
Programs = Data + Algorithms + Ar
hite
ture:
onsequen
es for intera
tive softwareStéphane ChattyENAC, Laboratoire Informatique et Intera
tion,7 avenue Edouard Belin, 31055 Toulouse Cedex, Fran
eandIntuiLab, Prologue 1, La Pyrénéenne, 31672 Labège Cedex, Fran
ehttp://re
her
he.ena
.fr/�
hatty
hatty�intuilab.
om, 
hatty�ena
.frAbstra
t. This arti
le analyses the relationships between software ar-
hite
ture, programming languages and intera
tive systems. It proposesto 
onsider that languages, like user interfa
e tools, implement ar
hite
-ture styles or patterns aimed at parti
ular stakeholders and s
enarios.It lists ar
hite
ture issues in intera
tive software that would be best re-solved at the language level, in that 
on�i
ting patterns are 
urrentlyproposed by languages and user interfa
e tools, be
ause of di�eren
es intarget s
enarios. Among these issues are the 
ontravarian
e of reuse and
ontrol, new s
enarios of software reuse, the ar
hite
ture-indu
ed 
on-
urren
y, and the multipli
ity of hierar
hies. The arti
le then proposesa resear
h agenda to address that problem, in
luding a requirement-and s
enario-oriented de
onstru
tion of programming languages to un-derstand whi
h of the original requirements still hold and whi
h are notfully adapted to intera
tive systems.1 Introdu
tionNiklaus Wirth, renowned 
omputer s
ien
e tea
her and programming languagedesigner, wrote in 1975 a referen
e book entitled �Algorithms + Data stru
tures= Programs� [1℄ that has in�uen
ed thousands of programmers. It may be thathis equation was in
omplete though. Software ar
hite
ture, that is the way oforganising software into inter
onne
ted parts, has progressively be
ome re
og-nized as a 
entral issue in programming and software engineering, to the pointwhere students now spend more time learning about patterns and frameworksthan data and algorithms. Yet, software ar
hite
ture is still mostly 
onsidereda separate issue from programming languages. We 
ontend that this is a seriousissue for the software engineering of intera
tive systems. Short of being able towrite �Programs = data + algorithms + ar
hite
ture� and addressing ar
hite
-ture issues at the language level, the ar
hite
ture of intera
tive software may bedoomed to in
onsisten
y and 
omplexity.The ar
hite
ture of intera
tive software has been heavily studied and manyin�uential results in software ar
hite
ture were obtained by resear
hers with aba
kground in intera
tive software, or derived from their work. Compare for ex-ample the authors and topi
s in the following list of publi
ations: [2�10℄. Still,



very few a
tors of the domain 
onsider that the situation of intera
tive softwarear
hite
ture is satisfa
tory: tea
hing these issues is still awkward, and program-ming intera
tive software remains 
omplex as soon as one does not sti
k to
ommon WIMP interfa
es. The author's personal experien
e in selling inter-a
tive software design and solutions was a very instru
tive �eld study of thatproblem: most potential 
ustomers of intera
tive software te
hnology are put o�by per
eived in
ompatibilities between the pro
esses of user interfa
e design andtraditional software engineering, or even more expli
itly by software in
ompati-bilities [11℄. For instan
e, 
ustomers had to renoun
e implementing the 
hosendesign when �nding that implementing it with Java Swing would 
ost four timesthe 
ost of WIMP interfa
e, just be
ause of ar
hite
ture mismat
hes.In this arti
le, we propose an analysis of the relationships between soft-ware ar
hite
ture, programming languages and intera
tive software, based onthe prin
iples of requirements and usage s
enarios. We highlight a strong 
ou-pling between languages and ar
hite
ture, and propose that languages 
an bestudied using the same methods. We then use this analysis to identify somerequirements and s
enarios where 
urrent programming languages and intera
-tive software 
on�i
t and thus favor in
onsistent or 
ostly ar
hite
ture solutions.User interfa
e toolkits a
t as ar
hite
tural pat
hes to languages, but the resultis not always 
onsistent. Finally, we propose a resear
h agenda for addressingthat issue, 
onsidering that user interfa
e development brings at the same timenew problems and te
hniques for addressing them. Ar
hite
ture issues 
an beaddressed by identifying the underlying usage s
enarios more expli
itely beforeapplying the body of knowledge 
reated for programming languages. Doing so,in addition to helping to understand intera
tion ar
hite
ture, 
ould help improveprogramming languages.2 Of programming tools, s
enarios and ar
hite
tureThe software engineering and the user interfa
e design 
ommunities have 
omeup with similar models of requirements engineering and design for software prod-u
ts. With some di�eren
es in vo
abulary, they share the 
on
epts of stakehold-ers, external requirements or goals, te
hnologi
al 
hoi
es or 
onstraints, s
enario-or use-
ase-based design, task or pro
ess analysis, and iterative design [12, 13℄.These design models have proven e�e
tive over the years for designing tools and(in many 
ases) improving the e�
ien
y of the �nal users.These models 
an be applied to the design of a spe
ial 
ategory of tools: thetools made for software builders themselves. Programming languages are tools forprogrammers; development environments are tools for programmers and proje
tmanagers; user interfa
e toolkits are tools for programmers and interfa
e de-signers; some spe
ialized languages are aimed at non-professional programmers,and so on. Some of these tools are developed with a fo
us on a given te
hnol-ogy and aimed at spe
i�
 tasks, for instan
e logi
 programming for knowledgemanagement. Some have to take into a

ount 
onstraints su
h as the perfor-man
e of 
ompilers or 
omputers. But all of them were designed, expli
itly ornot, with stakeholders and usage s
enarios in mind. That is, they take into a
-
ount all the persons that are 
on
erned with the produ
t be
ause they build,



