The direct manipulation of the bricks to assert rela-
tionships prevents many errors from the development
process. The bricks can be moved to simplify wiring.
• The simulating area. This area aims at graphically
representing the execution of the visual program built
in the editing area (cf. Figure 2). The simulating
area guards against structural errors since the building
of interactive objects is immediately visible and the
appearance and behaviour of these objects is directly
simulated. This area can be used either for debugging,
rapid prototyping or simulating the program. At this
time, it is not possible to interact with the execution
but it will be soon possible to act on the execution by
direct manipulation. These interactions will be auto-
matically analyzed by a module and reintroduced in
the visual program, thus allowing designers to modify
their program at run time.

The elementary bricks are the foundation of the build-
ing of components of the interface. Some bricks
are computational, while others provide user inter-
face functions. The designer defines his application
by directly manipulating the iconic representations of
these bricks. The designer selects iconic representa-
tions of appropriate bricks, places them in the editing
area and connects them to achieve the objects with the
desired functionality and appearance. This reusable
composite brick is immediately provided to the de-
signer in the tools area. From this state, the designer
can use the new brick as a classical elementary brick.
Some elementary bricks provide a specific editor to
visually set some variables. We will not describe all
elementary bricks that are provided by Whizz’Ed, but

some of them will be detailed as they are used in the
example of the next section.

Figure 1: The Palette and Editing Areas.

Figure 2: The Simulation Area

5 THE BUILDING OF AN ALARM CLOCK
We present in this section an example of the use
of Whizz’Ed for building the behaviour of an alarm
clock. The behaviour of such a clock is as follows:
when both the alarm hand and the hour hand of the
clock match, the bell rings. The user can directly ma-
nipulate the alarm hand of the clock in order to set
it. The behaviour of the clock is quite complicated as
it combines graphical interactions such as user’s ac-
tions (the setting of the alarm hour), temporal aspects
(clock hands moving according to time stamps) and
semantical behaviour (the bell rings when the alarm
hour is reached).

In spite of this relative complexity, modelling of this
behaviour is quite simple, using the conceptual model
of Whizz. The behaviour is described by connecting
several elementary bricks together. This shows the

4



modelling power of Whizz as well as the efficiency
of Whizz’Ed as a visual programming environment.
First we will present the set of items (bricks and con-
nections) of the visual program, then we will show
how the behaviour of this program corresponds to the
desired behaviour of the alarm clock.

5.1 The items of the visual program
The Reaction Brick A Reaction brick is reactive to
user’s actions (mouse click, mouse move, etc). It is
associated with an object defined as being a sensor of
the user’s action and transmits this action to a con-
nected object. These bricks are aimed to allow user’s
actions to interfere with the behaviour of the system.
A Reaction brick has one output plug for sending a
note to the connected object when a user’s action is
performed on the sensor object. The designation of
the sensor object is achieved by a semantic connec-
tion represented by a virtual temporary link between
the reaction brick and the object which will be used as
sensor.

The Rotor Brick A Rotor Brick is a point instrument
that sends positions on an ellipsis. The rotor has three
input plugs used for the calculation of the next position
and two output plugs. The first input plug called
“Step” is used to receive pulses. Each time a pulse
is received by this input plug, the rotor computes the
next position on the ellipsis according to the previous
one. The second input plug called “Random” aims at
receiving pulses too, but the next position is computed
randomly on the ellipsis. In both cases the computed
position is sent to the output plug. The third input
plug called “Projection” aims at receiving directly the
next position on the ellipsis. One may visually specify
the center and the radius of the ellipsis, the number of
steps per turn, and the initial position (in term of steps).
The elliptic trajectory of the rotor could be shown but
it could be hidden if necessary by visually setting a
parameter. The first output plug called “Position”
is used to send the next position on the ellipsis to
the connected object. The second output plug called
“Parameter” is used to send the angle of the director
vector.

