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Abstract. Producing formal descriptions of low level interaction is necessary to
completely capture the behaviour of user interfaces and avoid unexpected
behaviour of higher level software layers. We propose a structured approach to
formalising low level interaction and scaling up to higher layers, based on the
composition of transducers. Every transducer encapsulates the behaviour of a
device or software component, consumes and produces events. We describe
transducers using a formalism based on Petri nets, and show how this
transducer-based model can be used to describe simple but realistic applications
and analyse unexpected defects in their design. We also identify properties that
are meaningful to the application designer and users, and show how they can be
formally checked on a transducer-based model of the application.

1. Introduction

The problem of applying formalisms to user interface construction has been an open
issue for several years now. The goals are clear to all: i nteractive software is complex,
and formalisms would help mastering that complexity by providing HCI designers and
programmers with a common and precise language, and by allowing formal
verifications of the behaviour of their software. However, no formal approach has
been fully successful yet, and some even wonder whether a unique formalism will ever
permit a full description of an interactive system [32] which leads to a wide variety of
partial approaches. Some focus on the early stages of the design process such as
requirements elicitation and analysis or early specification [15, 28, 25, 26] other on
the elicitation of domain related properties [14]. Others describe the dialogue
component of applications, making the reasonable assumption that low level
interaction components have been taken care of by some error-free industry developer
such as all the work done on the formal design of WIMP interfaces relying on the set
of predefined interaction objects [5, 34, 35].
In any case, we believe that low level interaction cannot be ignored by formalisms and
left to programmers and their craftsmanship. If a unified formalism ever exists, it will
have to describe actions to their finest level of detail . And if several formalisms have
to be used, one will have to be devoted to sequences of low-level events and the way
they propagate to higher layers of software. We see several reasons to that opinion.
First, as mentioned in [1], we observe that direct manipulation styles such as those
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used in the Macintosh Finder do not rely on widespread reusable widgets. Actually,
they use supposedly simple programming techniques, which are undocumented and
misunderstood by many programmers and even by some HCI software researchers.
Furthermore, most new direct manipulation styles that are currently being devised are
not obtained by combining existing styles: they involve new handling schemes for low
level events such as button presses and moves, time-outs, or key presses. We thus
consider that languages and methods are necessary to design and reason about those
new interaction styles.
Our second reason is more disturbing to software engineering researchers. Many
programmers have been confronted to evidence that minor and unspecified behaviours
of low level software or hardware components can dramatically affect the behaviour
of their software system as perceived by users. For instance, we all think we know
what a keyboard is and what is behaviour is: every key can be pressed then released.
Then how comes that on some workstations, the key "3" is ignored when the keys "1"
and "2" are held down1? What happens if those keys are mapped to actions that are
supposed to be performed simultaneously, such as playing notes on a synthesiser,
firing multiple guns in a video game, or showing different representations of data on
an air traff ic control workstation? We argue that one cannot predict the behaviour of
an interactive application without a precise specification of all it s hardware and
software components.
Finally, we take the point of view that formalisms are the most useful when integrated
with production tools such as UIMSs, toolkits or user interface description languages.
Therefore, it is important that formalisms manipulate the same notions as toolkits. As
of today and as far as highly interactive interfaces are concerned, those notions are
limited to graphical objects, events, and event handling schemes such as callbacks or
interactors.
Those reasons have led us to work on formal models for low level interaction, with the
goal of producing a UI toolkit that manipulates formal notions. This brought to us a
number of problems that can be generalised to other approaches: how can a formal
description be structured in readable and reusable modules? what are the meaningful
properties to be checked over a model?
In this paper, we outline a formal model that allows a modular description of
applications while taking low-level interaction into account, down to the behaviour of
models. Formal transducers encapsulate the basic behaviours involved in an interface:
devices (mouse, keyboard, etc.), behaviours of graphical objects (click, drag, etc.),
and behaviours of the functional part of the application, when applicable. Transducers
consume and produce events. They can be combined in a client-server fashion. Each
transducer exports a formal description of its behaviour; in this paper, we use a dialect
of Petri nets for those descriptions: timed Petri nets. Such a formal declaration of
behaviour allows consistency checks when connecting two transducers. It also makes
it possible to observe how the actions of the user are successively translated, and to
detect wrong assumptions that are made when using lower level components.
A lot of work has been devoted to devices and can be mainly classified in the
following categories:

