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Abstract. Producing formal descriptions of low level interadionis necessary to
completely cegpture the behaviour of user interfaces and avoid urexpeded
behaviour of higher level software layers. We propose astructured approac to
formalising low level interadion and scding up to higher layers, based onthe
compasition d transducers. Every transducer encapsulates the behaviour of a
device or software mmporent, consumes and produces events. We describe
transducers using a formalism based on Petri nets, and show how this
transducer-based model can be used to describe simple but redistic gpplicaions
and analyse unexpeded defeds in their design. We dso identify properties that
are meaningful to the gplicaion designer and wsers, and show how they can be
formally chedked onatransducer-based model of the gplicaion.

1. Introduction

The problem of applying formalisms to user interface onstruction has been an open
isale for several yeas now. The goals are dea to all: interadive software is complex,
and formali sms would help mastering that complexity by providing HCI designers and
programmers with a common and predse language, and by alowing forma
verificaions of the behaviour of their software. However, no formal approach hes
been fully successul yet, and some even wonder whether a unique formalism will ever
permit afull description of an interadive system [32] which leads to a wide variety of
partial approaches. Some focus on the ealy stages of the design process sich as
requirements elicitation and analysis or ealy spedficdion [15, 28, 25, 26] other on
the dicitation of domain related properties [14]. Others describe the dialogue
component of applicaions, making the reasonable asaumption that low level
interadion components have been taken care of by some aror-freeindustry developer
such as all the work done on the formal design of WIMP interfaces relying on the set
of predefined interadion objeds [5, 34, 35].

In any case, we believe that low level interadion cannot be ignored by formalisms and
left to programmers and their craftsmanship. If a unified formalism ever exigts, it will
have to describe adions to their finest level of detail. And if several formalisms have
to be used, one will have to be devoted to sequences of low-level events and the way
they propagate to higher layers of software. We see several reasons to that opinion.
First, as mentioned in [1], we observe that dired manipulation styles sich as those



used in the Madntosh Finder do not rely on widespread reusable widgets. Actualy,
they use supposedly simple programming techniques, which are undocumented and
misunderstood ky many programmers and even by some HCI software reseachers.
Furthermore, most new dired manipulation styles that are aurrently being devised are
not obtained by combining existing styles: they involve new handling schemes for low
level events such as button presses and moves, time-outs, or key presses. We thus
consider that languages and methods are necessary to design and reason about those
new interadion styles.

Our seoond reason is more disturbing to software engineging reseachers. Many
programmers have been confronted to evidence that minor and unspedfied behaviours
of low level software or hardware cmponents can dramaticdly affed the behaviour
of their software system as percaved by users. For instance, we dl think we know
what a keyboard is and what is behaviour is. every key can be pressed then released.
Then how comes that on some workstations, the key "3" is ignored when the keys "1"
and "2" are held down*? What happens if those keys are mapped to adions that are
supposed to be performed simultaneously, such as playing rotes on a synthesiser,
firing multi ple gurs in a video game, or showing different representations of data on
an air traffic control workstation? We ague that one canot predict the behaviour of
an interadive gplicaion without a predse spedficaion of al its hardware and
software cmponents.

Finaly, we take the point of view that formalisms are the most useful when integrated
with production toadls sich as UIMSs, toalkits or user interfacedescription languages.
Therefore, it isimportant that formali sms manipulate the same notions as toalkits. As
of today and as far as highly interadive interfaces are mncerned, those notions are
limited to graphicd objeds, events, and event handling schemes sich as cdlbads or
interadors.

Those reasons have led us to work on forma modelsfor low level interadion, with the
goal of producing a Ul toalkit that manipulates formal notions. This brought to us a
number of problems that can be generalised to ather approaches. how can a formal
description be structured in readable and reusable modules? what are the meaningful
propertiesto be dhedked over amodel?

In this paper, we outline a formal model that alows a modular description of
appli cations whil e taking low-level interadion into acount, down to the behaviour of
models. Formal transducers encgpsulate the basic behaviours involved in an interface
devices (mouse, keyboard, etc.), behaviours of graphicd objeds (click, drag, etc.),
and behaviours of the functional part of the goplication, when applicable. Transducers
consume and produce events. They can be combined in a dient-server fashion. Each
transducer exports aformal description of its behaviour; in this paper, we use adialed
of Petri nets for those descriptions: timed Petri nets. Such a forma dedaration of
behaviour alows consistency cheds when conneding two transducers. It also makes
it possble to observe how the adions of the user are successvely trandated, and to
detedt wrong asaumptions that are made when using lower level components.

