
Pen Computing for Air Traffic Control

Stéphane Chatty Patrick Lecoanet
Centre d’Études de la Navigation Aérienne Centre d’Études de la Navigation Aérienne

7 avenue Édouard Belin Orly Sud 205
31055 TOULOUSE CEDEX 94542 ORLY AÉROGARES

France France
chatty@cena.dgac.fr lecoanet@cena.dgac.fr

ABSTRACT
Modernizing workstations for air traffic controllers is a chal-
lenge: designers must increase efficiency without affecting
safety in any way. Air traffic control is a time-intensive and
safety-critical activity, and thus interaction efficiency and low
error rates are crucial. Classical interaction techniques have
been used in prototype workstations, but the resulting effi-
ciency is not always satisfactory. This leads designers to
consider more advanced interaction techniques. This paper
reports on the design and a preliminary evaluation of the first
prototype of project IMAGINE, which represents the second
generation of graphical interfaces for air traffic control. This
prototype, GRIGRI, uses a high resolution touch screen and
provides mark based input through the screen. The use of
gestures, as well as the use of multi-modal techniques, make
interaction faster, and closer to the controllers’ habits.

Keywords
Air traffic control, gesture recognition,mark-based input, pen
computing, touch-screen, direct manipulation, prototyping

INTRODUCTION
Air traffic control (ATC) is a fascinating application domain
for human-computer interaction research, but it is also very
challenging to interface designers. They face many difficul-
ties, especially since safety requirements are essential. First,
there are the requirements for the interface itself: low error
rates are necessary for obvious reasons and interaction ef-
ficiency is required to avoid fatigue and to improve safety
during periods of time-intensive work. Second, air traffic
controllers and their management are understandably cau-
tious about changing tools that affect hundreds of lives, and
tend to resist new technologies. Other reasons include the
need for finely tuned transition plans (the job must be done,
even when the system is being changed), the cost of learning
new procedures, and the cost of developinghighquality hard-
ware and software for a narrow market. Finally, even access
to end users is sometimes a problem. In France, for instance,
the number of air traffic controllers is often considered too
low to allow for secondary tasks such as designing future
systems. The consequence is that rather old technologies and
designs are still used in air traffic control centers. Direct

manipulation graphical user interfaces have been commonly
available for ten years. But the air traffic control rooms of
most advanced countries are still equipped with systems de-
signed in the 60s and 70s, that are more and more expensive
to maintain.

However, the need for new interfaces for air traffic control
is getting more and more perceptible. Air traffic has been
growing rapidly for the past ten years, and does not appear
to be stabilizing. The increased workload has so far been
balanced by a growth of the number of controllers (some-
times), and by growing individual workloads (most often).
If the traffic keeps growing, more computerized systems and
more efficient tools will be necessary. Despite the difficulties
mentioned earlier, most air traffic control agencies embarked
on projects based on graphical interfaces. The past ten years
have been spent applying technologies and techniques from
other application domains, identifying the specifics of ATC,
and developing solutions when necessary.

France has such a plan, which is reaching its final develop-
ment stage, and is aimed at replacing the current air traffic
control workstations within the next few years. This plan,
called PHIDIAS, makes heavy use of classical interaction
techniques, and most of its original features are to be found
in its hardware or low-level software components. PHIDIAS
provides a standard WIMP (windows, icon, mouse, pointer)
interface on two screens, one of which is very large. A lot of
work has been spent on identifying and solving the software
issues raised by such a large screen, and especially the man-
agement of many graphical objects moving independently. If
those technical issues have now been solved, a number of de-
sign choices made in PHIDIAS can still be improved, if only
because hardware, interaction techniques, and our knowledge
of ATC have improved over time. This article describes the
design of GRIGRI1, the first prototype in project IMAGINE,
which is a step toward the future generation of interfaces for
air traffic control. GRIGRI implements design choices very
remote from current designs, and finds its inspiration in pen
computing. Contrasting with the notepads that made pen
computing popular a few years ago, GRIGRI does not use
handwriting recognition, but only the recognition of simple
gestures, drawn with a pen or a fingertip. Those gestures
(marks) are performed directly on the surface of the screen,
thanks to a high resolution touch-screen. GRIGRI also uses
directmanipulation for some functions andmakes use of sam-

1grigri is a colloquial French word for scribble



Figure 1: An annotated flight strip

pled sounds to improve the confidence of users and to make
some interaction modes more explicit. Finally, the layout of
GRIGRI was designed to encourage two-handed interaction.