                                                          
1 This precise behaviour can be easily observed on SUN Sparc 10 workstations
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• classifying devices [10]
• understanding of devices [21]
• building of transducers for managing low level events produced by physical

devices [1, 11]
• assessing usabilit y of devices according to task [8] and more generally tasks and to

users' cognitive capabiliti es [22]
• evaluating the performance of input devices [2], [19].
This paper belongs the third category as its aims are:
• to propose a formalism allowing designers to describe the behaviour of physical

devices,
• to propose a formalism allowing designers to describe the behaviour of high level

modules (called transducers) extending the set of events offered by the device,
• to propose a model and tools for building application from transducers,
• to define a set of properties that characterise transducers.
This is significantly different from the work of [11] as it fits in a more generic
framework based on object oriented concepts, properties of transducers and has been
directly implemented. However, due to space reasons the implementation is not
presented in this paper.
The paper is organised as follows. The next section gives a outline of formal
transducers, that are exempli fied in section 3. We then analyse a simple but realistic
application, which highlights how bad assumptions on low level transducers may lead
to unexpected software failures. We also show how transducers may exhibit
undesirable properties for certain purposes. We identify some of those properties, and
show how they can be checked.

2. Formal Transducers

Most computer interfaces today are event-driven, and part of the job of designers is to
manage the event flow produced by the user's interaction with physical devices. But
managing all the possible combinations of event occurrence is hardly thinkable,
especially considering the increasing complexity of systems (e.g. multimodal
interaction). One possible solution to solve this issue is to supply designers with a
formalism and an associated methodology, that would assist them in describing
unambiguously the behaviour of the interface. However it is possible to model such
complex behaviours using formal specifications, they unfortunately quickly get
incredibly complex, and some research has still t o be done on software engineering for
formal models in order to supply designers with tools and methods to organise their
work. Among the methodologies still t o be explored, we believe that an object-
oriented approach to formal specification of user interfaces is among the most
promising ones. The diff iculty in such a design approach is not only to define formally
the behaviour of the objects but also to define the system modules and the rules to
connect them. Even though this problem has been identified for a long time and
description techniques are available such as Pre and Post conditions [29], statecharts
[6] or using object-oriented Petri nets [30], work has still t o be done to build a
convenient software architecture (to favour reusabilit y through encapsulation) and a
methodology to help designers to organise their work.
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As this research work is directed towards air traff ic control (which is a critical domain
regarding system security) we are very concerned with the validation of interactive
systems. This validation mainly consists in the proof of some pertinent properties on
the system. Splitti ng an application in a set of cooperating transducers makes easier
the analysis of properties as they can be checked separately on each model.
Besides, it is important to characterise transducers according to the way they process
events. We give hereafter three properties for transducers: chatty, sly and regular. In
the next section we will show that a chatty transducer may introduce malfunctions in
some applications and not in other ones, depending on the set of events used by the
application. However, no such malfunction can occur with a regular one.
The Accepted Stream (AS

T
) of a transducer T = (I

T
, O

T
, PN) is defined by:

Let L(PN; M) be the language defined by all the possible firing sequences of
transitions of PN
Let T

r
 be the set of transition of PN and T

e
 be the subset of transitions of T

r

that feature an event place (grey circle in the Petri net)
AS

T 
= L(PN; M) | T

e 
(| means the mathematical restriction)

AS
T
 defines all the possible sequences of input events that can be processed by the

transducer T.
The Produced Stream (PS

T
) of a transducer T = (I

T
, O

T
, PN) is defined by:

Let L(PN; M) be the language defined by all the possible firing sequences of
transitions of PN
Let T

r
 be the set of transition of PN and T

p
 be the subset of transitions of T

r

that feature an action part producing events (transition with the Post(event)
actions)
PS

T 
= L(PN; M) | T

p 
(| means the mathematical restriction)

PS
T
 defines all the possible sequences of output events that can be produced by the

transducer T.
A transducer T is said chatty (there is production of information during the filtering) if
and only if:

∃ ∈ ⇒ >event I PS event AS eventT T T( ) ( )
This means that the transducer T is producing more events of the type of
input event than it has received.