manage, or use it and they try to 
apture the multiple a
tivities around theprodu
t through 
on
rete stories 
alled s
enarios or use 
ases. Many languagedesigners used themselves as the target users, made their own s
enarios mentally,and performed initial iterations by testing the 
andidate designs against theirmental s
enarios. Others, su
h as the designer of Perl, used the whole user 
om-munity for a vast parti
ipatory design pro
ess. In all 
ases, understanding theunderlying s
enarios and requirements provides a powerful means for analysingar
hite
tures, languages and other tools.In the following se
tions, we identify the types of stakeholders and s
enariosthat underlie the state of the art in software ar
hite
ture, programming lan-guages and intera
tive software ar
hite
tures. We will later use that analysis todete
t some plausible 
auses of the problem of intera
tive software ar
hite
ture.2.1 Software ar
hite
tureOne de�nition of software ar
hite
ture is �the stru
ture of the 
omponents of aprogram/system, their interrelationships, and prin
iples and guidelines govern-ing their evolution over time� [14℄ or in other words, how to split programs insmaller parts and glue them together. In their seminal paper on software ar
hi-te
ture, Garlan and Shaw analyse ar
hite
tural styles by fo
using on the natureof 
omponents and the glue that links them [15℄. Software ar
hite
tures are nottools for building software, but rather rules, guidelines, or patterns for the samepurpose. Nonetheless, the above reasoning on s
enarios applies, in that an ar
hi-te
ture style is a design aimed at supporting some s
enarios of software buildingfor stakeholders of the software industry. Programming tools are 
omplete andimplemented designs, whereas ar
hite
tures styles are partial designs. Some ar-
hite
ture styles 
ome with supporting tools. Others are more theoreti
al andlet their users 
hoose how to implement them, either be
ause they address issuesorthogonal to those addressed by available tools, or be
ause they 
on�i
t withthem (see the se
tion on Intera
tive software ar
hite
ture below for examples).Ar
hite
tures, like tools, are aimed at sparing their users from some design
hoi
es by providing a good solution adapted to their goals. For instan
e, a�pipes and �lters� ar
hite
ture like that of the Unix shell fo
uses on the needs ofthree types of stakeholders involved in the produ
tion of data analysis software:the programmers of basi
 analysis algorithms, who are en
ouraged to isolatetheir algorithms in separate programs, thus avoiding the details about how theiralgorithms will be used; the shell programmers, who are en
ouraged to implementa simple interfa
e for 
onne
ting program inputs and outputs, and know thattheir shell will be usable in various situations; and �nally power users who 
anbuild 
ustom analysis 
hains at a very low 
ost.The role of s
enarios is re
ognized by the software ar
hite
ture 
ommu-nity [16℄. Admittedly, no ar
hite
ture style is well adapted to all situations.The identi�ed stakeholders in
lude the end user, framework programmers, ad-ministrators, and maintainers. S
enarios in
lude development, debugging, pa-rameterising, all sorts of software reuse, and even o�shoring. It is re
ognisedthat the type of appli
ation (databases, intera
tion, AI, et
) is an importantaspe
t of s
enarios too [15℄. It is interesting to note, however, that most of the



literature on software ar
hite
ture fo
uses on s
enarios and te
hniques beyonda 
ertain granularity of 
ode. Most proposed de�nitions of software ar
hite
turesuggest that it deals with medium and large-s
ale software 
omponents. Garlanand Shaw present software ar
hite
ture as the third level of a s
ale where the�rst two levels are high-level programming languages and abstra
t data types.2.2 Programming languages and hardware designIt is also interesting to analyse languages and even 
omputers through the look-ing glass of s
enarios and ar
hite
ture. A
tually, many 
onstru
ts in program-ming language are aimed at software ar
hite
ture rather than algorithms ordata stru
ture. A literature review shows that all programming languages andeven 
omputing hardware enfor
e 
ertain ar
hite
ture styles and were built with
ertain stakeholders and s
enarios in mind. It also hints that expressions inprogrammer lore su
h as �
lean�, �elegant� or �orthogonal� are a
tually s
enario-based ar
hite
ture quality statements.In the prehistory of 
omputing, Ja
quard looms were ma
hines that exe
utedprograms 
oded on pun
h 
ards. The system was split into two 
omponents(ma
hines and 
ards) so as to support a standard s
enario involving two a
tors:the same ma
hine built by a maker 
ould afterward be used by an operator toprodu
e di�erent weaving patterns by 
hanging 
ards. That ar
hite
ture stylewhere the 
entral engine is �xed and smaller parts of the exe
ution pro
ess 
anbe 
hanged at will was very in�uential on Ada Lovela
e. She built upon the ideato propose that Babbage's analyti
al engine 
ould be used to tabulate di�er-ent mathemati
al fun
tions by using di�erent 
ards. She also used it to suggestthat fun
tions 
ould be 
omputed several times with di�erent data [17℄. LaterTuring invoked similar 
omputing s
enarios to propose splitting the sequen
e ofoperations exe
uted by the Automati
 Computing Engine into �subsidiary oper-ations� [18℄. He also proposed spe
i�
 instru
tions named BURY and UNBURYand a sta
k stru
ture to support that ar
hite
ture, thus laying out the founda-tions of the 
all sta
k. Support for implementing it was soon built into 
omputersand from then on has been present in the mi
ro
ode of most pro
essors.Just like 
omputing hardware, programming languages have been deeply in-�uen
ed by these histori
al s
enarios: a �xed engine exe
uting inter
hangeable
omputations, or programmers splitting their 
ode into several sequen
es so asto 
all the same sequen
e several times. The 
on
ept of fun
tion, pro
edure orsubroutine borne from these s
enarios is present in most languages. The designrationales written by language designers are dense with referen
es to su
h s
e-narios. For instan
e Stroustrup [19℄ mentions �
ommuni
ation between designersand programmers� (p. 114) as a goal, states that �the issue of how separately
ompiled program fragments are linked together is 
riti
al� (p. 34), and that�C with Classes was expli
itely designed to allow better program organisation;
omputation was 
onsidered a problem solved by C� (p. 28). A
tually, languagessu
h as Pas
al, C++ or Java abound with features aimed at fa
ilitating thesplitting of programs into reusable parts: fun
tions, name s
oping, namespa
es,typing, 
lasses, et
. These features implement a style that is strongly suggestedto programmers: split your programs in fun
tions so that you 
an reuse them at



will. Hen
e we 
laim that languages support the �Programs = data + algorithms+ ar
hite
ture� equation, and we observe that most languages are still based onthe histori
al 
omputation s
enario.True enough, the evolution of mainstream languages has been fo
used onsupporting more and more 
omplex software engineering s
enarios. First it wasobserved that the fun
tions paradigm 
ould be used to support su
h uses as do
-umenting, reading and maintaining 
ode, or dete
ting errors. Then 
ame more
omplex s
enarios: a �rst programmer develops a library of fun
tions that otherprogrammers will reuse in their programs; or a programmer builds a 
ompu-tation engine in whi
h other programmers later insert their own 
omputationfun
tions; or a programmer builds a spe
ialisation of a library and inserts it intoa 
omputation engine, et
. These s
enarios are supported by features su
h asseparate 
ompilation, late binding, interfa
es or ex
eptions. This evolution waspossible be
ause 
lever engineers always found how to extend the basi
 paradigmto support these s
enarios: they were 
ompatible with the histori
al ar
hite
ture.Alternate programming paradigms have been proposed: fun
tional, logi
al,rea
tive or parallel programming. But usually the proposed justi�
ations wereabout the expressive power of languages for a given programmer, not about ar
hi-te
ture or s
enarios involving multiple stakeholders. If some of these paradigmsindu
e ar
hite
ture styles that diverge from the histori
al style, this is apparentlyjust a side e�e
t. For instan
e, when Ba
kus 
riti
ised �von Neumann languages�and proposed the fun
tional style [20℄, he did it at the level of programming in-stru
tions, not at the level of 
ombining larger parts of programs. Some of hisarguments used ar
hite
tural 
on
epts (�language framework versus 
hangeableparts�), but his 
on
ern was at a very �ne grain and that did not lead himto 
hallenge the fun
tions paradigm. And the truth is that the ability of thisparadigm to be applied to all situations is apparently unlimited.2.3 Intera
tive software ar
hite
tureNevertheless, after nearly 30 years of resear
h history, intera
tive software doesnot seem to be part of that su