A lot of work has been devoted to devices and can be mainly clasdfied in the
following categories:

! This predse behaviour can be eaily observed onSUN Sparc 10 workstations



» clasdgfying devices[10]

» understanding of devices[21]

e building of transducers for managing low level events produced by physicd
devices[1, 17]

» asssdng wsability of devices acording to task [8] and more generally tasks and to
users cognitive cgabiliti es[22]

» evaluating the performance of input devices[2], [19].

This paper belongs the third category asitsaims are:

« to propose aformalism allowing designers to describe the behaviour of physicd
devices,

* to propcse aformalism allowing designers to describe the behaviour of high level
modules (cdl ed transducers) extending the set of events offered by the device,

» to propose amode and toadls for buil ding appli cation from transducers,

» to define aset of properties that charaderise transducers.

This is ggnificantly different from the work of [11] as it fits in a more generic

framework based on objed oriented concepts, properties of transducers and has been

diredly implemented. However, due to space reasons the implementation is not

presented in this paper.

The paper is organised as follows. The next sedion dves a outline of formal

transducers, that are exemplified in sedion 3. We then analyse asimple but redistic

application, which highlights how bad assumptions on low level transducers may lead

to unexpeded software failures. We dso show how transducers may exhibit

undesirable properties for certain purposes. We identify some of those properties, and

show how they can be chedked.

2. Formal Transducers

Most computer interfaces today are event-driven, and pert of the job o designersisto
manage the event flow produced by the user's interadion with physicd devices. But
managing all the posdble cmbinations of event occurrence is hardly thinkable,
espedaly considering the increasing complexity of systems (e.g. multimodal
interadion). One posshble solution to solve this isae is to supply designers with a
formalism and an aswociated methoddogy, that would asdst them in describing
unambiguously the behaviour of the interface However it is possble to model such
complex behaviours using forma spedficaions, they unfortunately quickly get
incredibly complex, and some reseach has gill to be done on software engineeing for
formal models in order to supply designers with tods and methods to organise their
work. Among the methoddogies gill to be explored, we believe that an objed-
oriented approach to formal spedficdion of user interfaces is among the most
promising ones. The difficulty in such a design approach is not only to define formally
the behaviour of the objeds but also to define the system modules and the rules to
conned them. Even though this problem has been identified for a long time and
description techniques are available such as Pre and Post conditions [29], statecharts
[6] or using objed-oriented Petri nets [30], work has gill to be done to huild a
convenient software achitedure (to favour reusability through encapsulation) and a
methoddogy to help designersto organise their work.



Asthisresearch work is direded towards air traffic control (whichisa aiticd domain
regarding system seaurity) we ae very concerned with the validation of interadive
systems. This validation mainly consists in the proof of some pertinent properties on
the system. Splitting an applicaion in a set of cooperating transducers makes easier
the analysis of properties as they can be chedked separately on ead model.

Besides, it is important to charaderise transducers acmrding to the way they process
events. We give heredter three properties for transducers: chatty, sly and regular. In
the next sedion we will show that a chatty transducer may introduce malfunctions in
some gplicaions and not in other ones, depending on the set of events used by the
application. However, no such malfunction can occur with aregular one.

The Accepted Stream (AST) of atransducer T = (IT, o, PN) is defined by:

Let L(PN; M) be the languege defined by all the possble firing sequences of
transitions of PN
Let Tr be the set of transition of PN and Te be the subset of transitions of Tr

that feaure an event place(grey circle in the Petri net)
AS = L(PN; M) |Te(| means the mathematicd restriction)

AS, defines all the posdgble sequences of input events that can be procesed by the

transducer T.
The Produced Stream (PST) of atransducer T = (IT, o, PN) is defined by:

Let L(PN; M) be the languege defined by all the possble firing sequences of
transitions of PN
Let Tr be the set of transition of PN and Tp be the subset of transitions of Tr

that feaure an adion part producing events (transition with the Post(event)
adions)
PS = L(PN; M) |Tp(| means the mathematicd restriction)

PS, defines all the posshle sequences of output events that can be produced by the

transducer T.