The Tempo Brick Tempos are designed to synchro-
nize animated actors. There is no synchronization
between different tempos. The tempo features three
input plugs: the first one (of type date) corresponds to
the interval of time between two notes it must produce,
the second one (of type integer) represents the number
of notes it has to produce (these two parameters may
be also directly visually specified) and the last one (of
type boolean) represents its state: active (default) or
idle. When an event is received, a tempo emits a note
on its output plug.

The Segment Brick Segments are deformable seg-
ments. They have five specific input plugs. The Be-
gin, End and CenterPosition that control the position

of the begin and end extremities, and the center. The
type of these plugs is a position type. The two other
plugs concern the color of the segment, the first one is
the BorderColor while the other one is the FillColor
that control respectively the color of the border and the
filling. The type of these plugs is RGB (three integers
for the Red Green and Blue colors).

The Drag Brick This brick allows the drag of a graph-
ical object. It has one input plug and one output plug.
The input plug called BeginEnd (of type boolean) aims
at receiving a pulse to begin or end the drag. When the
drag is performed, the output plug emits the succes-
sive positions of the drag, that is to say the successive
positions of the mouse while the user moves it.

The Bell Brick The Bell Brick emits a sound when a
pulse is received on its input plug. One may visually
specify the volume of the sound.

The Filter Brick The Filter Brick is used to check the
equality between two values. It has two input plugs
which get the values to compare, and an output plug
to emit a pulse if the equality is checked.

5.2 The visual program of the alarm clock
The visual program presented in Figure 1 must be read
as follows. The hour and minute hands of the clock
are displayed using Segment bricks called HourHand
and MinuteHand. Each of these hands move accord-
ing to a trajectory defined by two elementaries Rotor
bricks called MinuteTrajectory and HourTrajectory.
The move to the next position of the hands is trig-
gered according to temporal events produced by two
Tempo bricks called MinuteTempo and HourTempo
The HourTempo (resp. MinuteTempo) is connected
to the input plugs of the HourTrajectory (resp. Min-
uteTrajectory) Rotor brick itself connected to the Seg-
ment brick HourHand (resp. MinuteHand). The alarm
hand of the clock has to be reactive to the events
mouse-down and mouse-up in order, for the user, to
be able to drag it. This sensitivity to user’s actions
is managed by the elementary Reaction bricks called
ButtonDnReaction and ButtonUpReaction. The dot-
ted lines in the model represent the flow of events be-
tween the bricks responsible for the reaction to user’s
actions and the graphical object where this user’s ac-
tion can take place (the Segment brick called Alarm
hand). The alarm hand can only be dragged inside
the clock, the end of the alarm hand which is at the
center of the clock is fixed and its outer end can only
be moved according to a circular trajectory. In order
to produce this drag we use the data flow. Thus, the
output of the Reaction bricks are connected to the Be-
gin/End input plug of the elementary Drag brick called
DragAlarm. DragAlarm is connected to the input plug
“Projection” of the elementary Rotor brick AlarmTra-
jectory (which compute the next position of the outer
end of the alarm hand according to the current po-
sition of the mouse). The output plug “Position” of

5



AlarmTrajectory is connected to the input plug “End”
of AlarmHand in order for the next position of the
alarm hand to be displayed on the screen. The output
plug “Parameter” of AlarmTrajectory, is connected to
the first input plug of the elementary Filter brick called
AlarmFilter while the output plug “Parameter” of the
brick HourTrajectory is connected to the second one.
This Filter brick will trigger the bell (represented by a
brick called AlarmBell) when the value in each of its
input plugs is the same.

