Extending a Graphical Toolkit for Two-Handed Interaction

Stéphane Chatty

Centre d’Etudes de la Navigation Aérienne Laboratoire de Recherche en Informatique

7 avenue Edouard Belin
31055 TOULOUSE CEDEX
FRANCE
chatty @dgac.fr

ABSTRACT

Multimodal interaction combines input from multiple sen-
sors such as pointing devices or speech recognition systems,
in order to achieve more fluid and natural interaction. Two-
handed interaction has been used recently to enrich graphical
interaction. Building applications that use such combined in-
teraction requires new software techniques and frameworks.
Using additional devices means that user interface toolkits
must be more flexible with regard to input devices and event
types. The possibility of parallel interactions must also be
taken into account, with consequences on the structure of
toolkits. Finally, frameworks must be provided for the com-
bination of events and status of several devices. This paper
reports on the extensions we made to the direct manipulation
interface toolkit Whizz in order to experiment two-handed
interaction. These extensions range from structural adap-
tations of the toolkit to new techniques for specifying the
time-dependent fusion of events.

Keywords: interaction styles, multimodal interaction, two-
handed interaction, graphical toolkit, direct manipulation.

INTRODUCTION

Though many aspects of their construction are still a matter
of research, graphical interfaces are now well known. Most
of them make use of a pointing device that users manipulate
with their dominant hand. This has led to the introduction of
a number of interaction styles centered around that pointing
device: buttons, menus, point-and-click, drag-and-drop, and
so on. Such interaction styles enable interface designers
to build systems that are fairly efficient and easy to use.
However, the efficiency of such interfaces can probably be
improved. In the real world, we perform many tasks with
both hands, because it is more efficient. Because of these
natural skills, drawing pictures with a MacDraw-like tool is
sometimes frustrating: a significant part of the time is spent in
moving the mouse around to select tools, locking objects so
that they do not move when working on them, and so on. This
is very similar to handcrafting with one’s hand behind one’s
back: tools make it possible, but at the cost of a considerable
waste of time. When considering graphical software, it is

CNRS & Université de Paris Sud
91405 ORSAY CEDEX
FRANCE
chatty @Iri.fr

interesting to note that keyboard short-cuts are a way for us
to use our non-dominant hand when drawing, and to avoid
unnecessary movements with the dominant one. A recent
study shows that carefully designed two-handed graphical
interaction can improve the efficiency of interfaces [13].

Apart from drawing tools, a number of application domains
could benefit from such interfaces. Among these are the
domains where users are well-trained professionals, whose
attention is focused on the task they are performing. We
believe that air-traffic control is a good example of such a
domain. The interfaces provided to air-traffic controllers es-
sentially consist of a presentation of the situation in air-space:
it is the so-called “radar image”, which is composed of maps
and a number of symbols representing way-points, aircraft,
and other useful information. Many countries are currently
working on new interfaces that allow controllers to manipu-
late these representations with modern interaction techniques.
At CENA, we are exploring the hypothesis that controllers
might be able to plan their work by manipulating future trajec-
tories of aircraft. This is why we are investigating efficient
techniques for interaction with curves and objects moving
along them. Among other techniques, we are developing
two-handed interfaces in order to test their efficiency with
experiments and measurements.

Graphical interaction provides designers with many degrees
of freedom, but also with many possibilities to build bad
systems. This is even more true for two-handed interaction,
which can even be made less efficient than single-handed
equivalents. In order to explore possible interaction styles
and determine the most efficient ones for a given task, studies
on two-handed interaction must be supported by sufficiently
versatile software tools. Some of the currently available
graphical toolkits provide enough support for building highly
interactive interfaces. However, they do not support, or they
even impede, the construction of two-handed interfaces. This
paper reports on the extensions that were made to the Whizz
graphical toolkit so as to handle two-handed interaction. We
first review a number of two-handed interaction styles and
identify three classes of technical issues raised by their con-
struction. These classes are closely related to a more general
classification of multimodal interfaces. We then give a brief
description of Whizz and how it supports the construction of
single-handed graphical interfaces. The last three sections
are devoted to the three classes of technical issues raised by

two-handed interfaces, and to the solutions to these issues
that were implemented in Whizz.

RELATED WORK

Graphical interaction and the related software issues have
been widely explored for more than ten years. A number of
graphical toolkits have been proposed to ease the construc-
tion of graphical presentations and the description of mouse
and keyboard-based dialogues. The X Toolkit and Inter-
Views [15] are such toolkits. Systems such as Garnet [16]
and X7y [1, 2] pay great attention to the description of direct
manipulation interfaces. However, until now these systems
have been dedicated to interfaces based on a single pointing
device and a keyboard.

The notion of multimodal interaction was identified by Bolt [6].