ess story:� the user interfa
e resear
h 
ommunity periodi
ally debates about the reasonswhy so little of its su

essful resear
h makes it to 
ommer
ial produ
ts, andsoftware issues are among the proposed explanations;� programming ri
h user interfa
es is still 
onsidered a highly 
omplex task,and tea
hers still look for solutions to make their students able to 
reateworking intera
tive 
omponents during their 
ourses;� resear
hers working on new intera
tion styles often express frustration at
urrent tools or build their own;� many works have been devoted to software ar
hite
ture, models and patternsfor intera
tive software, whi
h 
on�rms that there are stills problems thatneed solving; the fa
t that resear
h in the domain has 
onsiderably de
reasedis most likely not due to a sense of su

essful a
hievement;� very few results have been integrated into programming languages, unlikewith other software engineering works;



� industries in the defen
e, aerospa
e, automotive, or home automation in-dustries are still looking for te
hnologies that 
ombine the results of userinterfa
e resear
h and their 
urrent development tools;� the implementation of many intera
tive systems uses some sort of middle-ware, whi
h frees ar
hite
ts from the 
onstraints of languages by 
reatingtheir own language (the middleware proto
ol) to glue 
omponents; the fastevolution of Web user interfa
es is probably an example of this.We propose to analyse 
auses of this situation by 
omparing the ar
hite
turestyles indu
ed by languages and those proposed for intera
tive software. We �rsttry to identify the software engineering s
enarios behind the proposed intera
tivesoftware ar
hite
tures, before identifying some 
on�i
ts in a later se
tion.One of the most 
ited referen
e is the Seeheim ar
hite
ture model, proposedat a time when the problem at hand was retro�tting existing software with newgraphi
al user interfa
es [21℄. This s
enario was new be
ause it required to or-ganise software along two dimensions. The �rst axis was as usual a split into one�xed and one inter
hangeable parts: the fun
tional 
ore and the user interfa
e.The se
ond axis dealt with the varying lo
ation of exe
ution 
ontrol, whi
h de-pends on the nature of the user interfa
e: 
ontrol is split between the fun
tional
ore and the user interfa
e for text user interfa
es, and it resides within the userinterfa
e when it is graphi
al. These requirements led to propose a four-tier ar-
hite
ture pattern. However that was done at a very high level of abstra
tion, notexplaining how that was related to programming 
onstru
ts, probably be
ausethere was no obvious solution for that. When the Seeheim model was re�ned laterinto the Ar
h model, new tiers were added to a

ommodate more 
omplex reuses
enarios in
luding multiview user interfa
es, but on
e again no relationship withprogramming languages was set forth [22℄. This means that programmers are freeto implement the ar
hite
ture as they wish. But this freedom 
omes at a high
ost, just as if programmers of 
lassi
al programs had kept on 
oding in assemblylanguage. More detailed ar
hite
ture styles have been proposed. PAC [23℄ hadthe same aims as the Seeheim and Ar
h model, but with more 
on
rete handlingof 
on
erns su
h as the hierar
hi
al organisation of 
omponents. However it wasno more based on programming language 
onstru
ts.In 
ontrast with these ar
hite
ture styles aimed at 
hanging user interfa
es,a series of ar
hite
ture styles or patterns have been proposed and implementedas toolkits or frameworks to address more programmer-oriented needs [24℄. The�Inversion of Control� (IoC) or �Dependen
y Inje
tion� pattern re
ently gainedpopularity [26℄; it 
aptures the fa
t that 
ontainers are usually 
oded beforethe obje
ts they 
ontain even though they pass 
ontrol to them at exe
utiontime. Earlier, a series of graphi
al toolkits have used the 
allba
k pattern orthe late binding te
hnique provided by obje
t-oriented languages [4, 5, 25℄. TheMVC (Model-View-Controller) pattern fo
used on graphi
al rendering and in-put handling, relying on 
onstru
ts of Smalltalk, a rare language built with userintera
tion s
enarios in mind [9, 27℄. Some authors proposed to 
onne
t program
omponents through one-way 
onstraints [28℄ or data-�ow 
onne
tions [29℄ so asto support program readability and inter
hangeability of 
omponents, or evenadaptation to exe
ution platforms, in the 
ontext of dire
t manipulation and an-



imation. With similar use s
enarios in mind, but with a fo
us on graphi
al ren-dering, others have proposed to isolate graphi
al 
omputations in 
omponentslinked together by a hierar
hi
al glue named a s
ene graph [30℄. Others haveproposed to isolate states and rea
tions to events in 
omponents based on �nitestate ma
hines, State
harts or Petri nets [31℄. Others have noti
ed that ar
hite
-ture styles proposed by alternative programming styles mat
hed some s
enariosof intera
tive software development: tools were developed using the fun
tionalprogramming [32℄, the rea
tive programming [33℄, or the parallel programmingparadigm. Some even tried to merge user interfa
e programming deeply into thesyntax of existing languages to try and for
e the 
ompatibility of user interfa
esand programming languages, see for instan
e the Ubit toolkit that makes heavyuse of the operator overloading feature of C++ [34℄.The theoreti
al ar
hite
ture styles su
h as Seeheim, Ar
h or PAC 
ould notfail: they represent real 
on
erns and do not fa
e �implementation details�. Themore implementation-oriented solutions were not as su

essful, even though mostof them strike by their elegan
e. Apart from MVC and the Smalltalk environ-ment, they all fall into one of these two 
ategories:� the general purpose tools, whi
h are widely used but 
onsidered as yielding
omplex ar
hite
tures and limiting the evolution of user interfa
es;� and the more spe
ialized tools, whi
h are not widely used, probably be
ausethe lo
al help they provide 
on�i
ts with the requirements of the other partsof the software or the ar
hite
ture style of the underlying language.In the rest of this paper we attempt to analyse the reasons behind this mixtureof su

ess and failure, and we propose a resear
h agenda to address them.3 A multi-level view of software ar
hite
tureWe observe that all the tools and ar
hite
ture styles mentioned in the previousse
tion are 
on
erned with ar
hite
ture at di�erent levels of granularity. All levelspropose to split appli
ations into 
omponents in a way that e�
iently supportss
enarios where parts of the software are 
reated at di�erent times by di�erentpersons, but they deal with 
omponents of di�erent sizes.3.1 Four levels of ar
hite
tureAr
hite
ture 
an be 
onsidered at four levels with growing 
omponent sizes:1. The lowest level is that of programming instru
tions: how 
an they be groupedand reused, for instan
e in iterations? We are used to juxtaposing instru
-tions, but Turing identi�ed that as a design 
hoi
e: �A simple form of logi
al
ontrol would be a list of operations to be 
arried out in the order in whi
hthey are given� [18℄. Lisp or O