This article is organized as follows. The first section is de-
voted to a description of the ATC task and the current envi-
ronment of controllers. The second section identifies several
drawbacks in the use of classical user interface techniques.
The third section describes related work on gesture recog-
nition and pen based computing. The following sections
describe the design choices implemented in GRIGRI. The
last section reports on preliminary evaluations of the system.

Figure 2: The current radar screen

THE AIR TRAFFIC CONTROL TASK
Air traffic control is a domain that encompasses a number of
different tasks. We will focus here on the basic task of en-
route air traffic controllers. These controllers mainly guide
and monitor aircraft that follow airways, at a reasonable dis-
tance from airports. Airspace is usually divided in a number
of sectors, each of which is managed by a team of two or
three air traffic controllers. The most popular task is per-
formed by so-called radar controllers, who monitor aircraft
through radar screens and give vocal orders to pilots through
radio links.

Today’s radar screens are usually circular and monochrome.
They provide a top view of airspace, and represent each air-
craft with an icon showing its current position, smaller icons
showing a few of its past positions, a line representing its
speed, and a label containing its call-sign, speed, and alti-
tude (see figure 2). This display enables radar controllers to
identify problems, solve them in real time, and monitor the
implementation of the solution. In this process, they also ben-
efit from data about flight plans, that are printed on semi-rigid
paper strips, called flight strips (see figure 1).

The flight strips are printed by the computing systems a few
minutes before the estimated entry of an aircraft in the sector.
The planning controller, who assists the radar controller by
planning his work and managing the communications with
other sectors, grabs the strips as soon as they are printed.
Each strip is then inserted in the set of current strips, and the
planning controller signals possible problems through voice,
gestures, or layout conventions. The strips, which feature the
call-signs of aircraft, the altitude requested by their pilots,
and the planned route, are then used by the radar controller,
mainly as a reminder. Strips are gathered in groups according
to the current situation, and annotated with the orders given
to pilots, as shown on figure 1. Most annotations are codified
and documented in manuals. Finally, when an aircraft leaves
for another sector, the corresponding strip is thrown away, as
a sign that the radar controller may forget it.

LIMITS OF TRADITIONAL INTERACTION
When the plan for modernizing the French ATC workstations
was launched in 1986, one of the goals, as in other countries,
was to take advantage of new technologies in order to alle-
viate the workload of air traffic controllers. This goal had
immediate consequences, such as the use of color screens
to code information useful to radar controllers. It also had
indirect but major consequences. A number of ATC experts
placed hopes on intelligent tools that would help radar con-
trollers solve problems. But such tools need data that are
not available to the ATC system in its current state. For
instance, the system does not know which controller is in
charge of a given aircraft, because transfers are performed
through procedures based on voice. Consequently, the idea
of helping controllers quickly turned into the need formaking
them provide more data to the system. This is why they were
interested in turning paper strips into a graphical interface:
the information previously contained in annotations would
then be known to the system.

These goals, as well as the set of available techniques, have
had a strong influence on the design that was chosen for the
new workstations. The screen gained even more importance



and its size became critical. In addition to the radar image
which covers a 50 cmwide round screen in the current system,
the screen also has to display the new “electronic strips”, as
well as the potential intelligent tools. Air traffic controllers,
afraid ofmissing important information thatwould be hidden,
are generally opposed to overlapping windows. It was thus
decided to use screens as large as possible, namely 50 cm
wide square screens, featuring 2048x2048 pixels, developed
by Sony for the US FAA. But those screens are so large that
users must be seated far from them if they want to see the
whole contents. This immediately excluded any possibility
of direct interaction on the screen, and led designers to using
a mouse and classical interaction techniques: menus, buttons,
double clicks, etc. Studies were then focused on information
coding (colors, icons, etc) and on the software techniques
needed to efficiently display and move many objects on a
large screen.

Figure 3: Manipulating a flight strip through menus.

On this screen, the main interactive areas are the fields of
flight strips and aircraft labels on the radar image. Users may
manipulate them to store a new heading or altitude or select
an aircraft and display its route. All these manipulations re-
quire the designation of an aircraft or a strip, and the input of
a command and its other parameters. Several commands are
possible for nearly every active field (label, field of a label,
part of a strip). Among the classical interaction techniques,
menus seemed to be the most appropriate. But in order to
minimize the number of items without having to use cascad-
ing menus, it was decided to associate a different menu with
every field. For instance, figure 3 shows the menu associated
to the “heading” field of a strip.