Different opinions still exist about the exact definition of the
term multimodal. However, most authors who recently wrote
on that subject considered it as defining systems that feature
multiple input devices (multi-sensor interaction) or multiple
interpretations of input issued through a single device. A
number of studies have dealt with the combination of voice
recognition and graphical interaction [20, 10]. Other au-
thors studied the combination of direct manipulation and 2D
gesture recognition [19, 14]. Some graphic toolkits such as
Sassafras [11] and Grandma [19] support the construction
of multi-threaded interfaces. At the French IHM’91 work-
shop [12], a classification of multimodal systems, later refined
by Nigay and Coutaz [17], was devised. This classification
is organized along two axes: the sequential or concurrent
use of modalities, and their independent or combined inter-
pretation. Systems which feature two or more modalities in
parallel, with combined interpretation of input tokens, are
called synergistic. The “Put That There” style of interaction
is an example of synergistic multimodal input. Other pos-
sibilities are exclusive, concurrent and alternate modalities.
Nigay and Coutaz also stress the distinction between com-
bining low-level input tokens, such as phonemes and mouse
events, and high-level ones. An example of high-level fusion
is the “Put That There” style, where the meaning of words
and the identity of the designated objects are necessary to the
fusion of input data.

Two-handed interaction was suggested a long time ago [7],
and has gained more popularity since recent work by Xe-
rox PARC and the University of Toronto [4]. Two-handed
interaction is a special case of multi-sensor interaction, and
therefore of multimodal interaction. As other multimodal in-
terfaces, two-handed interfaces may use exclusive, alternate,
concurrent or synergistic modalities. Similarly, such inter-
faces feature high-level fusion: for instance, one could imag-
ine a two handed iconic interface where one hand would se-
lect objects and the other would choose operations in menus.
They may also feature low-level fusion, as in the well known
shift-clicks of your favorite desktop interface. We will see
later in this paper that other forms of low-level fusion in two-
handed interaction deeply involve time. Finally, two-handed
interaction also shares concerns with multi-user interaction.
Some multi-user systems, such as MMM [3], allow several
users to edit the same object in parallel. This raises the same
need for low level fusion as two handed interaction.

TWO-HANDED INTERACTION

Let us now review some styles of graphical interaction in-
volving both hands. Single-handed input offers a number
of degrees of freedom to designers, and two-handed input
increases that freedom. First, the debate on the choice of
input devices will reappear: is it better to use two mice, or
a mouse and a trackball, for instance? We will not open
that debate here, but acknowledge the diversity of choices.
For example, virtual reality designers will want to use two
digital gloves. In their 1986 paper, Buxton and Myers ex-
plored the use of a graphics tablet and a slider box (a sort
of 1-D mouse). Today’s keyboards can definitely be consid-
ered as two-handed input devices for text input, even if their
management is straightforward.

In the domain of graphics manipulation, a quick survey re-
veals potential applications to several combinations of de-
vices. We all are used to shift-clicks, which combine actions
on the mouse with one hand to actions on the keyboard with
the other hand. One-dimensional input devices may also be
combined with the mouse: a slider or a rotary knob controls
the zoom factor of the display, while the mouse is used to
draw. Using these devices in parallel would save time when
drawing precise figures, as one often switches from high scale
(to draw details) to normal scale (to see the overall result). Fi-
nally, two pointing devices may be used, as in Xerox PARC’s
Toolglass. With the exception of digital gloves, the use of
two pointing devices has the greatest power of expression,
and is the most demanding in terms of software complexity.
For that reason, the majority of our examples will use two
pointers, considering that other two-handed interaction will
be handled in a similar way.

Guidelines for two-handed interaction

There is probably no task for which two-handed input should
be the only way to perform operations: there will always be
situations in which one hand is used for another task, such as
holding a sheet of paper or a glass of water. This means that all
systems based on two-handed input should be usable with one
hand only. Obvious design rules suggest that one-handed and
two-handed actions for the same operation should be similar,
and that one should be easily inferred from the other. We
suggest that this requirement is most easily met when using
paradigms from the real world. In our opinion, interfaces
based on such paradigms just need to be extended for two-
handed input according to their paradigm. For instance, we
all have a good idea of what happens if we pick an object with
one hand and drag it; similarly, something predictable should
happen if we pick an object with both hands and stretch it.
We claim that two-handed interaction styles should generally
follow that rule.

This being stated, there still are many possibilities for two-
handed interaction. The classification of multimodal inter-
faces provides a good framework for exploring these possi-
bilities, because it defines a kind of hierarchy among them.
The simplest usage of several modalities is their exclusive
usage, and it is the basis of other usages. If a system allows
parallel or combined modalities, it is obviously able to pro-
vide independent interactions with these modalities, except if
that possibility has explicitly been disabled. The next step in

complexity is the use of parallel interactions: the two hands
work at the same time. Finally, the most complex interfaces
are those which combine the input from both hands. Using
that classification, we will see how single-handed graphical
interaction can be extended.

Independent interaction

A simple way to smoothly extend one-handed interfaces con-
sists of adding a second pointing device that can be used in the
same way as the first. This enables users to save a consider-
able amount of time when pressing buttons or selecting tools:
for instance, the non-dominant hand can select tools while the
dominant one rests on the object which is being manipulated.
Such interfaces can still be used with one hand: they are just
more efficient with both hands. Xerox PARC’s Toolglass is
a sophisticated version of that: having the tools located on a
transparent palette that can be moved around allows users to
keep their focus on the object of interest. Similar interactions
may be used to control global parameters of the display, such
as the zoom factor, without moving the dominant hand.