A transducer T is said sly (there is loss of information during the filtering) if and only
if:

∃ ∈ ⇒ <event I PS event AS eventT T T( ) ( )
This means that the transducer T is producing less events of the type of input
event than it has received. In that case, information is lost

A transducer T is said regular (there is no production and no loss of information
during the filtering) if and only if:

∀ ∈ ⇒ =event I PS event AS eventT T T( ) ( )
This means that the transducer T is producing exactly as many events of any
type it has received. However, it is possible for it to produce events of a
different type as the transducer of Fig. 2 produces repeat events.
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3. Formal Transducers and the Keyboard

This section aims at describing the actual behaviour of a physical device keyboard.
The behaviour of this device is quite simple as it only consists in translating user's
actions on the keys into low level events. In order to provide more interesting events
the keyboard is coupled with a software transducer that interprets and enriches these
low level events. The next section describes the formal model of the keyboard.
Section 3.2 presents a formal specification of a transducer describing precisely how
low level events are consumed and which higher level events are produced according
to software designers' needs. The last two sections describes how these formal
specifications can be used to prove properties on the models.

3.1 The Formal Model of the Device Keyboard

Fig. 1 describes the behaviour of a key using high level Petri nets [24]. When
modelli ng with Petri nets, a system is described in terms of state variables (called
places, depicted as elli pses) and by state-changing operators (called transitions,
depicted as rectangles), connected by annotated arcs. The state of the system is given
by the marking of the net, which is a distribution of tokens in the net’s places. In
coloured Petri nets, the tokens assume values from predefined types, or colours. State
changes result from the firing of transitions, yielding a new distribution of tokens.
Transition firing involves two steps: (1) tokens are removed from input places and
their values bound to variables specified on the input arcs, and (2) new tokens are
deposited in the output places with values determined by emission rules attached to
output arcs. A transition is enabled to fire when (1) all of its input places contain
tokens, and (2) the value of those tokens satisfy the (optional) Boolean constraints
attached to the input arcs.

Po st (D o w n ,k)Po st (U p ,k)

K e y Id l e

K e y P re sse d

<Rele ase, k> <Pres s, k>

Releas e Pres s

Fig. 1: Formal model of a key

The model of Fig. 1 is made up of two places modelli ng the two possible states of a
key (pressed or released). The actual state of the key is fully stated by the token in the
place KeyIdle stating that the key is not in use. From that state the user can press the
key, that will t rigger the transition Press thus removing the token from the place
KeyIdle and setting it into the place KeyPressed. The connection between the
transition and the user's action on the device is represented by the broken incoming
arrow with the tiny grey circle.
As all the keys (except the modifiers such as ALT, CTRL and SHIFT) are
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independent, the behaviour of the keyboard is exactly the sum of the behaviours of all
its keys. Thus the modelli ng of the behaviour of the keyboard can be done by adding
one token for each key. However, it is important to differentiate the keys as rendering
actions associated to keys might differ (this is the case for example in text editors).
This is modelled using coloured tokens in the Petri net. In the following of the paper
we shall represent all the keys of a keyboard using coloured tokens. In order to be
exhaustive we should have represented as many coloured tokens as there are keys on
the keyboard but for readabilit y reasons only few tokens are displayed.
Each time a key is pressed, the device emits an event down along with the
identification number of the key that has been pressed. Each time a key is released the
device emits an event up. This is represented in the model of Fig. 1 by the action part
of the transitions where the function Post is invoked with the corresponding
parameters.
A transducer T = (I

T
, O

T
, PN) is defined by:

1. I
T
 be the set of input events received by the transducer

2. O
T
 be the set of input events produced by the transducer

3. PN the high level Petri net describing the behaviour of the transducer
The keyboard LL is a transducer between user's actions and low level events
produced. It corresponds to a filtering function (F0) and can be defined as follow:

Let Key be the set of keys of the keyboard.
1. ∀ ∈k Key , I

LL
 = { (Release, k), (Press, k)}

2. ∀ ∈k Key , O
LL

 = { (Up, k) , (Down, k)}

3. PN = the high level Petri net of Fig. 1

3.2 The Formal Model of a Transducer

The low level events produced by the keyboard are aimed at being used by software
systems. However, most of the applications are interested in a set of richer events. For
example the fact that the user is holding a key is usually relevant to the semantics of
the application.

Post(D ow n,k ) Post(Up,k )Post(Up,k)

<k>

<k> <k>

<D ow n , k>

Id le

<U p , k><U p , k>

K e y P re sse d

<k>

Post(Repeat,k)

Post(Repeat,k)
d e la y :t 1

d e la y :t 2

<k>

<k>

<k>

<k>

<k>

<k>

R e p e a t i n g

T1 T2 T3

T4

T5

Fig. 2: Formal model of the high level events transducer

The Petri net in Fig. 2 describes such a transducer. In addition to the low level events,
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a higher level event named repeat is produced by the transducer in order to represent
the holding of a key by the user. The repeat event is related to temporal manipulation
of keys. Two different temporal aspects can be taken into account:
• white transitions (as previously) that fire as soon as they are enabled (i.e. there is at

least a token in each of their input places), they are called immediate transitions.
• greyed out transitions are associated with a delay. The semantic of these transitions

is of Generalised Stochastic Petri Nets [3]. When a token is set in the place
KeyPressed a timer associated to the token is started by the transition T4. If the
token is still t here after t1 seconds (the delay associated to transition T4) then T4
is fired. If within these t1 seconds an event up occurs then the transition T1 is fired
and the timer associated to the token is destroyed2.

• a first delay (t1) is used to differentiate between briefly pressing a key and holding
it. The transducer waits during t1 seconds before a repeat event is emitted.

• a second delay (t2) corresponds to the delay between the production of two repeat
events.

With respect to the keyboard model of Fig. 1 the transducer above models another
state for a key represented by the place Repeating. The two delays t1 and t2 are
associated to the timed transitions. If the user quickly releases the key (before t1
seconds) then the key returns to its initial state (Idle) before the first timed transition
has been fired. The loop including the second timed transition represents the repetitive
production of repeat events when the user holds down a key.
The filter HL is a transducer between low level events produced by the keyboard and
higher level events. It corresponds to a filtering function (F1) and can be defined as
follow:

Let Key be the set of keys of the keyboard.
1. ∀ ∈k Key , I

HL
 = O

LL
 = { (Up, k), (Down, k)}

2. ∀ ∈k Key , O
HL

 = { (Up, k) , (Down, k), (Repeat, k)}

3. PN = the high level Petri net of Fig. 2

3.3 Formal Analysis of Models

The use of a formal notation for describing transducers and input devices allows us to
perform formal analysis on these models. Using analysis techniques it is possible to
check generic properties of good allowing to assume the good functioning of the
models but also to verify properties specific to the considered application.
This section concentrates on the generic properties such as liveness, reinitili sabilit y,
boundedness. Specific properties will be explicited and proved on the application
described in section 4. As the transducers are supposed to be used repetitively it is
important to be sure that they are reinitialisable, i.e. it is always possible to find a
sequence of actions that put the transducer back to its initial state. As transducers are
used very often it is also important to be sure that they are not over producing

                                                          
2 This semantics is quite different from classical timed Petri nets as there is no duration
associated to transitions i.e. a token is not held by a transition but always remain in a place.
However, if there is no immediate transition the semantic is the same as the one of T-Timed
Petri nets [31]
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information and that they do not feature dead branches i.e. part of the specification
that can become unreachable. Using Petri nets this can be proved by checking
conservative and repetitive components [27].