The system that we just described is still being developed.
However, several design choices have been criticized by fu-
ture users. For instance, the manipulations on electronic
strips are considered slow and painful. It has been observed
that with today’s system, a controller writes an annotation
on a strip every 17 seconds [6]. With such usage frequen-
cies, manipulation times and the degree of attention needed
are very important. But manipulating menus is relatively
slow, and users have to pay attention to what they are doing.
Even worse, before selecting an item in a menu, a controller
has to click in a zone which is sometimes very small. This
increases manipulation times according to Fitt’s law. In the
case offlight strips, the decrease in performance is noticeable,
compared to manual manipulations that are often performed

in parallel with other tasks, without paying much attention.
With no simple solution to such problems, a number of users
ask for the status quo, and want to keep paper strips until the
time when alternative tools will make them really obsolete.

Even if electronic strips are discarded, manipulation times
will still be an issue for radar images, and for every tool pro-
vided by the ATC system. This leads us to exploring possible
solutions to that issue, by exploring new interaction tech-
niques. Gesture recognition and mark-based input through a
digitizing tablet or a touch screen look like a promisingdirec-
tion. Other techniques are also explored, among which are
speech recognition and computer vision. But gesture recog-
nition seemed mature enough to be proposed to air traffic
controllers for a medium-term implementation.

RELATEDWORK
Gesture recognition deals with the movements performed
with one’s hand, or any part of the body, with or without an
instrument (pen, glove, etc). The input parameters are the
successive positions of the tip of the pen, those of fingertips,
or the successive angles of articulations, for instance. The
devices used are pointing devices (mouse, digitizing tablet,
touch-screen), digital gloves and position locators, or video
cameras. Some of the techniques developed for 2D gestures
performed with a pen can be transposed to more complex sit-
uations like 3D gestures performed with a glove [1]. Among
those techniques, themost popular isRubine’s algorithm [12],
which incrementally computes geometrical features of ges-
tures, and uses statistical methods.

2D gestures, or marks, have been used in several ways in
graphical interfaces. In addition to obvious applications to
text input, gestures can be used to issue commands to the
system. Kurtenbach has studied the issues raised by mark-
based input, on the user’s aswell as on the system’s side [9, 8].
Piemenus [3], althoughapparently close to traditionalmenus,
are close to mark-based input, in that they use the orientation
of gestures performed by the user. T-Cube even chains pie
menus, thus associating each command to a broken line [13].
InT-Cube, menus are only displayed if the user hesitateswhile
issuing a command. Unistrokes [7] fit between handwriting
recognition and mark-based input. It models each letter with
a simplified letter composed of only one stroke, in the same
way as shorthand.

Pen computers, or notepads, which use the techniques men-
tioned above, have been popular at the beginning of the
decade [10]. One of the first widely available environments
was GO Corp’s PenPoint. Apple’s Newton uses handwriting
recognition and mark-based input, combined with high qual-
ity feedback. But handwriting recognition accuracy often
determines how such systems are accepted by users [5], and
it is still difficult to achieve a very high accuracy, especially
in countries where cursive writing is dominant, like France.
Graffiti, a commercial variation of Unistrokes by Palm Com-
puting, improves the accuracy and thus the usability of such
systems at the cost of learning a simplified alphabet.

Finally, it is interesting to note that French air traffic con-
trollers have been familiar with touch-screens for decades.
The Digitatron, introduced in the 60s, is a touch sensitive



alphanumeric screen with a low resolution. It gives access
to a videotext system, used for infrequent operations such as
checking which military zones are activated or modifying a
flight plan.

A FIRST PROTOTYPE
Asmentioned earlier, themanagement offlight strips is a good
candidate for mark-based input. The annotations written on
paper strips are made of numbers, and of simple and codified
marks. Moreover, annotations are frequent, and the expected
gain in time provides a good motivation. This led us to build
a demonstrator in order to check whether gesture recognition
was useful in this context. The proposed interface was based
on the proposed format for electronic flight strips, itself very
close to real flight strips. The recognized marks, made with
a pen on a digitizing tablet, were of two types. First, it
was possible to sort, group and shift strips, just as it is done
with paper strips. Then, the usual annotations performed
on paper strips were mimicked: highlighting of values by
underlining them, modification of values by striking them off
and writing the new ones, input of direct routes by drawing
arrows between beacon names.