Finally, the second pointing device could be used for drawing
pictures or moving icons. However, people are slower in per-
forming precision tasks with their non-dominant hand. The
designers of Toolglass solved this issue by assigning the task
of moving a palette to that hand, whose designation is easy.
The size of the target compensates for the relative imprecision
of the hand. Another possibility may be suggested: using the
non-dominant hand for the designation of small objects with
large cursors. Such large cursors would have to be every-
where “hot”, as opposed to traditional cursors that only have
a hot spot. However, even if the system may be designed
to nicely take care of imprecision, there is no real benefit in
using the non-dominant hand where the dominant one can be
used, except if actions can be performed in parallel.

Parallel interaction

Parallel interaction is the natural next step as soon as two-
handed interaction is possible. Even though most people are
not trained to perform real independent tasks in parallel, we
all unconsciously use our non-dominant hand for secondary
tasks, such as bringing a tool to the dominant one. The utility
of Toolglass, for instance, would be limited if interactions
had to be strictly serialized: our hands are not used to waiting
for each other before performing operations, and imposing
it would be frustrating. Therefore, parallelism is inherent to
two-handed interaction, because of our natural habits. Con-
sequently, all the examples of interaction styles we mention
in this paper use parallel interaction, in a more or less obvious
way.

Some applications can also be found to real parallel inter-
action, where the two hands perform independent tasks of
the same importance. We should of course mention games.
Simulation games will make use of parallel actions when the
tasks they simulate make use of them: driving a car, or pilot-
ing a plane, for example. Other games may be designed to
challenge human capabilities: juggling games or two-handed
action games can be imagined. When exploring the technical
issues associated to parallel interaction, we will also mention
the use of parallelism for manipulating cards in a game of
Patience. Nevertheless, we believe that parallelism is more a

necessity than a goal in itself, and that it will mainly be useful
when combining actions of the two hands.

Combined interaction

The most elaborate way to use two pointing devices is to
combine their actions. In the real world, we often use our
non-dominant hand to hold objects while performing precise
operations on them. We also use it in coordination with the
dominant hand to provide additional strength, or to manipu-
late objects that are more precisely moved when held from
two distant points. Traditional interfaces have replaced the
second hand by a form of magic: in a drawing tool, when
we move one end of a segment, the other end is held by an
invisible hand. What we suggest here is to disable that magic
when two hands are at work. The non-dominant hand can
hold the end of the segment, with no need for magic. This
leads to an interaction style based on a physical metaphor: if
one hand picks the end of a segment and drags it, the whole
segment moves; if the second hand holds the other end dur-
ing that operation, the segment is deformed, like a metal stick
would be. This is what we call “hold-and-pull”.

Another example of combined interaction is the simultaneous
designation of two objects. This type of interaction is used
in the real world as a security for critical operations [18]: an
operation will be performed only if two buttons are pressed
simultaneously, for instance. This can be immediately
transposed to graphical interfaces. For instance, the designer
of a drawing editor could decide that, by clicking on two
graphical buttons simultaneously, a user may quit the editor
without saving the edited files. The role of time in such
interactions is important: as in double-clicking, a reasonable
tolerance must be specified. Therefore, time has to be taken
into account when performing the fusion of input data.

We now have identified several two-handed interaction styles,
which illustrate the different aspects of multi-sensor interac-
tion: independent, parallel and combined interaction. In the
rest of this article, we will see how support for such interac-
tion styles was added to Whizz.

AN OVERVIEW OF WHIZZ

Whizz is a toolkit aimed at describing the behaviour of highly
interactive or animated user interfaces. It was designed with
three main goals in mind:

e homogeneity: we consider that direct manipulation by
users, animation, and data visualization are different aspects
of the dynamic behaviour of an interface. The design of
an interactive object and its graphical behaviour should be
reusable in different contexts: for instance, a scrollbar al-
ways has the same behaviour, whether driven by a user’s
actions on the mouse, or by a clock (when one of the arrows
at the ends of the scrollbar is “depressed”), or by the vari-
ations of some piece of data (when the size of a document
changes, for instance). This is illustrated by figure 1.

o straightforward visual representation: Whizz was designed
to allow the development of visual user interface construction
tools, with the goal of applying such tools to the design of
highly interactive user interfaces. This led us to identifying a
number of basic building blocks that are to the behaviour of an
interface what graphical objects are to its visual appearance.

2]

Integer i

(5]

&

moving according
to a variable

moving with
the user's actions

moving
automatically

Figure 1: A scrollbar has the same graphical be-
haviour, whether driven by time, the user’s action, or
data variations

Graphical interfaces are obtained by assembling a number of
these building blocks.

e extensibility: Whizz implements a number of graphical
behaviours and handles mouse and keyboard input, but we
also wanted its paradigm to be usable for other media such
as sound, and to other input devices such as rotating knobs or
3D devices.