A transducer T is said chatty (there is production of information during the filtering) if
and only if:

Cevent 1, O PS; (event) > AS; (event)

This means that the transducer T is producing more events of the type of
input event than it hasreceved.

A transducer T is sid dy (there is lossof information during the filtering) if and only
if:

Cevent 1, O PS; (event) < AS; (event)

This means that the transducer T is producing lessevents of the type of input
event than it hasreceaved. In that case, information islost

A transducer T is sid regular (there is no production and no loss of information
duringthefiltering) if and only if:

Cevent 01, O PS; (event) = AS; (event)

This means that the transducer T is producing exadly as many events of any
type it has recaved. However, it is posdble for it to produce events of a
different type asthe transducer of Fig. 2 produces repeat events.




3. Formal Transducersand the Keyboard

This ®dion aims at describing the adual behaviour of a physicd device keyboard.
The behaviour of this device is quite simple @ it only consists in trandating wser's
adions on the keys into low level events. In order to provide more interesting events
the keyboard is coupled with a software transducer that interprets and enriches these
low level events. The next sedion describes the formal model of the keyboard.
Sedion 3.2 presents a formal spedfication of a transducer describing predsely how
low level events are consumed and which higher level events are produced acording
to software designers needs. The last two sedions describes how these formal
spedficaions can be used to prove properties on the models.

3.1 TheFormal Model of the Device Keyboard

Fig. 1 describes the behaviour of a key using high level Petri nets [24]. When
modelling with Petri nets, a system is described in terms of state variables (cdled
places, depicted as ellipses) and by state-changing operators (cdled transitions,
depicted as redangles), conneded by annotated arcs. The state of the system is given
by the marking of the net, which is a distribution of tokens in the net’s places. In
coloured Petri nets, the tokens asaume values from predefined types, or colours. State
changes result from the firing of transitions, yielding a new distribution of tokens.
Transition firing involves two steps: (1) tokens are removed from input places and
their values bound to variables gedfied on the input arcs, and (2) new tokens are
depaosited in the output places with values determined by emission rules attached to
output arcs. A transition is enabled to fire when (1) all of its input places contain
tokens, and (2) the value of those tokens satisfy the (optional) Boolean constraints
attached to the input arcs.

Keyldle
<Re|ease,k>©—¢ KG)_\ ¢—©<Press, k>
Release | Post(Upk) Post(Down k) |press
KeyPressed

Fig. 1: Formal model of akey

The model of Fig. 1 is made up of two places modelli ng the two possble states of a
key (presed or released). The adual state of the key isfully stated by the token in the
placeKeyldle stating that the key is not in use. From that state the user can pressthe
key, that will trigger the transition Press thus removing the token from the place
Keyldle and setting it into the place KeyPressed. The @nnedion between the
transition and the user's adion on the device is represented by the broken incoming
arrow with the tiny grey circle.

As al the keys (except the modifiers suich as ALT, CTRL and SHIFT) are



independent, the behaviour of the keyboard is exadly the sum of the behaviours of all
its keys. Thus the modelli ng of the behaviour of the keyboard can be done by adding
one token for ead key. However, it isimportant to dfferentiate the keys as rendering
adions asociated to keys might differ (this is the cae for example in text editors).
This is modelled using coloured tokens in the Petri net. In the following of the paper
we shall represent all the keys of a keyboard using coloured tokens. In order to be
exhaustive we should have represented as many coloured tokens as there ae keys on
the keyboard but for readability reasons only few tokens are displayed.

Each time a key is pressd, the device amits an event down aong with the
identification number of the key that has been pressed. Each time akey is released the
device emits an event up. Thisis represented in the model of Fig. 1 by the adion part
of the transitions where the function Post is invoked with the rresponding
parameters.

A transducer T = (IT, o, PN) is defined by:

11 be the set of input events receved by the transducer

2. O, be the set of input events produced by the transducer

3. PN the highlevel Petri net describing the behaviour of the transducer

The keyboard LL is a transducer between uwser's adions and low level events
produced. It corresponds to afiltering function (F,) and can be defined as foll ow:

Let Key be the set of keys of the keyboard.

