Defining the dynamic behaviour of animated interfaces
Stéphane Chatty

Centre d'Etudes de la Navigation Aérienne, 7 avenue Edouard Belin, 31055 TOU-
LOUSE CEDEX, France. Phone: +33 62 25 95 42. Email: chatty@dgac.fr.

Abstract

This paper presents Whizz, a system for building animated interactive applica-
tions. We describe its musical metaphor, and its underlying model based on streams
and events. We analyze the notion of animation, and show how the Whizz model
can be applied to the whole dynamic behaviour of an interface, including animation,
user input, and communication with the application. Such an integration leads to
a homogeneous definition of that behaviour, and to interactive tools to define it. It
also opens doors on new types of interaction that mix users’ actions with animation.

Keyword Codes: H.5.2; D.1.7;1.3.6
Keywords: User Interfaces; Visual Programming; Computer Graphics, Methodol-
ogy and Techniques.

1. INTRODUCTION

If developing the static presentation part of an interface was once a hard task
because of the lack of tools, it is no longer the case. The main problem now consists
in choosing the right toolkit and the right interface editor.

On the other hand, there is still little support for the dynamic part of an inter-
face, and especially animation. Animation appeared long ago in the field of user
interfaces, but animation systems are generally dedicated to simulation or some
kind of algorithm animation. If you want to add motion to an interface, you have
to program it.

However, animations can be useful in many kinds of interfaces. Baecker et al. [1]
showed how animated icons can help understand the usage of a tool in a drawing
system. The use of animation in help systems becomes increasingly popular, but it
is not the whole thing. Animation can be used as a part of the data manipulation
interface as well. Robertson et al. [14] assess that using an animation instead of
an instant switch from one state of the display to another state transfers mental
activity to the perceptual system and decreases mental load.

In fact, animation is already used in real systems. For instance in the Macintosh
Finder, when double-clicking on the icon of a folder, a rectangle grows from the
size of the icon to the size of the window being opened. The blinking of the cursor

in text editors is a simple animation, aimed at directing the user’s attention. But
such animations have to be programmed with ordinary drawing instructions and
very little support for time management. The technical problems are often difficult
to overcome. One can imagine that animations would be used more often if they
could be programmed more easily.

This paper presents Whizz, a system which provides the integration of animation
with the usual mechanisms of an interface. It allows a uniform manipulation
of animation, user input and data visualization. Furthermore, its model allows
the development of a direct manipulation editor for the definition of the dynamic
behaviour of an interface. A prototype of such an editor has been implemented and
is described at the end of the paper.

2. RELATED WORK

Animation is mainly a research theme of computer graphics. But in that domain,
the interest is much more in animation rendering than in interaction or program-
ming techniques. It is only recently that some thought has been given to these
topics [18].

In the field of user interfaces, animation is most often seen as a means of pre-
senting an algorithm or the execution of a program. Balsa [4] is the best known
algorithm animation system. Pastis [12] is a recent program animation system
based on a debugger. However, such systems do not directly address the issue of
building animated interfaces.

There have been few attempts at providing animation toolkits. Animus [9] is
one of them. It uses a constraint system to maintain the consistency across time
between the display and an underlying physical model. Tango [15] is another sys-
tem which implements a path-transition paradigm. One describes paths, attaches
graphical objects and then plays the resulting transitions. Tango comes with an
associated direct manipulation editor, Dance, which allows the creation of transi-
tions.

A part of the stream-event model of Whizz is similar to data-flow models. Such
models have already been used for the architecture of interactive systems [8, 16].
Fabrik [10] is a visual language with a data-flow model, which can be used for build-
ing interactive applications. Squeak [5] uses communicating processes to describe
the processing of complex user input issued from several devices. Constraint-based
systems such as ThingLab II [11] or Garnet [13] also have an underlying data-flow
model induced by constraints.

Animation programming has strong similarities to other real-time applications,
and particularly to music synthesis. There has been much more work in that do-
main, and the temporal issues generally have been addressed more thoroughly.
Formes [6] is one of the best known music synthesis systems. It features a hi-
erarchical structure of processes, used to describe the structure of music, which
includes sequential, parallel, and nested patterns. Formes was also used to de-
scribe other dynamic processes, such as graphical display. Arctic [7] is a functional
language which uses an event flow model to describe real-time processes. Esterel

[3] is a general purpose synchronous language, used to describe all kinds of reactive
systems, among which are dialogues in interfaces.