In order to achieve these goals, Whizz has an object ori-
ented structure, and uses a data-flow model, as many signal
processing and music synthesis systems [9]. All the objects
manipulated in Whizz are modules that can be connected to-
gether with links that carry pieces of information. Among
these modules, Whizz makes a distinction between graphi-
cal objects and graphical behaviours; the latter are further
decomposed into movement shape and movement source.
Movement shapes are implemented by objects that manage
trajectories: straight lines, circles, paths, etc. Similar objects
manage other visual variations, such as color changes. Move-
ment sources are clocks, active values or representation of the
user’s actions. A simple movement can thus be achieved by
connecting a source, a trajectory and a graphical object.

The programming interface of Whizz uses a musical metaphor
in order to make its structure easy to learn: movement sources
are tempos, trajectories are instruments, and graphical objects
are dancers; the small pieces of information circulating from
tempos to instruments, then from instruments to dancers, are
notes. Depending on their type, dancers have a number of in-
put slots which control their position, shape and appearance:
for instance, a segment has slots that control its two ends. A
note reaching one of these slots will change the position of
the corresponding end. Similarly, instruments have an input
slot that control the step-by-step emission of notes on their
output slots; they also have other input slots to allow random
access. Figure 2 illustrates how a simple animation scene can
be built with Whizz. Figure 3 shows another simple Whizz
construction that describes (with a minor simplification) the
action of dragging an icon. This construction may be built
when a “button down” event occurs on an icon, by connect-
ing the two modules. It may be destroyed, by removing the
connection, when a “button up” event is detected.

end1

ptsE?

Segment

Tempo Trajectory

Figure 2: Animating a segment: one of the ends of the
segment is connected to the output of a circular tra-
jectory. The trajectory emits positions when it receives
pulses from the tempo.

Complex graphical interfaces can be achieved by establishing
links between a number of dancers, instruments and tempos,
thus utilizing the underlying data-flow structure of Whizz.
Other modules than the ones we described may be added to
build more complex behaviours: filters that perform numeric
or geometric operations, logic gates, and so on. For instance,
the construction of figure 3 does not exactly describe the
dragging of an icon as it is usually performed: it does not
take into account the relative position of the cursor on the
icon when the mouse was clicked. In practice, two more
modules should be used: one for storing the offset, and the
other for combining it with the position of the mouse.

jf' _— .
N
——q |
Pointer Icon

Figure 3: Dragging an icon: the module representing
the user’s action with the mouse is connected to the
position of the icon.

Flow graphs built this way give account of the continuous
evolutions of the display. Isolated evolutions such as those
traditionally associated to input events can also be handled
by Whizz. Events such as button clicks can either be con-
verted to notes, or they can be associated to reconfigurations
of the flow graph, in order to change the behaviour of the

interface or create new graphical objects, for instance. This
is what happens in the example of figure 3, where connec-
tions and disconnections are associated to “button down” and
“button up” events. Such connections and disconnections
are currently performed by programming, but techniques for
graphically describing them are being studied.

An experimental visual construction tool based on Whizz
was developed, and is still under development. This tool,
called Whizz’Ed, uses the graphical notation that we used
in figures 2 and 3 for describing data flows. Techniques for
representing and specifying reactions to events and reconfig-
urations of the flow graph are currently being devised. These
representations, even though they were not yet implemented
in Whizz’Ed, are used in the the rest of this article. More de-
tails and other features of Whizz can be found in [8]. Whizz
was implemented in C++ on top of X7y, a graphical toolkit
designed at the University of Paris Sud to serve as the ba-
sis for experiments on interaction styles and user interface
software [1]. Whizz has already been used by programmers
in several user interface development projects involving di-
rect manipulation, such as an aeronautical map editor or a
radar image featuring gesture recognition. We will now see
how Whizz can be extended to support the development of
two-handed interfaces.

INDEPENDENT INTERACTION

Before thinking of using two devices in parallel and combin-
ing their actions, the first step towards building two-handed
interfaces consists in being able to handle two devices. This
will only allow independent, exclusive interaction, but other
interaction styles depend on this one being properly sup-
ported. We will not consider here the low-level details of
connecting and managing devices other than the traditional
mouse and keyboard. Such issues can be solved by using op-
erating system facilities or extensions to a window server. We
will rather focus on issues related to interaction management,
which affect the structure of graphical toolkits. These issues
are the dynamic management of event types, the event han-
dling scheme, and the support for handling the imprecision
of the non-dominant hand.

New event types

A great effort has been put in graphical toolkits to provide
a homogeneous framework for manipulating input from the
keyboard and the mouse. This homogeneity is the key to
the construction of maintainable interactive software, and
must not be lost when adding new devices. For that reason,
our first requirement for a multi-sensor interaction toolkit is
the smooth integration of the signals from new devices with
those from traditional ones. Event-based systems provide an
elegant solution to this requirement: one just needs to insert
events in the event queue. However, this supposes that new
event types can be created. Such new event types include
those associated to the new devices or modalities (an event
type for each gesture type, for instance). They may also
include synthetic event types resulting from the combination
of primitive event types. For two-handed interaction, no new
primitive type is needed, but synthetic ones will be necessary
to describe simultaneous clicks with both pointing devices,
for instance.