Analysis of the transducer. The transducer of Fig. 2 is live (there are no dead
branches in the specification), bounded (they consume as many resources as they
produce, and vice-versa), and reinitialisable as there is always a sequence of actions
that can lead the model back to the initial state. We detail hereafter the calculus of the
these properties.
Conservative components are sets of places for which the number of tokens remains
the same as the one of the initial state whatever sequence of transition is fired. In the
model of the transducer there is only one conservative component which includes all
the places of the model. Thus the sum of tokens in all the places of the nets remains
constant and equal to the number of tokens in the initial state. As all the places of the
Petri net belong to a conservative component then the net is bounded.
Repetitive components are set of transitions such that the firing of this state does not
change the marking of the Petri net. In the generic transducer model there are six
repetitive components namely: T5, T1+T2, T2+T3+T4. All the transitions belong to a
repetitive component, and this is a necessary condition for the Petri net to be live [27].
The model of the keyboard presented in Fig. 1 features the same properties as the
transducer, but as the model is very simple their proofs are not detailed here.

Verification of specific properties. Given a model, it is usually interesting to prove
specific properties that depend only on the actual meaning of the model. Without
referring to general properties on the class of system that is considered (such as
predictabilit y for example [14]) more precise ones are of interest for the designer.
Using Petri nets it is easy to model undetermined behaviours either by having
conflicting transitions or multiple tokens. This happens when several transitions are
available at the same time, but this is most of the time avoided by using events as
triggers for a transition. However, the event might not be selective enough. In Fig. 2
for instance, if there is a token of type (k) in place Repeating and another token of the
same type in place KeyPressed, and if the event (Up,k) occurs, then it is undetermined
which of the transition T1 or T3 will be fired. In order to avoid this kind of
undesirable behaviour, it is important to be sure that the token(s) representing a given
key cannot be in several places of the net at the same time. This can easily be proved
on the transducer as:
• all the places belong to the same conservative component (Idle+ Keypressed

+Repeating)
• the value of this conservative component is equal to one
This means that there is no production of tokens by the model, and as at the initial
state there is only one token for each key, then for a given event all the transitions of
the net are mutually exclusive.

3.4 Conformance of Models

The models we have presented above function as a pipeline of events as it is
represented on Fig. 3. Users are the sources of the pipeline as they produce the initial
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events. The pipeline architecture of events introduces specific requirements for the
behaviour of the components. Indeed, the consumption of events by a given transducer
has to be compatible with its preceding transducer and its production has to be
compatible with its following transducer.
This can be formally proven by the analysis of the language underlying to each model,
i.e. the study of all the possible sequences of transitions as we have shown it in [1] for
the mouse and a transducer handling Click, Drag, Drop and Double_Click events.

User LL

• Press
• Release

OLL
• Down
• Up

OHL
• Down
• Up
• Repeat

HL

ILL
• Press
• Release

IHL
• Down
• Up

Fig. 3: The pipeline of events

Using regular expressions to represent the languages, the language accepted by the

Petri net in Fig. 1 is: (Press, Release)* and the language generated is

(Down, Up)*. According to the pipeline of Fig. 3, conformance has to be check
between the generated language of this model and the accepted on of the high level
event model of Fig. 2. The language accepted by this high level event model is

(Down, Up)* and the one generated is [(Down, UP)* | (Down, Repeat,

Up)* | (Down, Repeat, Repeat*, Up) ]*
These sequences of transitions can directly extracted from the marking graph of the
Petri net which can be automatically calculated due to the boundedness of the models.
The temporal transitions have not been taken into account in the calculation of
acceptance language because they are not related to incoming events. However, they
are taken into account for the production of events as their internal actions consist in
posting events. In all the cases the temporal value of these transitions are never taken
into account as we only consider here what actions are available and not when they are
available.
We can deduce from that analysis that the models are compatible i.e. the transducer
will never wait for sequences of events that cannot be produced by the model of the
keyboard device. However, as temporal aspects are not taken into account it is not
sure on one hand that a model will not be waiting for events and on the other hand that
the events produced will be immediately consumed.