3. AMUSICAL METAPHOR

In the same way as users of interactive applications, programmers build their
own mental model of the toolkit they are using. This is especially true of object-
oriented toolkits. The underlying model of such toolkits is often very abstract in
order to provide power of expression and flexibility. But it is useful to provide a
simple conceptual model in order to facilitate comprehension. For that reason, we
will first present the conceptual model of Whizz, before detailing the underlying,
more abstract and more general model.

3.1. Dancers, Instruments, Rhythms, Tempos

4)
71 VLLE
Rhythm
@ Instrument
Tempo
.

Figure 1. The musical metaphor of Whizz.

The basic conceptual model of Whizz uses a musical paradigm, summarized in
Figure 1. It involves dancers, instruments, notes, rhythms and tempos. Dancers
are the entities which produce the perceptible effects. They generally are graphical
objects capable of movement or deformation. They move or change shape according
to the notes they hear. Notes are a generalization of musical notes. They carry
simple pieces of information such as points, colours, numbers, or even real musical
notes. Instruments play these notes according to their own characteristics and
state. Some instruments emit positions along a trajectory. Others emit numbers
read in a file, or computed with an algorithm. They play those notes at dates
determined by a tempo and a rhythm. The tempo determines a series of dates at
regular intervals. The rhythm determines for which of these dates the instrument
must play a note.

There is no one-to-one relation between instruments and dancers. Several
dancers can listen to the same instrument, and one dancer can listen to several
instruments at a time. In the latter case, the musical paradigm is a little twisted:

generally all the instruments of an orchestra play related parts, and dancers listen
to the resulting music. In our case, dancers most often listen and react inde-
pendently to each instrument. For instance a rectangle may move according to
the positions emitted by an instrument, and change colour according to another
instrument.

Tempos and rhythms can also be shared amongst instruments. Two instruments
having the same rhythm and tempo will play their notes at the same time. More
complex synchronization can be achieved with different rhythms and a shared
tempo. For example, an icon representing a ball can move on every beat of a tempo
and rotate on one beat out of three. Whereas using the same tempo allows synchro-
nization, using tempos with different intervals allows one to express phenonema
with different time scales. For instance, the smooth movement of an icon and the
slow blinking of a cursor do not need the same time resolution.

The most useful instruments for graphical animations are instruments that pro-
duce points. Whizz provides paths defined on a point-per-point basis, as in Tango.
It also provides more abstract movements such as circular or linear trajectories.
That approach is similar to that of object-oriented graphical toolkits, which provide
graphical objects like rectangles or lines. More sophisticated movements can also
be added. In its current version, Whizz contains attractors: they are movements
which bring an object to a desired position, whatever its initial position and speed.
It also has smoothly decelerated movements and oscillating movements as pro-
duced by springs. As for graphical toolkits, it seems that a few basic movements
are sufficient to describe most interfaces.

As stated before, the main dancers are graphical objects. They have a number of
input slots depending on their nature. For instance a rectangle dancer may change
its position, its corners, its border colour or its fill colour. A polygon dancer has an
additional input slot to add new vertices. Some special dancers are made of several
graphical objects (generally icons), of which only one is visible at the same time.
They have an input slot that makes it possible to change the visible object. Those
polymorphic dancers are useful to implement traditional animation, performed by
a simple succession of images.

3.2. Unexpected events

When building an animated interactive system, specifying the movement of ob-
jects is not enough. It often happens that one wants to perform an action when a
dancer has reached the end of a trajectory, or when it passes a border, or even when
it meets another dancer. Such events are generally painful to compute beforehand,
and it is much more pleasant to be notified when they occur. Furthermore, they are
impossible to foresee when the movement of dancers depends on the user’s actions.