Setting the alarm is done by direct manipulation when
the user clicks on the alarm hand and drag it. At that
moment, the Reaction brick ButtonDnReaction emits
on its output plug a pulse towards the Drag brick Dra-
gAlarm to start the drag. This DragAlarm emits posi-
tions to the Rotor brick AlarmTrajectory which emits
the new position of the end extremity of the alarm
hand. Concurrently, the output plug “Parameter” of
AlarmTrajectory emits the angle value to be compare
to the Filter brick AlarmFilter. When the user releases
the mouse button, the Reaction brick ButtonUpRe-
action emits on its output plug a pulse towards the
Drag brick DragAlarm to stop the drag. Then the
alarm hour is set. In parallel, the two Tempo bricks,
MinuteTempo and HourTempo, emit pulses on their
output plugs towards respectively the Rotor bricks
MinuteTrajectory and HourTrajectory. MinuteTrajec-
tory emits positions to the outer end of the minute
hand. HourTrajector emits positions to the outer end
of the hour hand and the angle value to the Filter brick
AlarmFilter. If the two values received from HourTra-
jectory and AlarmTrajectory match, then AlarmFilter
emits a pulse to AlarmBell.

This alarm clock can be encapsulated in a composite
brick featuring a set of input and output bricks that can
be directly manipulatedby the visual programmer,and
can be reused in other applications as the predefined
elementary bricks.

6 CONCLUSION
In this paper, we have presented Whizz’Ed, a visual
programming tool for highly interactive interfaces.
Whizz’Ed is based on a data-flow model of Whizz.
Whizz’Ed allows to describe the behaviour of graph-
ical objects in a visual way through the use of a direct
manipulation editor, with a building block metaphor.
A kit of elementary bricks oriented toward user graph-
ical interaction is provided. To illustrate our work, we
have presented an example of an animated object built
with a few elementary bricks.

ACKNOWLEDGEMENTS
The authors would like to thank the HCI group of the
Department of Computer Science of the University
of York (U.K.) where Ph. Palanque was a visiting
researcher during the development of this paper. The
authors also wish to thank Michelle Jacomi and the
anonymous reviewers for their useful comments.

REFERENCES

Chang, S. K. (1987). Visual languages: A tutorial
and survey.IEEE Software.

Chatty, S. (1992). Defining the behaviour of ani-
mated interfaces. InProceedings of the IFIP WG
2.7 working conference, pages 95–109. North-
Holland.

Chatty, S. (1994). Extending a graphical toolkit
for two-handed interaction. InProceedings of the
ACM UIST.

Cox, P., Giles, F., and Pietrzykowski, T. (1989).
Prograph: A step towards liberating program-
ming from textual conditioning. InIEEE Work-
shop on Visual Languages, pages 150–156.

Harvey, N. and Morris, J. (1993). NL: A generic
purpose visual dataflow programming language.
Technical report, University of Tasmania, Aus-
tralia.

IBM (1991). Common User Access. Advanced
Interface Design Guide. IBM Corp.

Ingalls, D., Wallace, S., Chow, Y., Ludolph, F.,
and Doyle, K. (1988). The Fabrik programming
environment. InIEEE Workshop on Visual Lan-
guages, pages 222–230.

Maloney, J. H., Borning, A., and Freeman-
Benson, B. N. (1989). Constraint technology
for user-interface construction in ThingLab II. In
OOPSLA’89 Proceedings, pages 381–388.

Myers, B. A. et al. (1990). Garnet, comprehen-
sive support for graphical, highly interactive user
interfaces.IEEE Computer, pages 71–85.

OSF (1993). OSF/Motif Programmer’s Refer-
ence Release 1.2. Prentice Hall Inc.

Resnick, M. (1993). Behavior construction kits.
Communications of the ACM, pages 66–71.

Shneiderman, B. (1983). Direct manipulation:
a step beyond programming languages.IEEE
Computer, pages 57–69.

Smith, D. N. (1990). The interface construc-
tion set. InVisual Languages and Applications.
Plenum Pub.

Stasko, J. T. (1989).TANGO: A Framework and
System for Algorithm Animation. PhD thesis,
Brown University.

Sutherland, I. E. (1963). Sketchpad: a man-
machine graphical communication system. In
AFIPS Spring Joint Computer Conference, pages
329–346.

6