1. Ok OKey, 1 ={(Release, k), (Press k)}
2. Ok OKey, 0, ={(Up, k), (Down, k)}
3. PN =thehighlevel Petri net of Fig. 1

3.2 TheFormal Moddl of a Transducer

The low level events produced by the keyboard are dmed at being wsed by software
systems. However, most of the goplications are interested in a set of richer events. For
example the fad that the user is holding a key is usually relevant to the semantics of

the goplication.
Cg; Idle
<k>/<k>h<k>

<Up,k>Oj ¢ <Down, k> rC)<Up,k>
[ Post(upk) | [ PostDownk) | [ PosiUpk) }‘.\ <k>
T1 T2 ‘ T3

<k> de\ay:ti

Post(Repeat, k)
T5

<k>
<k> Repeating
delay:tl

<k>
<k> Post(Repeat, k)
T4

KeyPressed <k>

Fig. 2: Forma model of the high level events transducer

The Petri net in Fig. 2 describes aich atransducer. In addition to the low level events,



a higher level event named repeat is produced by the transducer in order to represent
the holding of a key by the user. The repeat event is related to temporal manipulation
of keys. Two dff erent temporal aspeds can be taken into acourt:

» white transitions (as previously) that fire e on asthey are enabled (i.e. thereis at
least atoken in eadh of their input places), they are cdl ed immediate transitions.

e greyed out transitions are asociated with a delay. The semantic of these transitions
is of Generalised Stochastic Petri Nets [3]. When a token is st in the place
KeyPressed a timer asociated to the token is darted by the transition T4. If the
token is dill there dter t1 seconds (the delay associated to transition T4) then T4
isfired. If within these t1 seconds an event up occurs then the transition T1 isfired
and the timer associated to the token is destroyed?.

» afirst delay (t1) is used to dfferentiate between briefly presing a key and holding
it. The transducer waits during t1 seaonds before arepeat event is emitted.

« aseond delay (t2) corresponds to the delay between the production of two repeat
events.

With resped to the keyboard model of Fig. 1 the transducer above models another
state for a key represented by the place Repeating. The two delays t1 and t2 are
asciated to the timed transitions. If the user quickly releases the key (before t1
seoonds) then the key returns to its initial state (ldle) before the first timed transition
has been fired. The loopincluding the second timed transition represents the repetitive
production of repea events when the user holds down a key.

Thefilter HL is atransducer between low level events produced by the keyboard and

higher level events. It corresponds to a filtering function (F,) and can be defined as

follow:
Let Key be the set of keys of the keyboard.

1. Ok OKey,1, =0, ={(Up, k), (Down, k)}
2. Uk OKey, O, ={(Up, k), (Down, k), (Reped, k)}
3. PN =thehighlevel Petri net of Fig. 2

3.3 Formal Analysis of Models

The use of aformal notation for describing transducers and input devices all ows us to
perform formal analysis on these models. Using analysis techniques it is possble to
ched generic properties of good alowing to assume the good functioning of the
models but also to verify properties gedfic to the considered application.

This dion concentrates on the generic properties sich as liveness reinitili sability,
boundedness Spedfic properties will be eplicited and proved on the gplicdion
described in sedion 4. As the transducers are supposed to be used repetitively it is
important to be sure that they are reinitialisable, i.e. it is always possble to find a
sequence of adions that put the transducer badk to itsinitial state. As transducers are
used very often it is aso important to be sure that they are not over producing

%2 This smantics is quite different from classca timed Petri nets as there is no duation
assciated to transitions i.e. a token is not held by a transition bu aways remain in a place
However, if there is no immediate transition the semantic is the same & the one of T-Timed
Petri nets [31]



information and that they do not feaure deal branches i.e. part of the spedficaion
that can bemme urnreatable. Using Petri nets this can be proved by chedking
conservative and repetitive components[27].

Analysis of the transducer. The transducer of Fig. 2 is live (there ae no deal
branches in the spedfication), bounded (they consume & many resources as they
produce, and vice-versa), and reinitialisable & there is always a sequence of adions
that can lead the model badk to the initial state. We detail heredter the cdculus of the
these properties.