Whizz provides a number of active zones (or fields) in order to detect such events.
They range from linear borders to elliptic fields or grids. They can emit events
such as crossing, entering, leaving, etc. Similar events may also be emitted by
instruments when their part is finished, or when a particular time is reached. This
allows to use the event-based structure of programs that has proven to be useful
for interactive applications.

We have just described the musical metaphor of Whizz, which features tempos,
rhythms, instruments and dancers, with an additional notion of unexpected event.
We will now describe the more general model that underlies this metaphor.

4. THE STREAM-EVENT MODEL

The underlying model is based on two types of information propagation: streams
and events. This stems from the fact that dynamic processes, and especially graph-
ical animation, have two modes of evolution. The first are evolutions which rep-
resent a continuous phenomenon. Such evolutions are indeed discretized because
of the constraints of digital computing, but it is useful to keep their continuous
nature in mind. A good example of a continuous evolution is the movement of an
object along a path. But there are also sudden evolutions, such as a light turning
from red to green, or the disappearance of an object. Such evolutions can be rep-
resented as special cases of continuous evolutions (with only one significant step),
but it is generally awkward. It is much simpler to manipulate them as small and
independent pieces of information. Such a distinction between continuous and in-
stantaneous information has sometimes been made for input devices [17]: buttons
produce instantaneous information, whereas a mouse produces a flow of positions.

Whizz models continuous evolutions with a data-flow model. Streams of data
(the notes) are emitted and filtered by modules organized in a graph. Every module
has a number of input and output plugs that can be dynamically connected to other
plugs. Every plug has a type that describes what kind of data can circulate through
it, and can be connected only to compatible plugs. The tempos, rhythms, instru-
ments and dancers that were previously described are such modules. Tempos are
special modules which emit notes at regular intervals, initiating the propagation
of information. They are the only parts of Whizz that have to take real-time into
account. All the subsequent propagation and handling of notes are supposed to be
instantaneous compared to the interval between two notes. The other modules act
as filters: rhythms let only certain notes through, instruments enrich them, and
dancers handle them and move.

Modules can be grouped in scenes. A scene is a group of inter-connected modules;
it is itself a module, and it may export some of its modules’ plugs. This mechanism
allows to build and reuse parts of interfaces. Scenes can also be stored in files and
retrieved, which makes it possible to design interactive scene editors.

Instantaneous evolutions are modelled by events, similar to those used in many
graphical toolkits. They represent a less structured way of communication than
streams. Events are mostly characterized by their types, in the same way as
input events in window systems. Events are emitted by various sources, such
as modules or active zones. They are caught by modules, which have predefined
reactions such as self-destruction. They may also be attached to callback functions,
like in traditional user interface toolkits. One may define callback functions that
instantiate and connect modules, so that events result in the beginning of new
animations.

We believe that this communication based on streams and events generalizes the
architecture that is proposed by most user interface toolkits. We will now show
that at least, it allows a good integration of animation with usual user interface
technology.

5. ANIMATION AND INTERFACE BEHAVIOUR

The word animation is often used without any precise definition. In fact its
meaning depends on the context. From a perception point of view, we say that
something is animated when its appearance changes with time. The animations
that are generally studied are implemented as explicitly time-based processes, like
the animations described earlier in this paper. But the same perceptive effects can
be achieved differently. The active values used in several UIMS offer an animated
visualization of variables. Their evolution is controlled by the application execution
and not by a clock in the interface, but it makes no difference to the user. Similarly,
a user dragging an icon with a mouse is achieving a certain kind of animation.
The technical issues are the same, and even the perceptive effect is the same when
several users look at the same display.

Consequently, we consider that the interface behaviour can be described in three
categories :

e time-driven animation
e application-driven animation
e user-driven animation

The stream-event model covers all three cases. Regarding the stream-based com-
munication, one only needs to provide special modules attached to input devices or
application data. They can be connected to the modules described above, and pro-
duce the same animations. Whereas tempos initiate the propagation of information
by impulses that need to be enriched by instruments, those modules initiate it with
more significant information. For instance, Whizz has a module for the mouse,
which emits points and can be connected to a dancer in order to move it. Active
values are also provided: they are modules that emit integers, for instance. As in
Fabrik, filters (instruments) may be used to transform integers into points, and
produce various data representations, like the speedometer of Figure 2.