4. Analysing defects in an application

This section aims at presenting an application in order to ill ustrate the effective use of
formal transducers for understanding, analysing and then building reliable
applications.
In order to demonstrate the importance of the transducer choice and transducer
understanding, we will describe here a simple application which uses extensively the
keyboard. This application allows users to use the keyboard as a piano. Beyond the
toy aspect of this application, the problems highlighted by this example are widely
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encountered as soon as a keyboard is used for other purposes than entering text. More
precisely, our examples represents all applications where the keyboard is used as a
continuous source of information. For example when arrow keys are used in order to
move objects on the screen (such as in games), the information that the key is held by
the player has to be considered as a stream of input events. Widgets for handling time

related objects such as the buttons  in VCR like interface need
interpret users' continuous actions on the widgets as continuous stream of application
events.
Besides this specific use of the keyboard this section will demonstrate that formal
specification of transducers are necessary in order to understand failures in the
functioning of applications and to build new versions. Another aspect will be to raise
relevant properties.

4.1 Informal Presentation of the Piano Application

This application simulates a musical keyboard with the computer keyboard. Each
musical sound note is associated with a specific key on the computer keyboard.
The sound of a note (called the envelop) is here simpli fied and consists of two parts:

the sustain and the release ( time

amplitude
Sustain Release

Fig. ). Each time the user presses a key, a note is played. The sustain part is played
until the key is released. When it is released the sound continues for few milli seconds,
and this corresponds to the release part of the sound. Like using classical pianos the
performer can play numerous notes simultaneously by pressing multiple keys. All the
other musical aspects of the application are not considered here.

time

amplitude
Sustain Release

Fig. 4: The envelop of a sound note

4.2 Formal Model of the Application

As shown in Fig. 5 the keyboard is the source of the event stream for the application.
The formal specification of the application is split i n two models: the sound generator
of the notes (considered as the functional core FC) and the user interface (I) to this
rendering engine. These two subsystems cooperate according to a client-server
protocol defined itself in a formal way in terms of Petri nets [31]. The sound generator
is only a server while the interface is only a client of this server.
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K

F0

 I  F C

Piano Application

Fig. 5: The pipeline communications between components

The behaviour of the sound generator is described in Fig. 6. The Idle state
corresponds to no sound (the associated key is released). To play a note, the T2

transition has to be fired. The T2 transition features an internal function called Play
which starts the emission of the sustain part when the transition is fired. The sound
hardware will maintain the emission of the frequency until an explicit stop. This stop
corresponds to the firing of the transition T1. At that time, the Stop internal function
requires the sound hardware to stop the emission of the sustain sound, and to play a
sound corresponding to the release part of the note.

PlaySt o p

Id l e

P l a y i n g

T1 T2

< k><k>

Fig. 6: The model of the note generator engine (FC)

It is important to notice that the model in Fig. 6 describes the behaviour of a note
generator. The number of tokens in the place Idle correspond to the abilit y of the note
generator to play several notes simultaneously (according to the implementation this
could correspond to the number of different channel available). The exact number
depends on the hardware characteristics.
Indeed, the sound hardware may still be playing a note "n" while the model of "n" is in
the Idle state. This behaviour allows the performer to hit again the same note-key even
if the previous release sound is not finished.

4.3 The formal model of the interface of the Piano Application

Fig. 7 presents a formal model of the piano application. This model highlights the
communication with the sound engine as each transition of the model includes an
action part describing a request to the sound generator. In Fig. 7 the place Idle features
a set of coloured tokens modelli ng the fact that more than one note can be played
simultaneously. As for the keyboard colours are used in order to differentiate the notes
being played. The application is monitored by the user through events produced by the
keyboard transducer. This is represented on the model by the input events of the
transitions.
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k.Play

k.Stop

<k>

<k>

<k>

<k>

<do w n , k>

Id l e

P la y in g

<up , k>

Fig. 7: The formal model of the interface part of the Piano application

This model has been directly implemented on the X Window system ™. The result of
this implementation was quite different from what we expected at first as shown in

updown
time

Expected rendering

Observed rendering

time

updown
time

a) b)

time

down up
 t' t

Fig. .