Conservative components are sets of places for which the number of tokens remains
the same & the one of the initial state whatever sequence of transition is fired. In the
model of the transducer there is only one mnservative cmponent which includes all
the places of the model. Thus the sum of tokens in all the places of the nets remains
constant and equal to the number of tokensin the initial state. As all the places of the
Petri net belongto a mnservative cmponent then the net is bounded.

Repetitive aomponents are set of transitions uch that the firing of this date does not
change the marking of the Petri net. In the generic transducer model there ae six
repetitive components namely: T5, T1+T2, T2+T3+T4. All the transitions belong to a
repetitive component, and thisis a necessary condition for the Petri net to belive [27].
The model of the keyboard presented in Fig. 1 feaures the same properties as the
transducer, but as the model is very simple their proofs are not detail ed here.

Verification of specific properties. Given a model, it is usually interesting to prove
spedfic properties that depend only on the adual meaning of the model. Without
referring to general properties on the dass of system that is considered (such as
predictability for example [14]) more predse ones are of interest for the designer.
Using Petri nets it is easy to model undetermined behaviours either by having
conflicting transitions or multi ple tokens. This happens when several transitions are
available & the same time, but this is most of the time avoided by using events as
triggers for a transition. However, the event might not be seledive enough In Fig. 2
for instance, if there is a token of type (k) in placeRepeating and another token of the
same type in placeKeyPressed, and if the event (Up,k) occurs, then it is undetermined
which of the transition T1 o T3 will be fired. In order to avoid this kind of
undesirable behaviour, it isimportant to be sure that the token(s) representing a given
key cannot be in several places of the net at the same time. This can easily be proved
on the transducer as:
e al the places belong to the same wnservative cmmponent (Idlet Keypressed
+Repeating)
« thevalue of this conservative mmponent is equal to one
This means that there is no production of tokens by the model, and as at the initia
state there is only one token for ead key, then for a given event all the transitions of
the net are mutually exclusive.

3.4 Conformance of M odels

The models we have presented above function as a pipeline of events as it is
represented on Fig. 3. Users are the sources of the pipeline & they produce the initial



events. The pipeline achitedure of events introduces edfic requirements for the
behaviour of the cmponents. Indeed, the consumption of events by a given transducer
has to be compatible with its precaling transducer and its production has to be
compatible with its foll owing transducer.

This can be formally proven by the analysis of the language underlying to eady model,
i.e. the study of all the posgble sequences of transitions as we have shown it in [1] for
the mouse and a transducer handling Click, Drag, Drop and Double Click events.

60 — ILL N OLL »|HL OHL
s * Press « Press \ « Down « Down * Down
" € * Release “Release | —— |.up - Up «Up

* Repeat
User LL HL

Fig. 3: The pipeline of events
Using regular expressons to represent the languages, the languege acceted by the
Petri net in Fig. 1 iss (Press, Release)® and the language generated is

(Down, Up) *. According to the pipeline of Fig. 3, conformance has to be ded
between the generated language of this model and the acceted on of the high level
event model of Fig. 2. The language acceted by this high level event model is

(Down, Up)* andtheonegenerated is[( Down, UP)* | (Down, Repeat,

Up)* | (Down, Repeat, Repeat*, Up) ]*

These sequences of transitions cen diredly extraded from the marking gaph of the
Petri net which can be automaticdly cadculated due to the boundednessof the models.
The tempora transitions have not been taken into acount in the cdculation of
accetance language because they are not related to incoming events. However, they
are taken into acount for the production of events as their internal adions consist in
posting events. In all the caes the temporal value of these transitions are never taken
into acoount as we only consider here what adions are available and not when they are
available.

We can deduce from that analysis that the models are compatible i.e. the transducer
will never wait for sequences of events that cannot be produced by the model of the
keyboard device However, as tempora aspeds are not taken into acourt it is not
sure on one hand that a model will not be waiting for events and on the other hand that
the events produced will be immediately consumed.

4. Analysing defectsin an application

This dion aims at presenting an applicaion in order to ill ustrate the dfedive use of
formal transducers for understanding, analysing and then building reliable
applications.