That ability to manage new event types is rarely found in
user interface toolkits; it is a serious problem when using
a statically typed language such as C++: if all event types
cannot be statically defined, the typing scheme of the lan-
guage cannot be used. In order to solve this problem, Whizz
provides a mechanism for dynamically defining new event
types. In Whizz, an event type is a full blown object, that can
be instantiated when necessary. Every event type contains a
description of the fields found in events of that type. When
creating an event, one only needs to provide a reference to the
desired event type, and Whizz allocates the necessary space.
This mechanism is compatible with the existence of default
event types (which are globally defined objects), and with the
creation of new event types.

Event selection and handling

Once events are created and integrated in the event queue,
they have to be dispatched to graphical objects and handled.
This means that the event selection and distribution mecha-
nism provided by the toolkit has to be extensible to dynam-
ically defined event types. For example, a programmer may
wish to bind “circling” gestures on a graphical object to a call-
back function, and “underlining” gestures to another callback
function. Two-handed interaction also introduces a need for
flexibility in event selection. If a two-handed interface is to
offer an equal treatment to both hands, we can expect the
graphical toolkit to handle events from both pointing devices
in the same way. For instance, let us consider the graphical
button and the callback function of figure 4. The toolkit must
allow programmers to bind “button down” events on the but-
ton to the callback function, without mentioning a specific
device. The expected behaviour is illustrated in figure 5:
clicking with either pointer results in the callback function

Lok

void OK (WhzEvent* ev) {
printf ("ok\n");

}

Figure 4: A graphical button and the associated call-
back function.

However, we also want to avoid interferences: depressing a
button with the left hand, then releasing another button with
the right one, must not be interpreted as a button click, as
shown in figure 6. As soon as an action is started, the sym-
metry is broken, and the toolkit must allow programmers to
specify how. The event selection mechanism of X7y, which
is used in Whizz, permits such precise definitions. First, X7y
has an explicit notion of devices: there are classes of devices
such as mice or keyboards, that are instantiated to represent

left downl t“p
right I_I

time

Figure 5: Clicking on the button with either pointing
device produces the same result

the physical devices used in a program. Then, a programmer
can bind a number of reactions to a graphical object. When
doing so, one must specify the set of event types and the
set of devices or device types whose events will be managed
by the reaction. Reactions can be dynamically created and
destroyed, bound and unbound, so that objects can be made
temporarily sensitive to specific events. This makes it easy
to specify the behaviour of the graphical button of figure 4,
as illustrated in figure 7: a reaction is permanently bound to
“button down” events from any device on the button; when
this reaction is triggered, it binds a new reaction to the button;
this second reaction, associated to “button up” events from
the device that emitted a “button down”, activates the button,
then destroys itself. In single-handed interfaces, this second
reaction could be permanent like the first one: mechanical
constraints impose that a “button up” event necessarily fol-
lows a “button down” event, and there is only one pointing
device to select events from. But here, there is no such
mechanical constraint. Programmers have to specify which
device they are interested in, and they only have that infor-
mation when a button has been depressed. This is why the
second reaction has to be bound, or even created temporarily.

left

right

time

Figure 6: Interferences between pointing devices must
be avoided.

/* a button */
Button but (100, 50, 200, 100, "OK");

/* a reaction bound to any button-down event */
XtvReaction down (&down_callback);
down.Bind (but, MouseButtonDn, XtvMice);

void down_callback (XtvReaction* r, XtvEvent* ev) {
/* provide visual feedback */
Button* b = (Button*) ev->GetTarget ();
b->Select ();
/* a reaction to button-up from the same device */
XtvReaction* up = new XtvReaction (&up_callback);
up->Bind (*but, MouseButtonUp, ev->GetDevice ());

}

void up_callback (XtvReaction* r, XtvEvent* ev) {
/* trigger action associated to the button */

Button* b = (Button*) ev->GetTarget ();

b->Fire ();

/* no more reaction bound to button-up events */
delete r;

Figure 7: Using X7y to make a button sensitive to all
“button down” events, but only to “button up” events
emitted from the corresponding device.

Handling imprecision

Finally, irrespective of the amount of symmetry being desired
between the two hands, the imprecision of the non-dominant
hand has to be accounted for. We proposed to use bigger cur-
sors and ensure that all of their points are active: for example,
clicking while the tip of an arrow is over an object or when
its tail is on it should have the same consequences. This chal-
lenges another assumption heavily used by graphical toolkits:
the fact that designations occur with a precision of one pixel.
All mouse events, and more significantly their dispatching,
are built around this assumption: the cursor has a “hot spot”,
and events contain the position of that hot spot. The dispatch-
ing mechanism usually considers every graphical object in a
view where an event occurred, and asks that graphical object
whether it contains the pixel where the hot spot is located.
In order to support less precise cursors, toolkits would have
to replace this test of a point against a shape with the test of
a shape against another shape. This would of course require
more complex and more costly geometric computations. In
the current version of Whizz, we only implemented circular
cursors, or circular zones around arbitrary cursors. Neverthe-
less, we believe that the present speed of computers allows
the implementation of a more general mechanism.

