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Johnny Accot Stéphane Chatty Philippe Palanque
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Abstract
The lack of formal models for describing low-level interaction restricts program-

mers to interactors provided by toolkits. It impedes the construction of highly
interactive systems and the design of new interaction styles, such as multimodal
interaction. This article reports on our experience with formalising low-level graph-
ical interaction. We propose primitives for event specification and handling that
can be used along with Petri nets to model such interactions. We then show how
multimodal interactions can be built from monomodal ones by combining those
models. This is examplified by an experimental two-handed graphical editor that
has been built using the proposed model.
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1. Introduction

Though this is an active field of research [Brun 95], most interactive systems
designed today do not rely on formal development or specification methods. This is
especially true as far as low-level interaction in user interfaces is concerned. This
leads interface programmers to stick towidespread interaction styles and to rely on
the experience of toolkit designers. Those limitations cause serious problems to the
designers of complex and critical systems such as air traffic control displays: either
they use well-known interaction styles, with possible consequences on the usability



of the system, or they are faced with the problem of specifying low level interaction
without any help for that purpose. Another consequence of that absence of formal
models is the difficulty to teach graphical interface construction. Whereas basic
algorithms such as list sorting or rendezvous are described in numerous books, no
formalism is available to describe even a double-click or the behaviour of a menu
in a precise way. Building widgets is thus closer to craft knowledge than to a
reliable and structured engineering process. This leads to unacceptable situations
such as simple widgets of widespread commercial toolkits exhibiting incoherent
behaviours.

This lack of models for graphical interaction has obvious consequences on the
design of more complex systems. In multimodal interfaces, for instance, parallel
event flows can lead to unpredictable incoherent situations in the same way as in
multitasking concurrent programming systems. What is a nuisance with graphical
interaction can become an obstacle with multimodal interaction. Our previous
work on two-handed interaction [Chatty 94] confronted us with this problem, for
instance when trying to build a two-handed graphical editor, using techniques such
as Toolglass and Magic Lenses [Bier 94]. In order to be able to specify precisely and
without ambiguities the expected behaviour of the system, we were faced with the
need to use formal methods. This paper reports on the solutions we proposed and
implemented to describe discrete aspects of traditional and multimodal interaction
at a low level of interaction.

The next section proposes a flexible event specification scheme proposed as a
replacement for callbacks. Section 3 shows how this specification scheme can be
fruitfully integrated with Petri nets to fully describe event-based interactions. This
leads to a generic framework for modelling low level interactions. Section 4 shows
how that framework can be easily exploited to deal with multiple threads of input
for multimodal interaction. Section 5 gives an example of how a model designed
with that framework can be implemented in a real application. The example
proposed here is a graphical editor with two-handed interaction capabilities. In
the last section the work described in this paper is positioned relatively to previous
work in the field of dialogue modelling.

2. Primitives for event description

When modelling interactive systems, the interaction primitives are at least as
important as the formalism used to manipulate them, because they determine the
level of control that programmers have over the behaviour of the system. In an
event-based model, the most important primitives are the event selection scheme
and the method of linking events to behaviours. Most toolkits select events by their
types, the window in which they occur, and sometimes the graphical object located
under the cursor. They use callbacks to associate events to behaviours: when
selecting a class of events, the procedure to be called is specified. However, callbacks
are known to be a problem, because of their low level of abstraction [Myers 90]. In
addition, as shown in [Chatty 94], selection sometimes needs to use notions more
precise than event types. For instance, one often needs to specify which button



of the mouse or which key of the keyboard was pressed. We thus considered an
association of two primitives: reactions and criteria.

A reaction links an object’s method to a set of possible events. When an event
matching the specification of the reaction occurs, the method is invoked. The
object that reacts to the event does not have to be the graphical object on which
the event occurred. It does not even have to be a graphical object. This allows
us to have icons react to mouse movements on the background of a window
(when dragging), or to have functional core objects react to key presses (when
pressing ’q’ to quit an application). A criterion is the basic entity used in the
specification of reactions.

Criteria check properties of events, and a reaction is triggered only if all its
criteria are satisfied. With current callback-based models, event selection can
be expressed as "bind this function to this type of events". With reactions and
criteria, it can be expressed as "this object is interested in events having such
and such properties". This allows designers to explicitly express constraints,
instead of implementing them by hand in the callbacks. The most commonly
used criteria are event types, event targets, and devices. Others can refer to
the attributes of events (amount of movement, for instance) or to the state
of any object. A classical example of amount of movement is the threshold
parameter in the options of a mouse. The threshold helps users in performing
clicks and double-clicks by ignoring small mouse movements between clicks.