am do not rely on that impli
it semanti
s ofgrouping. As for 
ontrol stru
tures, patterns are proposed that favor di�er-ent reuse s
enarios (using an assignment in a test, for instan
e). This levelof ar
hite
ture is handled by languages and pro
essors: they de�ne a data



model, a set of instru
tions, and ways of organising them. All underlyingusage s
enarios have one stakeholder: a programmer who writes, reads, anddebugs a small pie
e of 
ode, usually at the s
ale of one page.2. The next level deals with stru
turing 
hunks of programs: how do I split my
ode in sequen
es that are at most one page long and that 
an be reused atseveral pla
es? That level deals with the needs of programmers or groups ofprogrammers working on the same part of a program. It deals with s
enariossu
h as do
umenting 
ode, 
ommuni
ating about it, optimising or debug-ging it. Most languages handle it through fun
tions or 
lasses, or throughalternate 
onstru
tions su
h as 
ontinuations.3. Then 
omes the level of software reuse, 
ustomisation and extension by di�er-ent a
tors. Common stakeholders are groups of programmers that either splitwork and integrate it later or reuse libraries and frameworks built earlier.Others are proje
t managers, maintenan
e managers and te
hni
al writers.Re
ently, engineers who deploy and parameterise software, or even users,have be
ome stakeholders at that level. For 
lassi
al software, that level hasbeen handled by tools like prepro
essors and linkers, then by languages, thenmore re
ently by ar
hite
ture patterns and systems of plug-ins. For intera
-tive software, it has been the fo
us of user interfa
e management systems,toolkits or frameworks. Intera
tive software has been a great provider of re-sear
h on that level, and the works listed previously are solutions pendingfor 
onsideration. For instan
e, events were re
ently in
luded in C# [35℄.4. The highest level is software planning, 
on
erned with reusing whole appli
a-tions or groups of appli
ations. It deals with stakeholders su
h as informationdire
torates in 
ompanies, 
omputer providers, software houses and s
enar-ios su
h as produ
t line management, deployment, et
. Expressions su
h as�software urbanism� [36℄ have been 
oined for this level, whi
h we do notaddress here.Taking the perspe
tive of tool design, the �rst two levels are aimed at singleusers (the programmers), and the third level is more about groupware design(development teams). These levels 
annot be handled independently.3.2 Managing 
ompatibilityAll levels 
annot be addressed by a single tool. For instan
e it was de
ided tohandle in operating systems issues that were best not handled in languages.However, a lot of resear
h has been aimed at handling more and more of thehigher levels in languages. The step from level 1 to level 2 was made very early;the step from level 2 to level 3 has started with FORTRAN II (the introdu
tionof separate 
ompilation) and is probably not over. Two probable reasons for thattenden
y are:� a wish to minimise the number of 
on
epts or patterns manipulated by pro-grammers; on
e they are in a programming language or a pro
essor, they
an be used at all levels with no additional 
ost;� on
e a pattern has proved its value and 
ompatibility with the language,a desire to en
ourage programmers to use that pattern rather than inventothers whi
h might prove in
ompatible and dangerous.



Compatible patterns. These two points highlight the importan
e of having 
om-patible patterns throughout the four levels and espe
ially within a given level.Patterns are 
ompatible when they 
an be 
ombined so that all s
enarios theysupport individually are supported by the 
ombination, without adding 
om-plexity. For instan
e, fun
tions and obje
t-oriented programming 
an be made
ompatible by de
iding that obje
t methods are fun
tions. This allows to 
om-bine 
omponents written with either pattern. If 
ompatibility is not retainedprogrammers are led to 
reating 
ode that has not the expe
ted behaviour be-
ause the programmer had wrong expe
tations. At best this ne
essitates spe
ialdo
umentation and training for programmers; at worst, programmers may try tointrodu
e new 
on
epts or syntaxes, su

eeding only in masking the problems.For instan
e, message passing and fun
tions 
an appear similar for ar
hite
turepurposes but are based on di�erent syn
hronisation models; mixing them is dan-gerous be
ause the programmer's 
ode may be exe
uted in an unexpe
ted way.Consequently, an ar
hite
ture level should only use a subset of the 
onne
torsprovided by the lower level (or 
ompatible 
onne
tors), and its 
omponent typesshould be re�nements of 
omponent types of the lower level. When in
ompatiblepatterns are identi�ed at di�erent levels, one 
an build middleware that adapts
onne
tors: a RPC library or a message bus, for instan
e. The additional 
ost isa

eptable between levels 2 and 3, or 3 and 4, but not within level 2 or 3.Pattern life
y
le. Another 
onsequen
e of the two points above is the life
y-
le of ar
hite
ture patterns that they des
ribe. Solutions are �rst proposed toprogrammers in tools that a
t as additions or modi�
ations (�pat
hes�) to theunderlying language. When an addition or modi�
ation proves safe and bene-�
ial to a large audien
e, it ends up being part of a new language. Most userinterfa
e toolkits or frameworks provide both additions and modi�
ations. Theadditions are intera
tive obje
ts and algorithms: graphi
s, intera
tion manage-ment, gesture re
ognition, et
. The modi�
ations are new level 3 or even level 2ar
hite
ture patterns: data-�ow, s
ene graph, 
ontinuations, et
. The same holdsfor operating systems. Consider for instan
e the sele
t 
all of Unix or the mes-sage queues of Windows: they provide me
hanisms that are not native to the C(resp. C++) language and that allow asyn
hronous 
ommuni
ation.In the above life
y
le, additions usually stay out of the language. As formodi�
ations, three states are possible:� 
ompatible modi�
ations waiting for in
lusion in a language, if someone 
andevise a 
lever way of in
luding them;� modi�
ations that have been identi�ed as in
ompatible and either for
e theuse of a middleware layer or limit the usefulness of the toolkit.� modi�
ations that have not been identi�ed as in
ompatible, and make thetoolkit di�
ult or even dangerous to use.Compatibility as a goal. Ideally of 
ourse, one would be able to design 
ompatiblear
hite
ture patterns that answer all known software engineering s
enarios of agiven domain, and thus ultimately build a language that supports that domain.That language would o�er a 
omponent model and a linking me
hanism that