This prototype of flight strip management was soon enriched
with a simplified radar imagemanipulatedwith gestures, so as
to check howwell the technique could be applied to interfaces
where the use of gestures was not as obvious as for flight
strips. This radar imagewas builtwith nobuttonormenu, and
every command was performed throughgestures. There were
gestures for zooming and panning, and for several operations
on aircraft and beacons.

The results of this pilot study were very encouraging, as well
as full of lessons. The lessons were related to the handling
of errors, the acceptance of the system by users, and the type
of applications that could easily take advantage of gesture
recognition.

Errors
Error rates were a major concern, because high error rates
would have meant that the technology could not be applied to
air traffic control in its current state: errors make interaction
slow and painful when they are noticed, and are dangerous
when unnoticed. Although we did not carry serious evalua-
tions at that stage of the project, the results were comforting.
Our worst concern was interpretation errors: one gesture rec-
ognized as another gesture. But such errors were rare. More
frequent were interpretation failures: gestures that could not
be related to any gesture class. Those failures were especially
numerous during the first contacts with the system. The ab-
sence of adequate feedback could induce users into errors and
decrease their confidence in the system.

Acceptance
During this pilot study, the way the prototype was accepted
by users was important: previous experience showed that full
studies are useless if air traffic controllers are not confident
about the system’s potential usefulness. Comfortingly, the
acceptance of the prototype by the first air traffic controllers
who tried it was good. They found most gestures natural and
fast enough, even when they had no equivalent in the current
ATC system. The gestures proposed to interact with the

radar image were especially well accepted, mainly because
of the low precision that is required to perform operations.
However, the physical setup, composed of a digitizing tablet
and a normal workstation screen, was frustrating to users.
They would have preferred a more direct interactionwith the
contents of the screen.

Potential applications
The use of gestures to interact with the radar image and the
contents of flight strips was appreciated. However, the inter-
face proposed for manipulating the strips themselves was the
cause of problems. Users, who took pleasure in being able to
use their pen again to annotate strips, were disappointed to be
unable to move them with their bare fingers. Moving strips
with a pen was far less natural. Moreover, the gestures for
moving strips often caused confusionwith gestures for anno-
tating them. For instance, downward moves were interpreted
as downward arrows when made close to a number represent-
ing a flight level. Consequently, we decided to discard that
interaction technique.

We used the lessons learned with this first prototype when
developing the prototype described in the rest of this article.
First, we investigated the set of available hardware allowing
direct interaction on the screen, either by projecting images
on a digitizing tablet (like Rank Xerox EuroPARC’s Digital
Desk [14]), or by using touch-screens. Second, finding no
simple solution for moving flight strips around, we decided
to concentrate on radar images, leaving flight strip manage-
ment for future research. Finally, we paid more attention to
feedback during interaction.

Figure 4: The physical setup of GRIGRI

THE PROTOTYPE GRIGRI
Using our first results, we developed a second version of
the system, devoted to more systematic evaluations with air
traffic controllers. This version, described below, offers a
more complete interface and set of functions than the first
prototype, so as to allow more realistic tests.

The physical setup of our prototype uses a touch-screen. It
includes a color screen built in the surface of a desk with



an angle of approximately 30 degrees (see figure 4). The
screen is covered with a high resolution touch sensitive layer,
that can be used with a pen or a fingertip. It is used to
display a radar image and a bar of controls, as shown on
figure 5. Depending on their type, commands are issued
through the bar of controls, through gestures on the radar
image, or through longer direct manipulation interactions.

Figure 5: The screen of GRIGRI

Contents of the screen
For the reasons explained earlier, GRIGRI only features a
radar image, and no flight strips. Our purpose is that eval-
uations yield results about mark-based input only, without
introducing perturbations due to design choices in strip man-
agement. For similar reasons, the proposed radar image is
not much different from radar images offered by PHIDIAS
and its earlier prototypes. Controllers are familiar with their
design, and we did not want to add novelties that would have
changed their perception of the system. The radar image is
thus composed of a plain background on which appear air-
ways and restricted zones, represented by lines and polygons
of a different color. Aircraft nearly have the same representa-
tion as on today’s radar screen: icons for the current and past
positions, a segment for speed. Labels are similar to those
of PHIDIAS: they contain several text fields displaying the
call sign of the aircraft, its speed, its flight level, etc. The
label can be further enriched on demand, by displaying data
from the flight plan of the aircraft: destination airport, route,
etc. Users can also obtain graphical representations of routes
on the display. Finally, the bar of controls on the side of the
screen provides a number of global commands.