In order to demonstrate the importance of the transducer choice and transducer
understanding, we will describe here asimple gplication which uses extensively the
keyboard. This application allows users to use the keyboard as a piano. Beyond the
toy asped of this application, the problems highlighted by this example ae widely



encountered as on as a keyboard is used for other purposes than entering text. More
predsely, our examples represents al applicaions where the keyboard is used as a
continuous ource of information. For example when arrow keys are used in order to
move ohjeds on the screen (such as in games), the information that the key is held by
the player hasto be mnsidered as a stream of input events. Widgets for handling time

related oljeds sich as the buttons g » in VCR like interface nedd

interpret users continuous adions on the widgets as continuous gream of applicaion
events.

Besides this pedfic use of the keyboard this ®dion will demonstrate that formal
spedficaion of transducers are necessary in order to understand failures in the
functioning of applicaions and to build new versions. Another asped will beto raise
relevant properties.

4.1 Informal Presentation of the Piano Application

This application simulates a musicd keyboard with the cmputer keyboard. Each
musicd sound note is asociated with a spedfic key on the computer keyboard.
The sound of a note (cdled the envelop) is here simplified and consists of two parts:

amplitude
Sustain Release

the sustain and the release ( time

Fig. ). Each time the user preses a key, a note is played. The sustain part is played
urtil the key isreleased. When it is released the sound continues for few milli seconds,
and this corresponds to the release part of the sound. Like using clasdcd pianos the
performer can play numerous notes smultaneously by pressng multiple keys. All the
other musicd aspeds of the goplication are not considered here.

amplitude
Sustain Release

time

Fig. 4: The envelop d asound nde

4.2 Formal Model of the Application

As diown in Fig. 5 the keyboard is the source of the event stream for the gplication.
The formal spedficaion of the goplicaion is lit in two models: the sound generator
of the notes (considered as the functional core FC) and the user interface(l) to this
rendering engine. These two subsystems cooperate acording to a dient-server
protocol defined itself in aformal way in terms of Petri nets[31]. The sound generator
isonly a server while the interfaceis only a dient of this srver.
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Fo

Piano Application
Fig. 5: The pipeline @mmunications between comporents

The behaviour of the sound generator is described in Fig. 6. The Idle sate
corresponds to no sound (the asciated key is relessed). To pay a note, the T,
transition has to be fired. The T, transition feaures an internal function cdled Play
which starts the emisgon of the sustain part when the transition is fired. The sound
hardware will maintain the emisson of the frequency urtil an explicit stop. This gop
corresponds to the firing of the transition T,. At that time, the Stop internal function
requires the sound hardware to stop the emisson of the sustain sound, and to play a
sound corresponding to the release part of the note.

Idle

<k>‘¢ r<k>

T ‘ Stop ‘ ‘ Play ‘Tz

Playing
Fig. 6: The model of the nate generator engine (FC)

It is important to notice that the model in Fig. 6 describes the behaviour of a note
generator. The number of tokens in the placeldle correspond to the aility of the note
generator to play several notes smultaneously (ac@rding to the implementation this
could correspond to the number of different channel available). The exad number
depends on the hardware charaderistics.

Indedd, the sound hardware may still be playing a note "n" whil e the model of "n" isin
the Idle state. This behaviour all ows the performer to hit again the same note-key even
if the previous release sound is not finished.

4.3 Theformal model of theinterface of the Piano Application

Fig. 7 presents a formal model of the piano applicaion. This model highlights the
communication with the sound engine & ead transition of the model includes an
adion part describing a request to the sound generator. InFig. 7 the placeldle feaures
a set of coloured tokens modelling the fad that more than one note can be played
simultaneously. Asfor the keyboard colours are used in order to dff erentiate the notes
being played. The gplicaion is monitored by the user through events produced by the
keyboard transducer. This is represented on the model by the input events of the
transitions.