would hold at all levels and allow to build �fra
tal� software where the ar
hite
-ture patterns would be the same at all levels of hierar
hy of the software. Thatwould, among other things, make middleware useless. That would also allow theimplementation of multi-language solutions at level 3, su
h as Mi
rosoft's .Netwhi
h allows the use of di�erent languages for addressing di�erent appli
ationparts. But it seems that the 
urrent situation today is that most proposed so-lutions for intera
tive systems are in the se
ond or third state above. As statedbefore, this makes programming intera
tive systems more di�
ult and error-prone than ne
essary. This also has dire 
onsequen
es on proje
t managementand user interfa
e quality, en
ouraging to develop user interfa
es at the end ofproje
ts when 
onstraining ar
hite
tures are already in pla
e.An ex
eption to this situation would be the Smalltalk environment, whi
hwas expli
itely designed along the lines of ar
hite
ture 
onsisten
y: �Smalltalk'sdesign �and existen
e� is due to the insight that everything we 
an des
ribe
an be represented by the re
ursive 
omposition of a single kind of behavioralbuilding blo
k (...)� [37℄ Even then, the limited industrial su

ess of Smalltalksuggests that some key s
enarios where not taken into a

ount, the foremostbeing probably the inter
onne
tion with non-intera
tive software. C++ took theopposite stan
e, making it harder to develop intera
tive software. That showshow mu
h understanding the possible ar
hite
ture mismat
hes is important.4 Understanding mismat
hesWe now propose a few reasons why ar
hite
ture patterns proposed at level 3for intera
tive software display in
ompatibilities with those o�ered by most pro-gramming languages. Most reasons listed below stem from the same 
ause: inter-a
tive software involves new stakeholders and generates new software engineer-ing s
enarios. If we ex
ept proje
t managers, maintenan
e managers or te
hni
alwriters, most s
enarios des
ribed earlier in this arti
le involved programmers whobuild their own programs by in
luding 
omponents written by others, or inserttheir 
omponents into existing 
omputation engines. User interfa
e design anddevelopment multiplies the roles: it introdu
es intera
tion designers, graphi
aldesigners, developers of low �delity prototypes, developer of the �nal appli
a-tion, framework developer, developers of devi
e drivers, intera
tive 
omponentdevelopers, users parameterising their appli
ation, et
. All these stakeholdershave di�erent ba
kgrounds and use di�erent tools, and they generate 
omplexdevelopment s
enarios. The 
omplexity is similar to that of very large systems,even though a single program is produ
ed. It partly 
omes from a new stepof software engineering: it fo
used on programmers, then on software engineer-ing groups, and now needs to fo
us on multidis
iplinary software engineeringgroups [38℄.4.1 New reuse patternsSoftware reuse de�nes a partial order relation between 
omponents: to reuse a
omponent, a programmer must know how to address it, and uses that in the



newly written 
omponent. This relation fostered many 
onstru
ts in program-ming languages: names given to fun
tions or variables, typing, en
apsulation tohide details, name rewrite to provide growing levels of abstra
tion, et
. Thisbinary relation is well adapted to s
enarios where programmers add layers uponlayers of 
ode. It is not to s
enarios involving other types of stakeholders, be-
ause in that 
ase there are more than one reuse relations. That 
hallenges manyme
hanisms, starting with en
apsulation:� an interfa
e designer or a user who 
hanges a font in an appli
ation a

essesa property name de�ned by the programmer of a text �eld; that name isnot a

essible to other programmers; 
onsequently, 
omponents should haveseveral interfa
es depending on the type of stakeholders: developers of newintera
tion modalities, intera
tive 
omponent developers, appli
ation pro-grammers, graphi
al designers, users;� even among programmers, the order relation may vary; for established 
on-
epts, the language and its 
ore library reuse and en
apsulate the operatingsystem (see for instan
e the standard input in C); but with innovative userinterfa
es the appli
ation programmer is often also a devi
e driver program-mer, who for instan
e 
on�gures a wireless remote 
ontrol to behave as amouse; this requires framework developers to provide extension me
hanismsfor all operating systems, and breaks the traditional en
apsulation hierar
hy;� en
apsulation usually supposes that the reused 
omponent is 
omplete, whereasinterfa
e skinning or the multidis
iplinary development of 
omponents leadsto splitting 
omponents in halves that are managed independently: a pro-grammer will develop the behaviour and a graphi
al designer the looks, forinstan
e. This lessens the added value of 
lass derivation.4.2 Contravarian
e of reuse and 
ontrolOne of the most 
ommon reuse s
enarios in intera
tive software is that of eventsour
es: pi
king a target in graphi
s s
enes or interpreting spee
h is hard enoughthat one prefers to reuse existing libraries. Reusing these 
omponents has ledto event-driven programming and to the progressive repla
ement of graphi
al li-braries by programming framworks. This reuse pattern is fundamentally di�erentfrom the histori
al reuse s
enarios. Consider the partial order relation introdu
edin the previous se
tion (reuse relation) and 
ompare it with another partial or-der relation: that whi
h relates two 
omponents when one transfers 
ontrol toanother one (
ontrol relation). In the histori
al reuse s
enarios, the two relationsare 
ovariant: the 
aller knows the 
allee, be
ause the main program is writtenafter the libraries or at least linked later. With intera
tive software, the mainprogram is still written last but initiative always 
omes from external sour
es:timers, network peers, or input devi
es. The two relations are thus 
ontravariant.This 
ontravarian
e has been a

ounted for in diverse ways: event-drivendialogue, main loops, 
allba
ks, programming frameworks, IoC pattern, are alltoolkit-level solutions for supporting it. However, we believe that it should behandled at a more basi
 level, be
ause it is 
hara
terises the most importantreuse pattern in intera
tive software. Apart from their initialisation, there are



few situations where 
omponents are in a �
ovariant reuse� situation; a
tually, itis possible to des
ribe fairly ri
h user interfa
es without the 
on
ept of fun
tion,whereas it is impossible without a solution for the �
ontravariant reuse�.Apart from the additional 
ost and 
omplexity indu
ed by this inversion ofpriorities between languages and intera
tive software, it 
auses several problems:� event emission is a good basis for en
apsulating 
omponents: a button emitseither press or release, a dialogue box with two buttons only emits ok or
an
el, and so on; managing it outside of languages deprives programmersfrom that en
apsulation;� there are solutions for providing both data�ow and event emission with auni�ed model; having fun
tion 
alls as the predominant paradigm in pro-grams makes it di�
ult to implement, in parti
ular be
ause of divergingsemanti
s as for sequen
ing;� using the fun
tions paradigm 
reates a misunderstanding with fun
tional
ore programers: it does not help them to dete
t that user interfa
es 
annotbe programmed as mere fun
tion 
alls, and pushes many teams to restrainto interfa
e 
omponents that 
an be used with the fun
tions paradigm;� and �nally it plays a role in the �inversion of 
alendar� problem that strikesmany large proje
ts: when a user interfa
e design is 
hosen towards the endof a proje
t, managers realise that the ar
hite
ture 
hosen years before doesnot allow it. Indeed, it is logi
al to 
hoose an ar
hite
ture early enough: atthe beginning, the interfa
e is still in the iterative design phase and there areother developments to start. But with no knowledge of the intera
tion stylesthat will be 
hosen one 
an only resort to the 
ommon denominator, whi
h
urrently appears to be the fun
tion 
all, whereas the only 
ertain thing isthat it will not be the fun
tion 
all. It is therefore ne
essary to promotea basi
 pattern that a