The event-based communication is also useful for the integration of our three
types of animation. Synthetic events caused by time-based animations and user-
input events are naturally handled the same way: they are both very similar
to the traditional notion of event. The notion of event from the application is
less traditional, but it proved to be useful. Balsa and other algorithm animation
systems use the notion of “interesting event’. Interesting events correspond to key
steps in the execution of the algorithm, where an animation should be performed.
They are generally associated to annotations in the source code of the animated
program, and emitted when the annotations are encountered.

We believe that events from the application can be used in more general circum-
stances. For instance, they can be used in any interface that needs to visualize the

Integer i <R
IE' O——-1|e o | (——
Numbers Positions
Active Value Instrument Dancer

Figure 2: A speedometer connected to an integer. The instrument transforms the
integer notes into positions, and emits them to the input slot that controls the
extremity of the hand.

operations performed in the application, and not only data. It is especially true of
animated interfaces, where animations can be attached to operations, in the same
way as representations are attached to data. Let us consider an iconic interface for
a file system. A file is represented by an icon. An operation on such a file can be
represented by an animation of that icon. For instance, if the file system sends an
event to notify the destruction of the file, the icon could blow up and vanish.

6. MIXING USER INPUT WITH ANIMATION

The integration of the different kinds of dynamic behaviour in Whizz makes it
possible to mix them in the same interface. Such a mixing is often difficult to
achieve. For instance, most algorithm animation systems freeze user input while
they are animating objects. With the stream-event model, the mixing is natural
because user input and animation are parts of a unique information propagation
scheme. Some bursts of information propagation are initiated by tempos, and some
others by the user’s actions.

That interleaving of user’s actions and animation has other consequences. It
implies that the paradigm of playing predefined scenes is no longer valid. For
instance, it is impossible to foresee the moment when an object will cross a border,
because the user’s actions may modify its evolution at any time. This is why Whizz
provides synthetic events such as border-crossing. The evolution of dancers is
partly independent from the programmer, in the same way as the user is.

Games are good examples of applications that make use of animation and user
input. A prototype of a breakout game has been implemented with Whizz, and is
fast enough to be played on a standard workstation. In that game, the ball is a
dancer connected to an instrument managing a trajectory, and to a tempo. The
paddle is also a dancer, connected to a module emitting the position of the mouse.
Collisions between the paddle and the ball produce events, as well as collisions
between the ball and the bricks, which are active zones.

6.1. An air traffic control example

We will now detail an example from Erato, an experimental project aimed at
improving the services offered by the French air-traffic management systems. In
the current system, planes are represented as glyphs on the controller’s screen, and
they move according to the information obtained by radars. Using this represen-
tation, controllers have to avoid collisions. A new service offered by Erato consists
in extrapolating the future trajectories of planes, so that the controller may detect
problems earlier.

(@] Erato - extrapolation]

111-

Figure 3: The air traffic control example. A plane is dragged to the possible point
of collision, and the position of other planes is extrapolated.

The interface to that service works as follows. During normal operation, planes
move regularly along their trajectories. When the controller wants to figure out
whether two or more planes are a potential problem, he picks one plane and drags
it along its future trajectory. The other planes will then move as though time was
driven by the dragged plane. Possible collisions are thus directly visible (Figure 3).

Let us now detail the realization of that interface with Whizz. Every plane
is represented by a scene made of a graphic dancer and a “glider” instrument
(Figures 4 and 5). Both modules are predefined ones. The glider manages a straight
trajectory. It has input plugs for stepping, random access by a numeric parameter,
and random access by a position. Notes emitted through the first plug make the
glider emit successive positions on the trajectory. A number passed through the
second plug is considered as a number of steps from the initial point. A point passed
through the third plug make the glider emit the projection of that point onto the
trajectory. The glider has an output plug that emits the current position and one
that emits the corresponding number of steps. The position output is connected to
the position input of the dancer. The numeric output of the glider is exported by
the scene, as well as its three inputs.