Global commands
Most commands offered by air traffic control interfaces are
related to a given aircraft. Only a few commands are global to
the radar image, and make it possible to change parameters of
the display: filters to display only certain categories offlights,
zoom factor, panning, length of speed vectors (expressed in
minutes of flight), etc. Though we plan to return to real
hardware buttons and knobs for a number of those parameters,
we offered the corresponding controls in the form of software
buttons, grouped in a bar on the side of the screen. The size

of those buttons is large enough to allow fast manipulations
with fingertips, without having to use a pen. We laid them on
the side of the screen in order to studywhether users would be
tempted to use their non-dominant hand for pressing them.
With this design, we hoped to observe a specialization of
hands, the non-dominant one dealing with secondary tasks,
and the dominant one being dedicated to fine manipulations
on aircraft representations.

Mark-based commands
Most commands concerning a given aircraft are simple opera-
tions, for which one needs to specify the aircraft, the operation
to be performed, and one or two additional parameters (field
to be highlighted or modified, type of warning, etc.). When
those parameters can have many values, special interactions
will be necessary. But in other cases, the number of possibili-
ties is low enough to code each combination of operation and
parameters by a mark. For instance, controllers highlight the
flight level or the heading of an aircraft to register the fact that
the valued was confirmed to the pilot. This highlighting op-
eration can be designed in two ways. It is possible to go for a
unique, generic command, by assigning a specific behaviour
to every field representing a value. It is the choice made in
PHIDIAS: users click on the field they want to highlight, thus
making a menu appear, and choose the appropriate item in
the menu.

With mark-based input, another choice can be made: do
not specialize fields, but have several marks for the same
operation, and have each mark code for a field. For instance,
instead of having a mark for the command “modify a field”,
that can be applied to anyfield, let us have a mark for “modify
speed”, a mark for “modify flight level”, and so on, with
the meaning of a mark being independent from the location
where it is issued. This design choice yields a growth of the
number of commands that must be learnt (about 15 different
marks). But it dramatically lowers the constraints imposed on
users, because gestures can be started anywhere on the label,
and their sizes may vary much more. This choice allows us
to expect a better efficiency in interaction, at the expense of
some training, which is acceptable for professional users such
as air traffic controllers.

However, even if we were confident that specific gestures
were a good solution, we also implemented generic com-
mands as an alternativeway of performing operations. Those
generic commands (modify, highlight) are interpreted accord-
ing to the field on which they are performed. Doing this, we
allowed users to choose the interaction style they preferred,
thus getting some hints about whether our reasoning was
right. The set of all possible gestures is shown in figure 6.

To recognize gestures, GRIGRI uses Rubine’s classifying al-
gorithm. This algorithm can classify gestures composed of
a single stroke, and involves an individual training period.
For each class of gestures, each user provides about fifteen
examples, using a tool described later in this article. Dur-
ing this training, the geometrical features of each gesture are
extracted, and are used to produce a dozen features that are
significant of the class. Later, when using the system, the
same features are extracted from every gesture drawn, and
compared to those of the defined classes. The classifying



change T
flight level

change
speed

change C
flight level

change
heading

enter
route

assume
control selectset

warning

alarm erasehighlight

zoom

change

pan undo

Figure 6: The set of gestures recognized.

algorithm identifies the class whose features are closest, or
yields a recognition failure if the confidence ratio is too low.
Classification is very fast (a few milliseconds), and response
times are not perceptible by users. Having noticed that recog-
nition failures had to be quickly and clearly signaled to users,
we had to devise appropriate feedback. Considering that
the visual channel was already very busy, we added sound
capacities to GRIGRI. Two sampled sounds are used: one
signals recognition failures, and the other signals gestures
that are correct but meaningless at the place where they are
performed. However, we did not use sound for successful
operations yielding an immediate visual feedback, so as to
restrict the use of sound to situations where it is necessary.

Long interactions
Some commands of GRIGRI involve the input of numerical
or geometrical data, and cannot be implemented as a simple
gesture or a button click. In the current version of GRI-
GRI, there are four of those “long interactions”: heading
input, warning input, flight level or speed input, and zoom-
ing. Heading and alarm input are triggered by a gesture on
the label of an aircraft. Then begins an input sequence using
classical techniques of direct manipulation: rubber band for
headings, and palette for alarms. Input of flight levels and
zoom are more complex.