omodates the 
ontravariant reuse pattern, and ifpossible the 
ovariant one for the 
ommodity of fun
tional 
ore development.4.3 Lo
ality of state and 
omputationsWhen reading software or lo
ating errors, lo
ality of behaviours is an importantfeature: having one page per algorithm makes it easier to use a divide-and-
onquer approa
h. Fun
tions are �t for that purpose when programs mostly
onsist of algorithms: ea
h fun
tion implements a 
omputation, whi
h in additionmakes 
omputations reusable. However, 
omputations and algorithms play amore minor part in intera
tive software. Most behaviours 
onsist in managinga state, its modi�
ations upon events, and the asso
iated a
tions. For instan
e,leaving the graphi
al obje
ts aside, a visual button is essentially made of astate (disabled, idle, pushed, et
) and ways of 
hanging it. In 
omputation-oriented programs fun
tions are essential and data 
an be hidden in the 
all sta
k,and that led to fun
tional programming. With intera
tion, state is essential inbehaviours and the lo
ality prin
iple would require that all 
ode that 
hanges itis grouped. That pushed resear
hers to propose programming patterns based on�nite state ma
hines, State
harts or Petri nets, but:



� when using a 
omputation-oriented language, the transitions are implementedas fun
tions or methods and the prin
iple of lo
ality is not met;� fun
tions and transitions are not as easy to mat
h as fun
tions and methods:all uses of fun
tion arguments do not easily transpose to transitions, and theexpe
ted sequen
ing properties are not always the same;� in the same way as fun
tions 
an be 
ombined in 
omplex ways, many devel-opment s
enarios involve the 
ombination of several behaviours; for instan
e,a blinking i
on has two orthogonal behaviours: the blinking, and the abilityto be dragged a
ross the s
reen; state management should allow to separateand 
ombine states at will, just like for fun
tions;� states and behaviours are an important part of reuse s
enarios and thusshould be part of the reuse patterns: with intera
tive systems, programmersdo not reuse 
omponents by adding fun
tions to them; they add event rea
-tions or animations as mu
h as they would 
hange the graphi
al looks;� in addition to be 
ombined or reused, behaviours sometimes need to bestru
tured hierar
hi
ally: levels in a game or steps in a wizard are high levelstates that in�uen
e lower level behaviours su
h as the speed of targets orthe enabling/disabling of buttons; hierar
hi
al state ma
hines are a lo
alsolution that mixes badly with the software reuse s
enarios;� �nally, not all behaviours have the same fo
us on state transitions; some, of-ten represented by data�ows, are made of su

essive 
omputations that alterquantitative states. Animation, for example, relies on 
ombining algorithmsto 
ompute the positions of graphi
al obje
ts. This 
reates a 
ontinuum be-tween 
omputations, data�ows, and state-transitions that would require auniform organisation pattern.4.4 Ar
hite
ture-related 
on
urren
yIntera
tive systems require 
on
urren
y in few situations only. When readinglarge do
uments, the user should be able to intera
t with the system even whenthe program is busy loading the �le. For most other situations, one only needsto rely on the interleaving of external events whi
h all o

ur asyn
hronously.However, software engineering s
enarios and ar
hite
ture indu
e some form of
on
urren
y that needs to be handled properly.Consider a program that emits events when the user 
li
ks on an i
on. Classi-
al intera
tive software engineering s
enarios lead to providing that 
omponentin a library, so that programmers 
an reuse it and bind their 
ode to eventsit emits. It may happen that several 
omponents are 
onne
ted to this eventsour
e. For instan
e, an appli
ation programmer 
an bind both the modi�
ationof a text �eld and the opening of a dialogue box, both obtained from two widgetprogrammers. Suppose the box emits a sound then an animated feedba
k whenopening, and the text 
hanges with an animation. Then for all purposes, thesetwo widget programmers are in a 
on
urrent situation: neither knows about thea
tions 
oded by the other, and nevertheless the appli
ation programmer maywant to ensure a sequen
ing order: sound �rst then animations, for instan
e.That requires that the programming environment allows to express sequen
ing




onstraints on the a
tions triggered by events. This requirement is rarely ful�lled,and many 
ommer
ial programs exhibit strange behaviours with that regard.As usual, one may be tempted to handle this requirement with the 
on
eptsor the syntax of the underlying language. For instan
e, the author used an ani-mation library that en
apsulated sequen
ing in a fun
tional programming style.It was very elegant to use, ex
ept that it had to be implemented through nestedevent loops, and when sequen
ing more than two animations, the �rst anima-tion might get stu
k and the program 
ontinued its exe
ution with two nestedmainloops. Trying to hide the 
on
urren
y only made it bite programmers later.The safe solution is to use a 
on
urrent language or a system of threads andsemaphors, whi
h for
es user interfa
e programmers to absorb 
omplex 
on
eptsand does not make it easy to expli
it sequen
ing properties of their 
ode.4.5 Multiple hierar
hiesProgramming languages manage two hierar
hies in programs. First, they givean important role to the lexi
al hierar
hy of 
ode to manage 
omponents. Mostnames are visible only within a given lexi
al s
ope, whi
h plays an important rolein de�ning reusable fun
tions and 
omponents. Languages like C++ asso
iatethe life
y
le of obje
ts to their lexi
al s
ope. Some languages, like O

am, evenuse lexi
al s
opes to de�ne the 
on
urrent or sequential exe
ution of instru
tions.Se
ond, most languages introdu
e a hierar
hy or types or 
lasses that is oftenused to represent a hierar
hy of domain 
on
epts. Intera
tive systems requirethat other hierar
hies are managed by the language or toolkit, and 
an rely verylittle on syntax. When a 
omponent is made of sub-
omponents, these 
an:� be 
reated in a given lexi
al s
ope and use the names de�ned in that s
ope;� be derived from another type of 
omponents, using the 
lass hierar
hy pro-posed by obje
t-oriented languages;� belong to a given modality (graphi
s, spee
h, et
) and o

upy a 
ertainposition in a modality-spe
i�
 hierar
hy (s
ene graph or widget 
ontainmentfor instan
e); that is the hierar
hy seen by the spe
ialist of that modality;� in�uen
e the exe
ution of their parent and sibling 
omponents, for instan
ebe
ause their sizes is used by the layout algorithm, be
ause their 
urrentstate in�uen
es the behaviour of another 
omponent, or be
ause their merepresen
e 
hanges the nature of the user interfa
e: 
onsider for instan
e agraphi
s layer that removes all 
olours from the interfa
e whenever a modaldialogue box is displayed. There are multiple independent behaviour hierar-
hies, relatively independent from ea
h other.For all these hierar
hies, it is tempting for programmers either to map themto the existing hierar
hies in languages, or to build one's own set of graphs.The �rst option often yields 
on�i
ts. For instan
e, it is tempting to use a 
lasshiear
hy to represent the nature of 
omponents: a hierar
hy of graphi
al ob-je
t 
lasses, a hierar
hy of spee
h obje
t 
lasses, et
. This potentially leads tovery 
omplex 
lass hierar
hies when 
ontainers are present: 
an graphi
al groups
ontain spee
h obje
ts? 
an windows 
ontain animation traje
tories? The latter