t
updownupdown

Expected rendering

Observed rendering
t'

updown

a) b)

Fig. 8: Expected and effective rendering of the Piano application

The upper part of the

updown
time

Expected rendering

Observed rendering

time

updown
time

a) b)

time

down up
 t' t

Fig.  represents the expected continuous sound from he sound generator between the
events emitted by the keyboard. The lower part of the figure describes the effective
behaviour observed by the user. As we can see in the left hand part of the figure if the
user releases the key after a short period of time t then the expected sound is exactly
the one perceived by the user. However, if the key is held for a longer period of time
t', then the sound produced is different. The sound is not stable but presents variations
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both in amplitude and in pitch. This is represented on the right hand part of

updown
time

Expected rendering

Observed rendering

time

updown
time

a) b)

time

down up
 t' t

Fig. .
Introspection of the code of the application has not provided any information about
the origin of this problem. So we decided to trace the stream of events. Fig. 9 presents
the results of this investigation for the long down-up sequence that has led to the
unexpected behaviour described earlier. We have analysed the events received by the
application at run time. This has highlighted the existence of a X Window' transducer
(named F1') responsible having produced these events.

Keyboard filter F0

X Window filter F1'

t2t1 t3 time

▼ down event

▲ up event▲▼ ▼▲ ▼▲ ▼▲

▲▼

t2

Fig. 9: The stream of events produced by the transducers

The first line of Fig. 9 represents the events produced by the keyboard. The total
amount of time during which the key has been pressed is represented at the bottom of
the figure and is equal to t1+2t2+t3. The second line represents the stream of events
received by the application. We can see that several up-down sequences have been
inserted between the two user's events.

K

F0

I F CX

F1'

Piano Application

Fig. 10 : There was a ghost in the machine

This explains the observed rendering of the application: it made a wrong assumption
on the sequences of events it would receive. This mistake is caused by a bad
understanding of X Window, which had its own transducer to emulate repeat events
(Fig. 10).
The model presented in Fig. 11 describes, using the same formalism as before the
behaviour of this transducer. This model differs from the one presented in Fig. 2 only
by the events produced by the transducer in the timed transitions. Indeed, instead of
producing repeat events it produces the same events as the one received by the low
level keyboard transducer i.e. up and down.
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Fig. 11: The behaviour of the keyboard transducer F1' of the X Window system

The filter XL is a transducer between low level events produced by the keyboard and
a different sequence of the same low level events. It corresponds to a filtering function
(F'1) and can be defined as follow:

Let Key be the set of keys of the keyboard.
1. ∀ ∈k Key , I

xL
 = O

LL
 = { (Up, k), (Down, k)}

2. ∀ ∈k Key , O
xL

 = { (Up, k) , (Down, k)}

3. PN = the high level Petri net of Fig. 11

This transducer is used by all the applications running over the X Window system but
no specification of it was available. Its understanding by programmers that have to
deal with it could only occur through empirical testing and experience.

4.4 The piano application adapted to the X Window Transducer

In order to use the piano application despite the X Window transducer, we have
written a new transducer F1'

-1 (Fig. 12). This transducer aims at hiding the X Window
transducer by featuring the opposite effect on both the production and the
consumption of events.

K

F0

I F CX

F1'

X - 1

F1 '-1

Fig. 12: The new transducer X-1 to adapt our application to X

The model of the new transducer (Fig. 13) is based on this characteristic and
differentiates user's from synthetic events using a temporal transition. The model must
be read as follows. After a down event has been received the token corresponding to
the key that has been pressed is set in the place KeyPressed and a Down event is
produced. Then only an up event can be received which removes the token from place
KeyPressed and sets it into the place Repeating. This up event may be either a
synthetic event or a real one. In the case of a synthetic one, a synthetic down event
should be received right after and thus the transition T3 will be triggered and the token
set back to the place KeyPressed. If after t seconds (this quantitative time is expressed
aside the transition T4) no down event has be received, the application assumes that
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the up event was a real one, hence transition T4 is fired requesting the sound generator
to play the release sound and the token is set back to the Idle place.