To enter a flight level, one needs to specify an aircraft, the
operation itself, and the new value. These data are entered as
follows: Like other operations, the command begins with a
gesture on the label of the appropriate aircraft. Then GRIGRI
opens a window that allows the user to enter the new flight
level. In many regions of airspace, only a few values are
acceptable (330, 350, 370, 390, for instance), and PHIDIAS
proposes to enter the new value through a menu, allowing
itself to propose a default value. However, a number of air
traffic controllers have to deal withmany more possibleflight
levels, which makes this solution less acceptable. What we
implemented in GRIGRI is the recognition of hand written
numbers, in order to compare the efficiency of the two tech-
niques. The input window has its own gesture classifier,
independent from the one which is used in the radar image. It
recognizes the ten digits (drawn with a single stroke) as well
as gestures for correction and validation. The input window
is fairly large, so as to let users write at their preferred size.

In order to avoid masking a large portion of the radar image
for tool long, this window is semi-transparent, after Xerox’s
see-through tools [2] (see figure 7).

Changing the zoom factor involves a more classical type of
interaction. The user first needs to go into zoom mode;
this is done with a gesture, or by pressing a button in the
bar of controls on the side of the screen. Then, the image
is stretched or condensed by moving the pen outward or in-
ward; the system goes back to normal mode when the user
lifts the pen again. The two ways of starting the operation
have been implemented becausewe hoped to identifywhether
users preferred to use a button or a gesture. We also hoped
to induce users into using forms of two-handed interaction:
the bar of controls is located on the side of the non-dominant
hand, while the pen is usually held in the dominant hand.
This is a situation where using two hands may be useful:
the non-dominant hand rests on the border of the screen and
presses buttons on demand, while the other hand stays where
the attention of the user is focused, and keeps holding the
pen. Even though it is impossible to perform parallel ac-
tions with current touch-screens (which might be a problem,
as described in [4]), we wanted to assess whether a purely
sequential operation was possible.

Figure 7: Entering a flight level

Finally, conscious that long interactions place the system in
modes that should be made explicit to the user, we decided to
use sounds. When the user starts a long interaction, or when
the action is terminated, the system produces a fairly long
sound of the kind which is usually associated to transitions,
teleportations in science fictionmovies, for instance. Though
we have not yet planned to test the usefulness of such sounds,
we believe they have a significant role in the perception users
have of the results of their actions. However, air traffic
controllers are still very cautious about sound, and this will
need to be studied more closely.

Training
The algorithm we use for gesture recognition has a learning
phase. Training has to be done for each user, even when
the gesture set is fixed, which is the case for GRIGRI. This
is partly because the dynamics of a gesture may vary, even
if the result looks the same, and partly because complex
gestures, such as digits, vary a lot. Although we could have



used gesture editors that were already available, we decided
to develop a new one, specific to our system, for several
reasons. First, we wanted tomake sure that the size and shape
of gestures would not change between the learning phase and
the evaluation phase, and we thought that the context, and
especially the size of aircraft and labels, had a role. We also
knew that the learning phase would be the first exposure of
our users to GRIGRI, and we wanted to use it as a training
period for them as well. Finally, we had noticed during the
earlier experiments that gestureswould varywhen drawnnear
the edges of screen. Taking this into account, our training
system makes users draw gestures in different locations of
the screen, thus feeding the algorithm with all variations of
gestures.

IMPLEMENTATION
GRIGRI was implemented on a Sun SPARCstation, with a
software and hardware environment adapted to our needs.
Only the screen of the workstation is accessible to users: the
mouse was removed, and the keyboard is used by observers
during tests. The screen is the standard screen of Sun work-
stations, attached to a custom made table. The input device is
a resistive layer held between the screen and its frame, with
a resolution of about 200 dots per inch.

Our system uses the X Input extension to the X Window
System distributed by MIT, which had to be modified to suit
our needs. With these extensions installed, the touch-screen
replaces the mouse for every purpose. Gesture recognition is
based on Rubine’s algorithm, in its C version. The software
layers that feed positions to it had to be modified to account
for the slight unevenness of the screen that caused the pen
to bounce. Rebounds were interpreted as the end of a mark
and the start of a new one, which led to many interpretation
failures. We introduced a time-based filter that removes most
of those parasitic events.

GRIGRI was built using a hybrid prototyping environment
developed at CENA. This environment is based on a public
domain Scheme interpreter: time-intensive functions are pro-
grammed in C and exported as primitives of our environment,
while most of the system is programmed in Scheme. This ap-
proach, similar to that of Tcl [11], combines the efficiency of
C with the flexibility of an interpreted language, and proved
very useful for prototyping. In GRIGRI, the most important
primitives used are the gesture recognition algorithm and a
graphical widget dedicated to animated interactive images.