option 
reates less 
omplexity but for
es programmers to build their own hier-ar
hy management system, whi
h 
annot bene�t from servi
es provided by thelanguage for its own hierar
hies, su
h as renaming and en
apsulation.Furthermore, language hierar
hies are limited to the s
ope of programs. Theydo not s
ale up to appli
ations built as several programs. To do so, one needs touse middleware su
h as Corba, whi
h provides a multi-program 
lass hierar
hybut at a very high 
ost. Ideally, a language should provide a hierar
hy manage-ment that supports the hierar
hies found in intera
tive systems, and valid at alllevels of granularity, thus enabling to handle programs like 
omponents.5 Related work and resear
h agendaThis is not, by far, the �rst attempt at analysing the nature of programminglanguages and their issues. To begin with, all language designers appear to have
arried out a 
riti
al analysis of existing languages. As already dis
ussed in thispaper, most did it with programmers in mind. Examples in
lude Ba
kus onfun
tional programming [20℄, Kay on Smalltalk [37℄ or Stroustrup on C++ [19℄.Prominent software engineering essayists often 
arry out the same type of anal-ysis, based on their experien
e of industrial development; see Graham for are
ent example [39℄. Some resear
hers have ta
kled the issue of dealing withmore 
omplex software engineering s
enarios. Aspe
t programming [40℄ and themeta-obje
t proto
ol [41℄ are examples of that approa
h. Software ar
hite
turespe
ialists have identi�ed the problem of ar
hite
ture mismat
h [14℄ and anal-ysed their 
auses and 
onsequen
es, at a generi
 level. Several resear
hers fromthe intera
tive software 
ommunity worked on resolving some mismat
hes posedby intera
tive software. For instan
e, Prospero is aimed at solving issues be-tween di�erent levels of tools in CSCW software development [42℄. Wegner evengoes further and 
hallenges the very fa
t that algorithms should be 
entral inprogramming, proposing intera
tion as the key 
onstru
tion [43℄.Our approa
h fo
uses on ar
hite
ture and relies on the 
onvi
tion that userinterfa
e development brings both problems and te
hniques for addressing them.A �rst list of problems has been presented in this arti
le. The te
hniques arethose of user interfa
e design: requirements engineering and design te
hniques foruser-
entred design. We are 
onvin
ed that an expli
it use of these te
hniques,often used impli
itely by language designers, 
an help understand the needsof intera
tive software stakeholders, the solutions proposed, and how to mat
hthem. Our experien
e with the user-
entred design of the graphi
s module of auser interfa
e environment [38℄ strengthens that 
onvi
tion.We therefore proposea resear
h agenda that 
ould help understand to what extent solutions 
urrentlyproposed by programming languages 
an be used for or adapted to the e�
ientdevelopment of intera
tive systems, or how they 
ould be modi�ed to supportthe expe
ted development s
enarios without forfeiting their other qualities. Thisagenda in
ludes:� reviews of the software engineering and programming language literature toidentify all stakeholders and s
enarios taken into a

ount in these domains;



� identi�
ation of stakeholders and s
enarios with modern and/or future in-tera
tive software;� measurements of how these s
enarios are handled in 
urrent software;� identi�
ation and 
lassi�
ation of requirements and properties expe
ted fromintera
tive software development tools and languages;� de
onstru
tion of programming languages and theories to identify the sup-ported ar
hite
ture patterns and the underlying s
enarios;� identi�
ation of the patterns in traditional or alternative languages that sup-port the desired s
enarios, and those that potentially 
on�i
t with them; thismay lead us to dis
over that some works in intera
tive software ar
hite
turehave exa
t equivalent in programming language resear
h;� resear
h of 
ompatible patterns that support the s
enarios from intera
tivesoftware; in other words, re-appli
ation of the working methods of the lan-guage and software engineering 
ommunities on
e the de
onstru
tion hasbeen performed, in
luding formal methods;� 
onstru
tion of a set of basi
 instru
tions and patterns adapted to intera
tivesoftware, so as to build the equivalent of Mi
rosoft .Net for developing in-tera
tive software with languages adapted to ea
h part (graphi
al interfa
e,fun
tional 
ore, spee
h interfa
e, dialogue, et
).6 Con
lusionIn this paper, we have proposed to analyse programming languages and intera
-tive software in terms of software ar
hite
ture and in terms of stakeholders ands
enarios supported by ar
hite
tures. We have suggested that software ar
hite
-ture is present at several levels of granularity, the �nest grain being handled byprogramming languages. We have des
ribed user interfa
e toolkits as providingmodi�
ations to the ar
hite
tures proposed by languages. We have listed sev-eral issues where languages and intera
tive software bring 
on�i
ting patterns,
ausing 
omplexity that must be managed by programmers and that impedes in-novation in user intera
tion. Finally, we have proposed a resear
h agenda basedon the identi�
ation of stakeholders, s
enarios and ar
hite
ture patterns thatinvolves the appli
ation of language design te
hniques to intera
tive softwaretools ot even intera
tive software languages. User interfa
e design tea
hes usthat humans are able to adapt to various designs, sometimes a

epting systemsthat make them relatively ine�e
ient. How mu
h of this 
o-adaptation is at workwhen we build user interfa
e tools based on languages? So far, the user interfa
e
ommunity has mostly fo
used on �getting the job done with the tools provided�,that is produ
ing the expe
ted user interfa
es and taking the rest of softwaretools as immutable. Maybe we need some usability experts for ourselves!A
knowledgementsThis arti
le �nds its roots in a long 
onversation with M. Beaudouin-Lafon inPalos Verdes, CA in 1994. Some ideas 
ame from there or my later work with P.Palanque and J. A