We can now examine the structure of the interface (Figures 6 and 7). Two
situations are possible. During normal operation, all planes are connected to a
tempo through their “step” input. When a plane is picked, an event is emitted,
and the connections are changed: the dragged plane is connected to the mouse
module through its “projection” input plug, so that it will stay on its trajectory

exported plugs point output
\ parameter output

Il
N\

g |

f {]
] 1
"glider" instrument graphic dancer

the scene
details of the scene as a module

Figure 4. The structure of the “plane” scene.

/* A plane is a scene composed of a dancer and an instrument. */
/* Tt exports three input plugs and one output plug. */
class Plane : public Scene {

Dancer* Image;

Instrument* Speed;

InPlug Step, Random, Projection;

OutPlug OutParameter;

OutPlug* NormalSource;

}i

/* Constructor of planes. */

Plane :: Plane (Point& initial, Point& speed) {
Image = new Polymorph;
/* The polymorphic dancer has only one appearance. */
Image->AddAppearance (new Icon ("plane"));
Speed = new Glider (initial, speed);
/* The positions of the dancer are given by the instrument. */
Image->Position.Connect (Speed->OutPosition);
/* Now export the plugs of the instrument. */
ExportInPlug (Speed->Step, Step);
ExportInPlug (Speed->Random, Random);
ExportInPlug (Speed->Projection, Projection);
ExportOutPlug (Speed->OutParameter, OutParameter);

Figure 5. The definition and initialization of a plane.

parameter input

step input position input .
0

N

@ ““
tempo
mouse
module

\

Figure 6: The structure of the flow graph during normal operation, and when a
plane is dragged.

/* When a plane is connected to a tempo, */
/* the output plug of the tempo is stored for future reference. */
Plane :: ProceedWith (Tempo& t) {

Step->Connect (t.Out);

NormalSource = &t.Out;

}

/* When dragging begins, the normal source is disconnected */
/* and the plane is connected to the mouse module. */
Plane :: BeginDrag (MouseModule& d) {
Step->Isolate ();
Projection->Connect (d->OutPosition);
/* Then, all other planes are connected to this one. */
ListIterator other plane (AllPlanes);
while (++other plane)
if (other plane != this) {
other plane->Step->Isolate ();
other plane->Random.Connect (this->OutParameter);

}

/* When dragging ends, all planes are connected back to their normal source. */
Plane :: EndDrag () {
ListIterator any plane (AllPlanes);
while (++any plane) {
any plane->Random->Isolate ();
any_plane->Step.Connect (any_plane->NormalSource);

Figure 7: The possible actions on a plane: make it move with a tempo, or drag it.
When it is dragged, all the other planes are moved accordingly.

while moving. All other planes are connected to the dragged plane through their
numeric input plug, so that they keep at pace with it. When the plane is released,
all connections are restored to their previous states.

6.2. Throwing icons

The mixing of animation and user input can lead to unusual kinds of interaction.
One can imagine an iconic interface where one could throw icons into the trash can.
Such an experiment is feasible with our model. One just needs to handle the event
emitted by the drag module when dragging is over, and to connect an instrument
and a tempo in its place (Figure 8). Depending on the type of the instrument, the

4 N\ 4 N

— —> — —>

~ EndDrag o
g e

_

Figure 8: Throwing an icon. When dragging is over, the motion is continued as a
time-driven animation.

dragged object will slow down until it stops, for instance. If it is thrown in the right
direction, the object may enter the field of the trash can as in Figure 9. That will
produce an event, and the icon will switch from its decelerated movement to an
attraction towards the trash can. The last event will then be the collision, and the
object will be destroyed. The interaction technique demonstrated by this example

4 I
] >
h
EnterField
YY)
—

Figure 9. The icon is captured by the trash can.

is rather new. We believe that it can be useful in the same way as animations can
be useful for data visualization.

7. A DIRECT MANIPULATION TOOL

Whizz was designed and implemented to allow the building of direct manipulation
tools for the definition of animated interfaces. We present here the prototype that
has been implemented. The purpose of such a tool is to allow the creation of scenes.
Scenes are resources that can be stored in files, retrieved, and instantiated. This
allows us to design animations and graphical representations independent of the
application, in the same way as most interface builders do. One only needs to load
a scene from a file, instantiate it, and establish the necessary connections with
existing modules.