11



(O<down, k>

<k>
<k>
<up, k>
k.Stop <k> Playing

Fig. 7: Theforma model of the interfacepart of the Piano application

This model has been diredly implemented on the X Window system ™. The result of
this implementation was quite different from what we expeded at first as diown in

Expected rendering
time time
Observed rendering ‘ ‘ ‘
— —
Sud ) ) time
dowrd w? dow? time dowr ! u
a) b)
Fig. .
Expected rendering
Observed rendering hh)
down—! (UDJ duwnJ UPJ down—! ! MDJ
a) b)
Fig. 8: Expeded and effedive rendering of the Piano application
The upper part of the
Expected rendering
time time
Observed rendering ‘ ‘ ‘
— —
T ; g time
dowrd w? dow? time dowr ! u

a) b)
Fig. represents the expeded continuous ound from he sound generator between the
events emitted by the keyboard. The lower part of the figure describes the dfedive
behaviour observed by the user. Aswe can seein the left hand part of the figure if the
user releases the key after a short period d time t then the expeded sound is exadly
the one perceived by the user. However, if the key is held for alonger period o time
t', then the sound produced is different. The sound is not stable but presents variations
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both in amplitude and in pitch. This is represented on the right hand part of

Expected rendering
time time
Observed rendering
<1 i
i t time
dowr™ ou dowr™  ug— time dowrr= ug—
a) b)

Fig. .

Introspedion of the mde of the gplicaion has not provided any information about
the origin of this problem. So we dedded to tracethe stream of events. Fig. 9 presents
the results of this investigation for the long down-up sequence that has led to the
unexpeded behaviour described ealier. We have analysed the events receved by the
application at runtime. This has highlighted the existence of a X Window' transducer
(named F;") responsible having produced these events.

Keyboard filter FO v N

v down event

X Window filter F1' v AW AV AY A A Up event

o © © G time
Fig. 9: The stream of events produced by the transducers

The first line of Fig. 9 represents the events produced by the keyboard. The total
amournt of time during which the key has been pressed is represented at the bottom of
the figure and is equal to t1+2t2+t3. The second line represents the strean of events
recaved by the gplication. We can seethat several up-down sequences have been
inserted between the two user's events.

K ’X )I ’FC

Fo Fy

Piano Application

Fig. 10 : Therewas aghost in the machine

This explains the observed rendering of the gplicaion: it made awrong assumption
on the segquences of events it would recave. This mistake is caused by a bad
understanding of X Window, which hed its own transducer to emulate repeda events
(Fig. 10).

The model presented in Fig. 11 describes, using the same formalism as before the
behaviour of this transducer. This model differs from the one presented in Fig. 2 only
by the events produced by the transducer in the timed transitions. Indeed, instead of
producing repea events it produces the same events as the one recaved by the low
level keyboard transducer i.e. up and down.
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<k> <k> <k>

<Up,k>©ﬂ rO<Down‘k> rO<Up,k>

‘ Post(Up,k) ‘ ‘Post(Down,k)‘ ‘ Post(Up,k) }\ <k>\

<k>
<k> ) Post(Up,k)
<k> Repeating Post(Dow n,k)

\< ) > Post(Up,k) <k> t2
<k Post(Down,k) v
<k>

KeyPressed t

Fig. 11: The behaviour of the keyboard transducer F;' of the X Window system

Thefilter XL is atransducer between low level events produced by the keyboard and
adifferent sequence of the same low level events. It correspondsto afiltering function
(F1) and can be defined as foll ow:

Let Key be the set of keys of the keyboard.

1. Ok OKey, 1, =0, ={(Up k), (Down, k)}
2. Ok OKey, 0, ={(Up, k), (Down, k)}
3. PN =thehighlevel Petri net of Fig. 11

This transducer is used by all the gplicéions runnng over the X Window system but
no spedfication of it was available. Its understanding by programmers that have to
ded with it could only occur throughempiricd testing and experience

4.4 The piano application adapted to the X Window Transducer

In order to use the piano applicaion despite the X Window transducer, we have
written a new transducer F;"* (Fig. 12). This transducer aims at hiding the X Window
transducer by feduring the oppaite dfed on both the production and the
consumption of events.