Post(D ow n,k)

Post(Up,k)

< k >

< d ow n , k>

Id l e  K e y s

< u p , k >

K e y P r e s s e d

< k>

< d ow n , k >

< k >
< k >

< k> < k>

< k >

t

< k>

R e p e a t i n g

T2

T1

T3 T4

Fig. 13: The model of the F1'
-1 transducer

However, usabilit y testing of the new piano application has shown the critical aspect
of the temporal parameter t.
The consequences in our Piano application is that it is waiting t seconds before
playing the release of the sound (as shown in
Fig. 14.a). If the delay is more than few milli seconds then it becomes perceivable by
the user.

Expected rendering

Observed rendering
t

updown up

t
up

down
down

t'<t

up/down up/down

Fig. 14: Two problems with a long temporal parameter t

Indeed, as shown in
Fig. 14.b if this parameter is too long it is possible for the user to press and release the
key in a shorter delay. This means that the application will i nterpret user's real actions
as synthetic events. The observed rendering (described on the second line of the
figure) is significantly different from the expected one. Instead of the note being
played twice for a very short period of time, the note is played continuously. Besides,
the same problem of the note being played after the event up has occurred, still
applies.

up
t'>t

down downup/down
t

up

Expected rendering

Observed rendering
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Fig. 15: A problem (c) with a short temporal parameter t

Another problem is related to the client-server architecture of the X Window system.
This client-server architecture may dissociate the synthetic (Up, Down) events
produced if the user holds the key pressed. If the delay between the two events is
longer than t, then the system will i nterpret these events as user's events thus stopping
the note and starting it again. The observed behaviour of such a misinterpretation is
described in the second part of Fig. 15.

4.5 Discussion and design options

The problems identified in the previous section are related to the to the parameter t.
Designers must take into account this parameter in order to improve the quality of the
application. However, the first two options of
Fig. 14 recommend to have a short delay associated to t while the last option of Fig.
15 recommend to have a long delay associated to t
This means that the probabilit y of having disturbance in the rendering of the piano
application will never be null . The maximum disturbance for the rendering is
produced by the problem a) thus we should have a very short t. However, using an
heavily loaded network the problem c) will occur each time the user holds the key thus
resulting in an unusable application.
These three problems are the result of the X Window transducer presented in Fig. 11
because there is a loss of information when the transducer is in the pipeline an can be
characterised in a generic way by the properties presented in section 2.
The first information that is lost is the number of keys that have been pressed by the
user. Indeed as the transducer produces the same Down and Up events when the user
has pressed a key or is holding it, it is no more possible to know how many times the
user has pressed a given key. This can be overcome using the information that the
Down event is emitted immediately after the Up one, but due to the client-server
architecture of X Window they may be received significantly separated (problem C).
It can be easily proved that the X Window transducer of Fig. 11 is not regular and
more precisely is chatty as it produces Up and Down events when no such events are
received (the user is only holding the key).

5. Conclusion

The building of reliable interactive systems featuring a direct manipulation interface
requires a clear understanding of all the input devices used by the user to drive the
application.
In this paper we have discussed this thesis and proposed a transducer-based model in
order to cope with the problem of the design of such interactive systems. We have
considered here keyboard-like input devices, but the approach can be directly
generalised to graphical input devices such as mouse or track-ball from the work
presented in [1]. We have characterised necessary properties for transducers that have
been highlighted by the effective development of a piano application.
This work is part of a more ambitious project aiming at developing a toolkit for direct
manipulation interfaces based on a formal description of all the basic bricks to be at
the basis of the applications. Indeed, most of the applications currently developed for
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the management of Air Traff ic Control present a direct manipulation interface and
there is a need for both reliabilit y and eff iciency.
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