The data-flow paradigm is well suited for that purpose. Firstly, the paradigm of
connecting modules is easy to map onto a graphical interaction. Another reason
is that it allows to split the editor in a number of specialized editors for each type
of module. For instance, the rhythms of Whizz are defined with a specific editor
similar to bitmap editors (see Figure 10). Specific editors are also provided for all

[25] Rhythim editor =

Figure 10: A simple rhythm editor, hybrid of musical scores and bitmap editors.
Each vertical bar represents an instant. When a black dot is present, a beat will
be emitted at that instant. The colon indicates a replicated pattern. The rhythm
being edited will emit beats at instants O, 1 and 3 and loop at instant 5.

kinds of instruments.

The main part of the editor shows a scene in a window. The representation is
organized in layers superimposed like transparencies. The first layer contains the
graphical objects that will appear in the final application. They may be ordinary
static objects, but they are generally dancers. Another layer contains the represen-
tation of the modules and their connections. Finally a third layer visualizes active
zones and the trajectories generated by instruments Figure 11 represents a simple
scene being edited, with all layers visible. That scene is a standalone time-based
animation. When it is activated, the rectangle and the end of the segment will
begin a motion along a complex trajectory made of the composition of two rotations.

The editor allows the testing of animations while they are being built. It has
been constructed with Whizz, and all icons representing modules indeed have a
real module attached to them. When the editor is set in test mode, the modules are
activated: notes are emitted by tempos, filtered by other modules, and handled by
dancers, in the same way as they will be when the scene will be used. An additional
feedback of the activity of the modules is provided. The icons representing modules

[E5 Scene editor

L

‘

[|
‘

E -

Figure 11: The creation of a scene with the direct manipulation editor. On the left,
the icons represent modules. Plug types are visualized by different shapes. From
the left to the right are a tempo, a rhythm, two elliptic trajectories, an adder, a
segment and a rectangle. The segment is connected by a plug representing one of
its ends, and the rectangle by the plug representing its position. On the right, the
rectangle, the segment and the two trajectories are visible.

are implemented as dancers with several images, and they are animated by the
notes their associated modules receive. With that feedback, animation designers
are provided with a visualization of the working of the animation they are building.
It has also proved to be useful for understanding the underlying model of the
system.

8. EXTENSIBILITY

The stream-event model is extensible. New functionalities can be added by
programming new types of modules, which may immediately be used in associa-
tion with the predefined ones. For instance, the rhythm modules implemented in
Whizz are satisfactory for simple graphical animation, but they certainly would
not be enough in the eyes of a music composer. One only needs to program a more
sophisticated class of rhythms, and the music composer will be able to use them
instead of the standard rhythms.

Extensions to new dynamic processes can also be added with new types of notes
and modules to manipulated them. Such extensions may be useful for multi-media
interfaces. For instance, musical notes and the instruments that produce them
have been implemented in Whizz. They make it possible to add simple sounds or
tunes to interfaces. For instance, one can link the pitch of emitted notes to an
integer active value, providing an audio feedback of that value.

9. STATUS AND FUTURE WORK

A first version of Whizz was implemented in C++ as an extension to the Xy
toolkit [2], on top of the X Window System. It is currently used for experiments
on animation-based interaction techniques, and interface architectures based on
the stream-event model. It is also used as the data presentation module for our
graphical debugger Witness. In that debugger, the graphical representations of
variables are designed by end users with the animation editor, and the operations
on those variables are also represented by animations designed with the editor.

Future work will take several directions:

e Refinement of the interactive editor. The present prototype has proved to be
useful, but it also has evidenced the need of specific presentation paradigms,
that still are to be defined.

e Extensions to be able to define whole interfaces with Whizz and its editor. Our
next goal is the user being able to modify variables in Witness through actions
on their representations.

e Integration with constraint specification, so as to be able to declare properties
that should be kept throughout movements.

10. CONCLUSION

We have presented Whizz, a system that allows the building of animated inter-
faces. It contains a number of novel features, including the expression of time pat-
terns and synchronization, objects that describe abstract trajectories, and events
generated by the animated objects. Furthermore, its stream-event model offers
the integration of animation with data visualization and user input, allowing an
homogeneous definition of the whole dynamic behaviour of an interface. Whizz
and its associated editor have demonstrated the possibility to use animation in
user interfaces. They have also demonstrated that the behaviour of an interface
can be defined with interactive systems similar to those used in the definition of
presentation layers.