EVALUATION
One of the main motivations in developing GRIGRI was to
perform systematic evaluations with professional air traffic
controllers in a semi-realistic environment. Those experi-
ments, which are currently under way, have several phases.
The first phase of tests relied on CENA staff as users. While
not using the time of air traffic controllers, which is an ex-
pensive resource for us, those tests allowed us to identify and
eliminate several design mistakes. They also helped us to de-
sign a training scheme for our new users. This first phase was
sufficient to discover the drawbacks of our hardware setup.
The worst problem was that the screen was too high above
the working surface, thus provoking arm strain. This strain
is aggravated by the fact that users cannot rest their wrists

on the surface of the screen while interacting with the sys-
tem, because that would confuse the touch-screen. Another
problem is the thickness of the touch sensitive layer, which
introduces parallax errors, that were identified as the cause
of many out of context gestures: the user wants to highlight
a field, but draws the corresponding mark on the background
of the screen. Identifying this problem allowed us to adapt
the measures that were taken during the next evaluations, and
eventually led us to implementing a partial software correc-
tion. These defects did not prevent ourfirst users fromquickly
getting used to the system. But this fast familiarization with
the system also had a severe drawback: users immediately
understood how the system worked, and soon wanted to use
it like real pen and paper. This led them to increase their
manipulation speed too much, and to produce many interpre-
tation failures and errors, which was disappointing to us. We
now prevent them from this disappointment by explaining
the limits of the system at the first contact, before the first
manipulation.

The second phase of the project, which is currently being car-
ried out, is done with volunteer air traffic controllers. It is a
first evaluation of how the system is accepted by controllers,
as well as a means of getting data on how well the system
works and how it is used. The obtained data will then be
interpreted and used to improve the system, if it is considered
promising. Other goalswill then be set for the next evaluation
phase, so as to understand better and better how this technol-
ogy can be used in air traffic control systems. GRIGRI is
evaluated by having it used in semi-realistic conditions by a
radar controller. Simulated traffic is fed to the system and
displayed on the radar image, while the controller is linked
to pseudo-pilots through a simulated radio link. Measure-
ments begin after one hour of simulation. What is observed
is the way the radar controller interacts with the workstation.
Some data is obtained by observing users and conducting in-
terviews after every simulation. But the most objective data
is obtained through the system itself, which is instrumented
to output it. Among those data are the number of times ev-
ery command is used, the frequencies of several types of
errors, manipulation times, and even the trace of every ges-
ture. Some errors which are difficult to detect automatically
(errors on digits, for instance) are registered by an observer
through the keyboard of the workstation.

This second phase involved 12 volunteer air traffic con-
trollers. The data obtained during this phase is currently
being interpreted, and only rough data are available. The first
results, however, are very encouraging. The perception of
the system by users is generally good, and they consider it as
a potential alternative to classical interaction techniques, if it
can be made reliable. The figures are encouraging as well.
Out of a total number of 5200marks drawn by the 12 users,we
observed about 5%of gestures out of context, 5% of interpre-
tation failures, and 1.3% of interpretation errors. Of course,
these numbers will have to be interpreted, and the nature of
interpretationerrors and their impact willbe studied carefully.
But they prove that mark-based input is an option that can
be considered further in the context of air traffic control. We
already have indications that these figures can be improved
easily. For the first six users, for instance, parallax errors



accounted for half of the marks drawn out of context. Those
parallax errors have then been partially corrected by applying
a geometrical transformation to the coordinates provided by
the touch-screen. They would even probably disappear with
a more appropriate device, using overhead projection for in-
stance. Similarly, half of interpretation failures have been
identified as caused by technical problems that we should be
able to solve (rebounds still poorly handled, or insufficiently
sampled gestures). After devising and applying solutions, we
will still have to determine whether the resulting error rates
are satisfactory, or if they can be further improved by other
means. However, even with the current 90% accuracy, our
users accepted the system well, probably because of the low
cost of mistakes: redoing a mark is fast enough.