The use of cursors that are “everywhere hot” also raises the
issue of choosing the selection when the cursor is over two
non-overlapping objects. The usual technique that consists
in selecting the first graphical object under the cursor cannot
be applied here: it relies on the fact that other objects under
the cursor are necessarily under the first object. Here, two
objects with no obvious order can be under the cursor at the
same time. This issue can be addressed with techniques such
as selecting the object that is closest to the center of the cursor,
and giving a visual feedback of that selection. Other, more
complex solutions that we have not explored yet, involve the
selection of several objects at the same time. This technique
could allow more realistic interaction, but its usability and
feasibility still have to be assessed.

PARALLEL INTERACTION

One of the novelties of two-handed input that has an impact
on user-interface construction is the possibility to perform
parallel actions. Isolated actions, which are associated with
a single event, pose no real problem. For instance, let us
consider a two-handed MacDraw-like tool in which the dom-
inant hand draws figures, while the non-dominant one selects
tools in a palette. The parallelism here lies in the ability
to move both hands at the same time, and to click with the
non-dominant pointing device at any time: this only relies
on the correct management of the event queue. However,
many actions performed with a pointing device are made of
several events rather than a single one: a click is a “but-
ton down” followed by a “button up”, a drag has additional
“mouse move” events. Furthermore, these actions are gen-
erally associated with a visual feedback. Performing two or
more of these actions in parallel imposes constraints on the
underlying toolkit.

To illustrate this issue and experiment on it, we extended a
simple graphical application to two-handed interaction. The
application we chose is a game of Patience (Solitaire), played
with all cards aligned in four rows, face up. An empty space
is left in each row, and a card can be moved to this space
according to a simple rule, thus leaving a new empty space
(figure 8). We had already implemented a simple version
of this game, where cards were successively moved with
drag actions. However, players of this game usually think
of several movements ahead. When playing with real cards,
they often use both hands and move two cards at a time, one
occupying the space left empty by the other. We decided to
experiment with that technique using two pointing devices,
and to allow users to drag two cards at a time.

Figure 8: Two cards are moved at the same time.

Actions as independent entities

Implementing parallel drags has consequences on input man-
agement. A dragis alongaction, composed of several events.
During the drag, data has to be stored to maintain the status
of the action and its visual feedback. This storage of data
is a form a dialogue control. Depending on the architectural
model implemented by the toolkit, this control may be global,
associated to the visual representation, or independent. Par-
allel actions are only possible if the control is independent, as
stressed by Rubine [19]. If the visual feedback associated to a
dragged card were managed as a property of the window, only

one card could be moved at a time (or the feedback would
keep blinking from one pointer to the other). The issue here
is that we want to manage several actions at the same time,
and therefore we need to store the status of several dialogue
controls. The most straightforward solution consists in con-
sidering actions as full-blown objects, dynamically created
and destroyed when needed. Facilities such as Garnet’s in-
teractors or the action modules of Whizz are well suited for
such situations. With Whizz, every new user’s action results
in the instantiation of a module that emits the positions of the
pointer, and of a graphical object connected to that module.
For instance, in figure 9, a user clicked on Icon 1 with the
left pointer, and on Icon 2 with the right pointer, thus obtain-
ing the construction shown. The interface allowing parallel
interactions on cards is shown in figure 8.

TN
@] |:|
Left pointer Icon 1
N
1 [
Right pointer Icon 2

Figure 9: The Whizz construction obtained when two
cards are moved in parallel. The flow graph is com-
posed of two independent parts.

Two actions on the same object

A natural extension of parallel interactions consists in using
both hands to manipulate a single object. This may be
understood as a form a combined interaction, but actually it
is not. For instance, a pointer may be used to control one end
of a segment, while the other pointer controls the other end.
As long as one end can be moved independently from the
other (which is usually the case), no combination is required:
when an event is received from a pointer, the corresponding
end is moved. Two events will result in two moves. When
using Whizz, this is obtained by simply connecting the two
pointers to the two ends of the segment. Figure 10 shows this
construction applied in the context of air-traffic control.

This type of parallel interaction sheds more light on what is
called parallelism in multimodal interfaces. The parallelism
is only present at the higher levels of interaction management,
when two visual feedbacks have to be maintained at the same
time, for instance. At the lowest level, which deals with
events, everything is sequential. We will see that this has
consequences when events have to be combined.