ot at CENA. The rest 
ame from an extreme experien
e at



IntuiLab in 2002-2004: trying to apply to ourselves parti
ipatory design as taughtby W. Ma
kay in the design of IntuiKit. Finally, marketing work requested byand done with D. Figarol helped me arti
ulate the arguments. S. Conversy, P.Dragi
evi
 and M. Beaudouin-Lafon helped to improve the paper.Referen
es1. Wirth, N.: Data stru
tures + algorithms = programs. Prenti
e Hall (1975)2. Kru
hten, P., Sotirovski, D.: Implementing dialogue independen
e. IEEE Software12(6) (1995) 61�703. Kru
hten, P.: The Rational Uni�ed Pro
ess - an Introdu
tion. Addison-Wesley-Longman (1999)4. Linton, M.A., Vlissides, J.M.: The design and implementation of InterViews. In:Pro
eedings of the USENIX C++ Workshop. (1987)5. Weinand, A., Gamma, E., Marty, R.: ET++ � an obje
t-oriented appli
ationframework in C++. In: OOPSLA'88 Pro
eedings. (1988)6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements ofReusable Obje
t-Oriented Software. Addison-Wesley (1995)7. Bass, L., Coutaz, J.: Developing software for the user interfa
e. The SEI Series inSoftware Engineering. Addison Wesley (1991)8. Bass, L., Clements, P., Kazman, R.: Software ar
hite
ture in pra
ti
e. Addison-Wesley (1998)9. Krasner, G., Pope, S.: A 
ookbook for using the Model-View-Controller user in-terfa
e paradigm in Smalltalk-80. Journal of Obje
t-oriented programming 1(3)(1988) 26�4910. Barrett, R., Delany, S.J.: OpenMVC: a non-proprietary 
omponent-based frame-work for web appli
ations. In: Pro
eedings of the 13th international World WideWeb 
onferen
e. (2004)11. Chatty, S., Sire, S., Lemort, A.: Vers des outils pour les équipes de 
on
eptiond'interfa
es post-WIMP. In: A
tes d'IHM'04, ACM Press (2004) 45�5212. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: ICSE'00:Pro
eedings of the Conferen
e on The Future of Software Engineering, ACM Press(2000) 35�4613. Muller, M.J., Kuhn, S.: Parti
ipatory design. Commun. ACM 36(6) (1993) 24�2814. Garlan, D., Allen, R., O
kerbloom, J.: Ar
hite
tural mismat
h: Why reuse is sohard. IEEE Software 12(6) (1995) 17�2615. Garlan, D., Shaw, M.: An introdu
tion to software ar
hite
ture. In Ambriola, V.,Tortora, G., eds.: Advan
es in Software Engineering and Knowledge Engineering.Volume 2 of Series on Software Engineering and Knowledge Engineering. WorldS
ienti�
 Publishing Company (1993) 1�3916. Kazman, R., Abowd, G., Bass, L., Clements, P.: S
enario-based analysis of softwarear
hite
ture. IEEE Software 13(6) (1996) 47�5517. Byron King, 
ountess of Lovela
e, A.A.: Notes by the translator of the Sket
h ofthe Analyti
al Engine invented by Charles Babbage, by L.F. Menabrea. S
ienti�
Memoirs 3 (1843) 666�73118. Turing, A.M.: Proposals for the development in the mathemati
s division of an Au-tomati
 Computing Engine (ACE). Te
hni
al Report E882, Exe
utive Committee,NPL (1946)19. Stroustrup, B.: The Design and Evolution of C++. Addison-Wesley (1994)20. Ba
kus, J.: Can programming be liberated from the von Neumann style? a fun
-tional style and its algebra of programs. Communi
ations of the ACM 21(8) (1978)



21. Pfa�, G.E., ed.: User Interfa
e Management Systems. Eurographi
s Seminars.Springer-Verlag (1985)22. Bass, L., Pellegrino, R., Reed, S., Sea
ord, R., Sheppard, R., Szezur, M.R.: TheAr
h model: Seeheim revisited. Presented at the CHI'91 User Interfa
e DevelopersWorkshop (1991)23. Coutaz, J.: PAC, an implementation model for dialog design. In: Pro
eedings ofthe Intera
t'87 Conferen
e, North Holland (1987) 431�43624. Myers, B.A.: A brief history of human-
omputer intera
tion te
hnology. Intera
-tions 5(2) (1998) 44�5425. Beaudouin-Lafon, M., Berteaud, Y., Chatty, S.: Creating dire
t manipulation in-terfa
es with XTV . In: Pro
eedings of EX'90, London. (1990) 148�15526. Martin, R.C.: Agile Software Development: Prin
iples, Patterns and Pra
ti
es.Pearson Edu
ation (2002)27. Goldberg, A.: SMALLTALK-80, the Intera
tive Programming Environment.Addison-Wesley (1984)28. Myers, B.A.: Creating user interfa
es using programming by example, visual pro-gramming and 
onstraints. ACM Transa
tions on Programming Languages andSystems 12(2) (1990) 143�17729. Chatty, S.: De�ning the behaviour of animated interfa
es. In: Pro
eedings of theIFIP WG 2.7 working 
onferen
e, North-Holland (1992) 95�10930. Strauss, P.S.: Iris inventor, a 3d graphi
s toolkit. In: OOPSLA '93: Pro
eedings ofthe eighth annual 
onferen
e on Obje
t-oriented programming systems, languages,and appli
ations, ACM Press (1993) 192�20031. Palanque, P., Bastide, R.: Petri net based design of user-driven interfa
es usingthe intera
tive 
ooperative obje
t formalism. In: Pro
eedings of the DSV-IS'94workshop. (1994) 383�40132. Dannenberg, R.B.: Ar
ti
: A fun
tional language for real-time 
ontrol. In: Pro-
eedings of the ACM Conferen
e on Lisp and Fun
tional Languages. (1984) 96�10333. Clement, D., In
erpi, J.: Programming the behavior of graphi
al obje
ts usingesterel. In: Pro
eedings of TAPSOFT'89, LNCS 352, Springer Verlag (1989)34. Le
olinet, E.: A mole
ular ar
hite
ture for 
reating advan
ed GUIs. In: Pro
eedingsof the ACM UIST. (2003) 135�14435. Venners, B., E
kel, B.: The C# design pro
ess. a 
onversation with Anders Hejls-berg. http://www.artima.
om/intv/
sdes.html (2003)36. Desreumaux, M., Oudrhiri, R.: Information and software systems: from ar
hite
-ture to urbanism. In: Pro
eedings of the 1st IFIP Working Conferen
e on SoftwareAr
hite
ture, Chapman & Hall (1998)37. Kay, A.C.: The early history of smalltalk. ACM SIGPLAN (3) (1993) 69�7538. Chatty, S., Sire, S., Vinot, J., Le
oanet, P., Mertz, C., Lemort, A.: Revisitingvisual interfa
e programming: Creating GUI tools for designers and programmers.In: Pro
eedings of the ACM UIST, Addison-Wesley (2004)39. Graham, P.: Ha
kers and Painters: Big Ideas from the Computer Age. O'ReillyMedia (2004)40. Ki
zales, G.: Aspe
t-oriented programming. ACM Computing Surveys 28(4es)(1996)41. Ki
zales, G., des Rivières, J., Bobrow, D.G.: The art of the meta-obje
t proto
ol.The MIT Press (1991)42. Dourish, P.: Using metalevel te
hniques in a �exible toolkit for 
s
w appli
ations.ACM Transa
tions on Computer-Human Intera
tion 5(2) (1998) 109�15543. Wegner, P.: Why intera
tion is more powerful than algorithms. Communi
ationsof the ACM 40(5) (1997)