Although we have gathered a lot of data that will help us
to improve the system (for instance by taking into account
the probability of each command according to the context),
our experiment will not allow us to evaluate all the design
choices made in GRIGRI. For example, we will have to de-
termine whether users discarded generic gestures (such as
the straight line associated to "modify") because they forgot
about their existence, as they put it, or because of other rea-
sons. Similarly, there were too few zoom actions (two) to
gather any evidence about two-handed interaction. Finally,
we now need to measure manipulation times with PHIDIAS
in order to be able to compare themwith the ones we obtained
with GRIGRI.

Whereas some expected results are missing, we also made
unexpected observations, that will have an influence on fu-
ture research. For instance, we discovered that controllers
liked the fact that two of them were able to share a screen,
talk over it, and interact with it one after another without
having to exchange mice. This opens new perspectives in the
management of the collaboration between a radar controller
and a planning controller. Such properties of the system will
be studied in future phases of experimentation. Doing this,
we hope to progress in our understandingofmark-based input
while proposing a system that will be more and more usable.

CONCLUSION
We have described in this article the reasons why we con-
sidered mark-based input as an interaction technique for air
traffic control. We have explained the choices made while
designing an experimental workstation based on that tech-
nology, and we have described the most significant technical
issues encountered. Finally, we have given first evaluation
results that make us confident regarding the possible appli-
cations of pen computing to air traffic control. Nevertheless,
as we explained in the introduction of this article, there are
many obstacles when designing interactive systems for a do-
main such as air traffic control. The techniques that we are
studying have only been through the first of those obstacles.
Then, if they prove worthwhile, they will have to be inte-
grated in a full size workstation. They will also have to be
tested with air traffic controllers under stress; the fatigue in-
duced by their use will have to be measured; their impact on
the collaboration between a radar controller and a planning
controller will have to be studied. A number of social issues
will also probably appear. It takes all that to apply new tech-

nologies to our environment where efficiency and safety are
so important.

ACKNOWLEDGMENTS
Thefirst version ofGRIGRIwas developedbyGwenaelBoth-
orel, using previous work by Thomas Baudel (LRI, Orsay).
The current version was built with Jean-Luc Dubocq and
Frédéric Lepied. Christophe Mertz supervises the evalua-
tions that are being carried. Thomas Baudel and Wendy
Mackay provided helpful comments and helped with English
grammar.

REFERENCES
1. T. Baudel and M. Beaudouin-Lafon. Charade: remote
control of objects using free-hand gestures. Communi-
cations of the ACM, pages 28–35, July 1993.

2. E. Bier, M. Stone, K. Fishkin,W. Buxton, and T. Baudel.
A taxonomy of see-through tools. In Proceedings of the
ACM CHI, pages 358–364. Addison-Wesley, 1994.

3. J. Callahan, D. Hopkins, M. Weiser, and B. Shneider-
man. An empirical comparison of pie vs linear menus.
In Proceedings of the ACM CHI, pages 95–100, 1988.

4. S. Chatty. Extending a graphical toolkit for two-handed
interaction. In Proceedings of the ACM UIST, pages
195–204. Addison-Wesley, Nov. 1994.

5. C. Frankish. Recognition accuracy and user acceptance
of pen interfaces. In Proceedings of the ACM CHI,
pages 503–510. Addison-Wesley, 1995.

6. C. Garoff-Mercier andM. Chollet. Analyse de l’activité
des contrôleurs du trafic aérien : utilisationdes vecteurs
d’informationet des communications. Technical Report
R90-07, Centre d’Études de la Navigation Aérienne,
1990.

7. D. Goldberg and C. Richardson. Touch-typing with a
stylus. In Proceedings of the ACM CHI, pages 80–87,
1993.

8. G. Kurtenbach and T. Baudel. Hypermarks: issuing
commands by drawing marks in Hypercard. In CHI’92
Posters and Short Talks, page 64, 1992.

9. G. Kurtenbach and W. Buxton. Issues in combining
marking and direct manipulation techniques. In Pro-
ceedings of the ACM UIST, pages 137–144, 1991.

10. A. Meyer. Pen computing. A technology overview and
a vision. SIGCHI Bulletin, 27(3):46–90, 1980.

11. J. K. Ousterhout. Tcl and the Tk toolkit. Addison-
Wesley, 1994.

12. D. H. Rubine. The automatic recognition of gestures.
PhD thesis, Carnegie Mellon University, 1991.

13. D. Venolia and F. Neiberg. T-Cube: a fast, self-
disclosing pen-based alphabet. In Proceedings of the
ACM CHI, pages 265–270, 1994.

14. P. Wellner. Interacting with paper on the Digital Desk.
Communications of the ACM, 36(7), July 1993.