COMBINED INTERACTION

The last and most complex task for supporting two-handed
input is supporting combined interactions. It should be noted
that the combination of input data generally occurs at low

new
route s

previous
route

0G6754
330 - 40

parallel edition
of a segment

N

Right pointer

.
E’f
T I

. j[Segment

Left pointer

L1

Whizz construction
behind the scene

Figure 10: Two actions in parallel on the same object.

level, in contrast with multimodal interactions such as “Put
That There”. High level fusion may only occur when actions
have been given a meaning, ie. when they have been com-
pleted. This is incompatible with the fact that two-handed
interaction generally involves parallel actions performed by
both hands: we do not want the system to wait for the com-
pletion of our actions before combining them, at least because
we want some feedback on the operation we are performing.
For that reason, a toolkit for two-handed interaction must
support the combination of input events, and not only the
fusion of semantic operations.

Another distinction should be introduced between the com-
bination of status and events, and the combination of events.
The former is useful for implementing hold-and-pull interac-
tions, whereas the latter is needed for simultaneous clicks on
buttons.

Combining status and events

Let us consider a segment that we want to deform with a
hold-and-pull interaction. Only one event is received from
the pointer that grabs the segment, and this event (usually
a “button down” event) changes the status of the segment,
now considered as held. It is not that initial event which
is combined with the “mouse move” events from the other
pointer to produce the deformation of the objet, but rather
the status of the segment. Depending on this status, “mouse
move” events will result in the segment being moved or in its
being deformed. This is why the combination of events and
status is at least as important as the combination of events.

In systems built using Whizz, the status of the interface and
its components is stored in modules and in the configuration
of the flow graph. For instance, when an animated object
follows a circular trajectory, its current position is stored in the
module that manages the trajectory; when the user clicks on
anicon to drag it, the fact that a drag has started is materialized
by an action module and its connection with a slot of the icon.
In order to support the combination of status and events,

we added a number of facility modules that both store a
status and modify the structure of the flow graph according to
that status. For instance, we introduced switches, which are
modules with one input slot, a control slot, and two output
slots. Notes received on the input slot are emitted on one
of the output slots; notes received on the control slot change
the output slot that will emit the notes received by the input
slot. This new module is used in figure 11 to implement hold-
and-pull interactions. In that figure, the positions emitted by
the right pointer are used to move the segment or deform it,
depending on the state of the switch. An extension was added
to the module implementing the segment. This extension is
a reaction to “button down” and “button up” events from the
left pointer. The reaction converts events into notes, which
are used to control the switch: when a “button down” event
occurs, the switch moves to Position 2, and the segment is
ready to be deformed; when a “button up” occurs, the switch
moves back to Position 1, and the segment can be moved.
This illustrates how the status of an input device can be easily
made to control input from another device.

Combining events

Finally, interactions such as simultaneous clicks on buttons
need a real combination of events. In the case of two graph-
ical buttons, three high level classes of events may occur:
clicks on the first button, clicks on the second one, and simul-
taneous clicks on the two buttons. Events of the third class
are obtained by merging events of the first two classes.

In order to combine events, one needs to introduce a notion of
simultaneity of events. This notion is complex to implement:
the only solution consists in delaying the handling of events,
as it is usually done for multiple clicks. If an event from
the other device is received during the delay, we have got
two simultaneous events. If nothing happens, the delayed
events may be released and handled. We added modules
to Whizz for supporting that notion of simultaneity. These
modules, called temporal filters, have two input slots and

end1

Right pointer Switch

— o
]_>—E_\®\

- I

switch COM

A \\Vf:

@ moving the segment

’—D
1>
/D{Segmem

position =
@] Reaction :

left pointer up/down

N

@ moving only one end

Figure 11: A partial view of the Whizz construction for supporting two-handed interaction on a segment. The right pointer
is used to move the whole segment. When the left pointer is clicked on the icon that materializes the end of the segment,

the flow is redirected so that the segment is deformed.

three output slots. If two notes are received on the two input
slots “at the same time”, they are merged and emitted on the
central output slot. Notes that were not correlated are emitted
separately on the two other output slots. As for multiple
clicks, application designers then have the responsibility of
hiding the delay that was introduced by the temporal filter.
This can be done by using the same technique as for double
clicks in desktop interfaces, where the first click of a double
click triggers the same action as a simple click, usually the
selection of the icon. Figure 12 shows how temporal filters
can be used to implement simultaneous clicks: only the notes
received simultaneously result in a note emitted towards the
on/off module. With this construction, users may quit the
application by clicking on the two icons at the same time.

The same temporal filters can be used for synchronizing flows
of data. For instance, they can be connected to two action
modules: this will allow programmers to decide that an object
(probably a heavy one) can be moved only if pulled with both
hands at the same time. With such tools, we expect to be able
to explore new kinds of combined interactions in the future.

CONCLUSION

In this paper, we identified several two-handed interaction
styles, and classified them in terms of the two main charac-
teristics of multimodal interaction: parallelism, and combi-
nation. We then exposed the technical issues raised by the
implementation of these interaction styles: issues related to
independent interaction, then parallel interaction, and finally
combined interaction. These issues range from structural
problems in graphical toolkits, such as the extensibility of
their input mechanism, to the need of new abstractions for
describing combined interactions. We explained how our
toolkit Whizz solves these problems, or was extended to solve

them. With these extensions, Whizz now supports the use of
two-handed input, and we strongly believe it is easily ex-
tensible to other kinds of multi-sensor input. The extended
Whizz was used by the author and another programmer to de-
velop prototypes of two-handed interfaces, and to extend an
existing application (a map editor) to two-handed interaction.
We are currently using it to develop a two-handed graphics
editor, in order to explore new interaction techniques.