Acknowledgements

This research work was done while at the Laboratoire de Recherche en Infor-
matique (University of Paris Sud and CNRS/URA 410). Many people have read
and commented this article. I especially wish to thank Michel Beaudouin-Lafon,
Thomas Baudel and Jean-Daniel Fekete for stimulating discussions. Heather
Sacco, Chris Weikart and Balachander Krishnamurthy proofread various versions
of it.

11. REFERENCES

[1] R. Baecker, I. Small, and R. Mander. Bringing icons to life. In Proceedings of the ACM

(2]
(3]
(4]
(5]
(6]

[7]

(8]

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

CHI'91, pages 1-6. Addison-Wesley, May 1991.

M. Beaudouin-Lafon, Y. Berteaud, and S. Chatty. Creating direct manipulation inter-
faces with X7y . In EX'90, London, England, 1990.

G. Berry, P. Couronné, and G. Gonthier. The Esterel synchronous programming lan-
guage and its mathematical semantics. In S. D. Brookes, A. W. Roscoe, and G. Winskel,
editors, Seminar on Concurrency, LNCS 197, pages 389-448. Springer-Verlag, 1985.

M. H. Brown. Algorithm Animation. PhD thesis, Brown University, 1987.

L. Cardelli and R. Pike. Squeak: A language for communicating with mice. In
Proceedings of the ACM SIGGRAPH 1985, pages 199-204, July 1985.

P. Cointe and X. Rodet. Formes: an object and time oriented system for music compo-
sition and synthesis. In Proceedings of the ACM Conference on Lisp and Functional
Languages, 1984.

R. B. Dannenberg. Arctic: A functional language for real-time control. In Proceedings
of the ACM Conference on Lisp and Functional Languages, pages 96—103, 1984.

J. F. DeSoi, W. M. Lively, and S. V. Sheppard. Graphical specification of user inter-
faces with behavior abstraction. In Proceedings of the ACM CHI'89, pages 139-144.
Addison-Wesley, 1989.

R. A. Duisberg. Animated graphical interfaces using temporal constraints. In Pro-
ceedings of the ACM CHI'86, pages 131-136, 1986.

D. Ingalls, S. Wallace, Y. Chow, F. Ludolph, and K. Doyle. Fabrik: A visual program-
ming environment. In OOPSLA’88 Proceedings, pages 176—190, Sept. 1988.

J. H. Maloney, A. Borning, and B. N. Freeman-Benson. Constraint technology for user-
interface construction in ThingLab II. In OOPSLA'89 Proceedings, pages 381-388,
Oct. 1989.

H. Miller, J. Winckler, S. Grzybek, M. Otte, B. Stoll, F. Equoy, and N. Higelin. The
program animation system PASTIS. Technical report, Universitit Freiburg, Institut
fiir Informatik, 1990.

B. A. Myers et al. Garnet, comprehensive support for graphical, highly interactive
user interfaces. IEEE Computer, pages 71-85, Nov. 1990.

G. G. Robertson, J. D. Mackinlay, and S. K. Card. Cone trees: Animated 3D visualiza-
tions of hierarchical information. In Proceedings of the ACM CHI'91, pages 189—194.
Addison-Wesley, May 1991.

J. T. Stasko. Using direct manipulation to build algorithm animations by demon-
stration. In Proceedings of the ACM CHI'91, pages 307-314. Addison-Wesley, May
1991.

K. Tatsukawa. Graphical toolkit approach to user interaction description. In Proceed-
ings of the ACM CHI'91, pages 323-328. Addison-Wesley, 1991.

J. U. Turner. A programmer's interface to graphics dynamics. In Proceedings of the
ACM SIGGRAPH 1984, volume 18, pages 263270, July 1984.

R. C. Zeleznik and al. An object-oriented framework for the integration of interactive
animation techniques. Computer Graphics, 25(4):105-113, July 1991.