Using criteria and reactions provides a flexible way of expressing simple be-
haviours of objects in an event-based application. However, more complex be-
haviours triggered by sequences of events need formalisms such as finite state
machines or Petri nets to be expressed. This is the topic of the next section, where
criteria are used to label the transitions of Petri nets.

3. Interaction level

This section aims at showing how it is possible (using the primitives for event
description described in the previous section) to model the production of high level
events from the physical model of an input device. We will show the model for
a mouse and we will prove the consistency of the physical model with the one
responsible for the generation of high level events (called interaction level events).

Interaction level correspond to the user’s actions while manipulating physical
devices such as a mouse or a keyboard. For example, such actions can be: press
the right button on the mouse, release the left button of the mouse, press a key,
etc. It can be easily seen that the user’s behaviour heavily depends on the physical
behaviour of the device, e.g. a button can only be released if it has been pressed
before. Describing this behaviour is quite straightforward when dealing with clas-
sical devices such as mice and keyboards. The behaviour of a mouse featuring only
one button is easily described with an automaton, or with a Petri net as shown
in Figure 1. Petri nets are a formalism devoted to the modelling of discrete event



systems in which parallelism plays an important role. When modelling with Petri
nets, a system is described in terms of state variables (called places and depicted as
ellipses) and by state changing operators (called transitions and depicted as rect-
angles), connected by arcs. The state of the system is given by the marking of the
net, which is a distribution of tokens in the net’s places. This use of tokens allows
designers to describe states in a very concise way.

Down

Up

Move MoveIdle Pressed

Figure 1. The physical behaviour of a one-button mouse

In Figure 1 the Petri net describes that, in the initial state, the device is idle:
it waits for an event to occur. While in this state, two kinds of events may occur;
this is represented by the two different outgoing transitions. The transition Move
removes the token from the place and puts it back into it, which means that the
system remains in the same state. If the event Down occurs, the token in the place
Idle is removed and put in the place Pressed thus describing a change of state in
the system. From that state, both Move and Up events may occur: Move keeps the
system in the Pressed state, and Up puts it back to its initial state.

This model describes precisely the basic behaviour of the device. However, in
order to fully exploit the benefits of this device, it is important to take into account
a higher level of interaction represented by the events associated to sequences of
physical actions. For example, it is important for the designer to be able to process
the sequence (Down, Up) either as two different events or as a single event: Click.
The management of those higher level events is less simple than that of the physical
ones. For instance, double-clicks events involve a time constraint: the sequence
(Down, Up, Down, Up) has to be performed within a given amount of time, else it
is interpreted as two isolated clicks. This is usually implemented by activating a
timer, and taking into account time-out events. In addition, if the mouse is moved
during the sequence, this is not a double-click either. Figure 2 presents the different
events associated to a mouse. The physical events are described in the left column,
the interaction level ones in the right column.

In the case of mouse events, most applications are at least as much interested in
higher level events as in the low level ones produced by the graphical layer. Clicks,
drags and double-clicks are the results of sequences of physical events. Usually,
these higher level events are produced either by dedicated algorithms, or through



d: Button Down C: Single Click
u: Button Up DC: Double Click
m: Mouse Move B: Begin Drag
t: Time Out D: Drag

E: End Drag

Figure 2. Physical (left column) and interaction level events.

models such as Garnet’s interactors [Myers 90]. We call them interaction level
events, as they may be used as input to other processes that would use them as basic
events. The creation of those interaction level events depends on the state of the
interaction, which in turn depends on the physical events that previously occurred.
This type of behaviour is easily described with automata or Petri nets. We chose to
use Petri nets, so as to be able to express parallelism and synchronisation, as we will
see in the next sections. Using this formalism we have been able to test different
designs for double clicks, and provided a good basis for thinking about interaction
styles involving more than one device. It also proved useful when integrating exotic
devices such as a telephone into graphical applications [Chatty 96a].

However, the use of basic Petri nets does not permit the description of the types
of events and to change the behaviour of the model according to the type of these
events. Thus we upgraded the basic model by adding the criteria and reactions
presented in section 2. The next section shows how this integration can be used for
describing high level event production.