I: D output1
input1
fused output
Icon 1
—
@ Reaction
——]
H D On - Off
Temporal] switch
Icon 2 filter ‘MtputZ
=
Reaction input2

Figure 12: Temporal fusion of events. Clicks on icons
are transformed into notes. The temporal filter emits
merged notes only if it receives two notes on its two
slots in a specified interval of time.

Future directions for that work will include:

o the integration of the new synchronization modules in
Whizz’Ed, our experimental visual tool for interface pro-
gramming, still under development. This should allow the
easier exploration of new interaction styles.

e experiments with other modalities such as speech recogni-
tion, to determine how Whizz and the abstractions it provides
can be applied to other multimodal interactions.

o the evaluation of the interaction styles we proposed for air
traffic control. We will first evaluate these styles on simple
drawing tasks, then integrate them in realistic environment to
test their impact on the work of controllers.

ACKNOWLEDGEMENTS

Michelle Jacomi helped to implement and test the features
described in this article. Bo Overgaauw and Forrest Colliver
helped with English. The author also wishes to thank Michel
Beaudouin-Lafon and Thomas Baudel (LRI, University of
Paris), Philippe Palanque (LIS, University of Toulouse), and
the anonymous reviewers for their useful comments on this

paper.

REFERENCES
1. M. Beaudouin-Lafon, Y. Berteaud, and S. Chatty. Cre-
ating direct manipulation interfaces with Xy . In Pro-
ceedings of EX’90, London, pages 148-155, 1990.

2. M. Beaudouin-Lafon and M. Thiellement. A tour
through AVIS. ACM SIGCHI Bulletin,23(4), Oct. 1991.

3. E. Bier and S. Freeman. MMM: a user interface archi-
tecture for shared editors on a single screen. In Proceed-
ings of the ACM UIST, pages 79-86. Addison-Wesley,
1991.

4. E. Bier, M. Stone, K. Pier, W. Buxton, and T. DeRose.
Toolglass and magic lenses : the see-through interface.
In Proceedings of the ACM SIGGRAPH, pages 73-80.
Addison-Wesley, 1993.

5. M. M. Blattner and R. B. Dannenberg. Multimedia
interface design. ACM Press, 1992.

6. R. A. Bolt.
the graphics interfaces.
14(3):262-270, 1980.

Put-That-There: voice and gesture at
ACM Computer Graphics,

7. W. Buxton and B. Myers. A study in two-handed in-
put. In Proceedings of the ACM CHI, pages 321-326.
Addison-Wesley, 1986.

8. S. Chatty. Defining the behaviour of animated inter-
faces. In Proceedings of the IFIP WG 2.7 working
conference, pages 95-109. North-Holland, Aug. 1992.

9. P. Cointe and X. Rodet. Formes: an object and time
oriented system for music composition and synthesis.
In Proceedings of the ACM Conference on Lisp and
Functional Languages, 1984.

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

A. Gourdol, L. Nigay, D. Salber, and J. Coutaz. Two
case studies of software architecture for multimodal in-
teractive systems: VoicePaint and voice-enabled graph-
ical notebook. In Proceedings of the IFIP WG 2.7 work-
ing conference, pages 271-284. North-Holland, Aug.
1992.

R. D. Hill. Supporting concurrency, communication
and synchronization in human-computer interaction -
the Sassafras UIMS. ACM Transactions on Graphics,
5(2):179-210, Apr. 1986.

Groupe multimodalité. In Actes d’IHM’91 - Troisiémes
Jjournées sur l’ingéniérie des interfaces homme-
machine. 1991.

P. Kabbash, W. Buxton, and A. Sellen. Two-handed
input in a compound task. In Proceedings of the ACM
CHI, pages 417-423. Addison-Wesley, 1994.

G. Kurtenbach and T. Baudel. Hypermarks: issuing
commands by drawing marks in Hypercard. In CHI’92
Posters and Short Talks, page 64, 1992.

M. A. Linton, J. M. Vlissides, and P. R. Calder. Compos-
ing user interfaces with InterViews. IEEE Computer,
pages 8-22, Feb. 1989.

B. A. Myers. A new model for handling input. ACM
Transactions on Office Information Systems, pages 289—
320, July 1990.

L. Nigay and J. Coutaz. A design space for multimodal
systems: concurrent processing and data fusion. In
Proceedings of the ACM CHI, pages 172—178. Addison-
Wesley, 1993.

D. A. Norman. The Design of Everyday Things. Dou-
bleday, New York, 1990.

D. H. Rubine. The automatic recognition of gestures.
PhD thesis, Carnegie Mellon University, 1991.

D. Weimer and S. Ganapathy. Interaction techniques
using hand tracking and speech recognition, pages 109—
126. In Multimedia Interface Design [5], 1992.