FC

K X NS N
ﬁ v 4 7 ﬁ

Fo Fy' Fyt

Fig. 12: The new transducer X* to adapt our application to X

The model of the new transducer (Fig. 13) is based on this charaderistic and
differentiates user's from synthetic events using a temporal transition. The model must
be rea as follows. After a down event has been receved the token corresponding to
the key that has been pressed is <t in the place KeyPressed and a Down event is
produced. Then only an up event can be receved which removes the token from place
KeyPressed and sets it into the place Repeating. This up event may be ather a
synthetic event or ared one. In the cae of a synthetic one, a synthetic down event
should be receved right after and thus the transition T3 will be triggered and the token
set badk to the placeKeyPressed. If after t seconds (this quantitative time is expressed
aside the transition T4) no dowvn event has be receved, the gplicdion assumes that
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the up event was ared one, hencetransition T4 isfired requesting the sound generator
to play the release sound and the token is %t badk to the Idle place

Idle Keys

<k>

O<down, k>
T1 | Post(Down,k)
<k>
<k>/—5&

KeyPressed

<up, k> O—¢ <down, k>
T2 T3 T4 | Post(Up,k)
<k>

Repeating

Fig. 13: The mode of the F;"* transducer

<k>

However, usability testing of the new piano application has sown the aiticd asped
of the temporal parameter t.

The mnsequences in our Piano application is that it is waiting t secnds before
playing the release of the sound (as sownin

Fig. 14.a). If the delay is more than few milli ssconds then it becomes percevable by
the user.

Expected rendering

<t ¥€

Observed rendering

[
up— L down
it

st uioun ptionn_Hup 4 doun ]
Fig. 14: Two problemswith along temporal parameter t

Indedd, as srownin

Fig. 14.b if this parameter istoo long it is posshble for the user to pressand release the
key in a shorter delay. This means that the goplicaion will i nterpret user's red adions
as g/nthetic events. The observed rendering (described on the second line of the
figure) is sgnificantly different from the expeded one. Instead of the note being
played twice for avery short period d time, the note is played continuously. Besides,
the same problem of the note being played after the event up has occurred, still

applies.

Expected rendering

Observed rendering |

—= —
>t

> t
ot wigomn— o A oun
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Fig. 15: A problem (c) with a short tempora parameter t

Another problem is related to the dient-server architedure of the X Window system.
This client-server architedure may dissociate the synthetic (Up, Down) events
produced if the user holds the key pressed. If the delay between the two events is
longer than t, then the system will i nterpret these events as user's events thus gopping
the note and starting it again. The observed behaviour of such a misinterpretation is
described in the second part of Fig. 15.

4.5 Discussion and design options

The problems identified in the previous sdion are related to the to the parameter t.
Designers must take into acoount this parameter in order to improve the quality of the
appli cation. However, the first two ogtions of

Fig. 14 recommend to have ashort delay assciated to t while the last option of Fig.
15 recommend to have along delay assciated to t

This means that the probability of having disturbance in the rendering of the piano
applicaion will never be null. The maximum disturbance for the rendering is
produced by the problem a) thus we should have avery short t. However, using an
heavily loaded network the problem c) will occur ead time the user holds the key thus
resultingin an unwsable gplication.

These three problems are the result of the X Window transducer presented in Fig. 11
becaise there is alossof information when the transducer is in the pipeline an can be
charaderised in a generic way by the properties presented in sedion 2.

The first information that is lost is the number of keys that have been pressed by the
user. Indeda as the transducer produces the same Down and Up events when the user
has pressed a key or is holding it, it is no more possble to know how many times the
user has pressd a given key. This can be overcome using the information that the
Down event is emitted immediately after the Up one, but due to the dient-server
architedure of X Window they may be receved significantly separated (problem C).

It can be eaily proved that the X Window transducer of Fig. 11 is not regular and
more predsely is chatty as it produces Up and Down events when no such events are
recaved (the user is only holding the key).

5. Conclusion

The building of reliable interadive systems feauring a dired manipulation interface
requires a dea understanding of all the input devices used by the user to drive the
applicaion.

In this paper we have discussed this thesis and proposed a transducer-based model in
order to cope with the problem of the design of such interadive systems. We have
considered here keyboard-like input devices, but the gproach can be diredly
generalised to graphicd input devices such as mouse or tradk-ball from the work
presented in [1]. We have dharaderised necessary properties for transducers that have
been highlighted by the dfedive development of a piano appli cation.

Thiswork is part of amore anbiti ous projed aiming at developing a toalkit for dired
manipulation interfaces based on a formal description of al the basic bricks to be &
the basis of the gplicaions. Indeed, most of the gplicaions currently developed for
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the management of Air Traffic Control present a dired manipulation interface ad
thereisaned for both reliability and efficiency.
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