3.1. An example of generation of interaction level events
Figure 3 shows the physical events consumed by the Petri net and the interaction

level events it produces. This is one of the possible designs for clicks, double-clicks
and drags according to both physical and higher level events. Labels associated
with transitions have the following shape:

where
– Event is the low-level event consumed
– Criteria is the set of additional criteria that the event must satisfy for the state

change to occur
– Production is a set of interaction level events that are produced during the state

changing
– Action is the additional action performed by the model during the state change

Figure 3:
This Petri net describes the interaction level events policy for a given interaction

style. It tells when and how those events are produced according to the user’s
actions on the device. In this Petri net, the policy works like a transducer: each
time a physical event is accepted, the Petri net fires a transition and creates higher
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Figure 3. A design for clicks, double-clicks and drags

level events. For example, in the policy represented in Figure 3, the physical mouse-
move (m) is transformed into a higher level mouse-move (M), e.g. the transition
between places One Click and Idle reacts to the event m by generating another
event M plus an event click (C). However, all physical events are not immediately
translated into interaction level events. For example, each event d received while
the system is in the initial state, is consumed without any production.

In the simple model described in Figure 3, criteria are only event types, except
for the first down event (the transition between places Idle and Down). More
sophisticated designs could be obtained, for instance by attaching a criterion to the
arc from place Down to place Moving so that small moves are ignored. The reaction
StartTimer on the transition between place Down and place Click states that a
timer is started as soon as the physical event up (u) is received.

The Petri net in Figure 3 was built as follows. The four states Idle, Down,
One Click and Two Down and the transitions between them represent the sequence
of physical events (d, u, d, u) that corresponds to a double click (DC). The timing
constraint is represented by the action StartTimer on the transition between Down
and One Click, and by the transitions labelled by t on other states. The most
significant such transition is the one that links One Click to Idle: after a certain
time; the sequence (u, d) is considered as a C. Similarly, the no-move constraint
is expressed by the transitions that lead to place Moving. When in that state, all
moves (m) are parts of a drag (D). A m received when in state One Click also forces



the emission of a C, and the return to Idle, though the greyed out 1 transition in
Figure 3.

3.2. Analysisof conformancebetweenphysicaland interaction level events
An important point while designing a model for interaction level events is to

make sure that the model is consistent with the underlying physical behaviour
of the device. One possible way to prove this kind of property is to consider the
two models as a client and a server cooperating together. In our case, the model
describing higher level events (called MHLE) is the client and the one describing
the physical events (called MPLE) the server. Thus, the low level events in the
MHLE describe the demand of the model towards the MPLE. Conversely, the events
modelled in the MPLE describe its offer.

Proving that the models are consistent is equivalent to proving that the demand
of the client is included in the offer of the server. In previous work on the verification
of the consistency of models in CSCW applications [Palanque 95a], we have shown
that, for Petri nets, the demand and offer of the models are the same as the demand
and offer of the automata corresponding to the marking graph of the Petri nets.
Here, the Petri nets in Figure 1 and Figure 3 are state machines, hence their
marking graphs are the models themselves. We thus only have to prove that the
language of the automaton corresponding to MPLE is included in the language of
the automaton corresponding to the MHLE.

Using regular expressions to represent the languages, the language accepted by
the Petri net in Figure 1 is: (m*dm*u)* and the language accepted by the Petri
net in Figure 3 is: (dm*u dum dudmm*u dudu)*. The time-out events have
not been taken into account in the calculation of the language because they can
be considered as internal events of the MHLE. A more precise calculation could
have been made by considering that those events are produced by another server
responsible for handling temporal aspects.

It can easily be proved that the language generated by each of the terms of the
second regular expression are included in the language generated by the first reg-
ular expression. Hence, the language generated by the second regular expression
is included in the language generated by the first one. That proves that the MHLE
only describes actions that can result from sequences of events emitted by the
MPLE. In other terms, this means that the model of interaction level production
only reacts to sequences of physical events that can be provided by the physical
device. It is important to notice that the model is not supposed to react to all the
possible sequences of the physical device as this is a matter of design.

The next section is devoted to show how the work presented above can be reused
in order tomodel the production ofmultimodal events in an interactive system. The
emphasis is not on the design process whichwill be the focus of a future paper but on
the solution of the precise problem of generating multimodal events in two-handed
multimodal systems.

1The is no special meaning for the greyed out transitions. It is only for the sake of readability
thaht they have been greyed out.



4. Multimodal events

The technique described above can be used to describe multimodal interaction, as
we will show here for the case of two- handed interaction. As shown in [Chatty 94],
two-handed interaction is - at least technically speaking - a form of multimodal in-
teraction, and exhibits the same variations. There are many possible two-handed
interactions styles, and thus tools are needed to design, implement and evaluate
them. Examples of such interaction styles are those that would involve touch
screens manipulated with two or more fingers . With such devices, one can per-
form combined clicks (i.e. two fingers ‘clicking’ at the same time) and many other
combinations. For instance, air traffic controllers currently use their finger tips to
evaluate and compare distances on their radar screens. With touch-screen based
displays such as those explored at CENA [Chatty 96b], such comparisons could be
improved by detecting combined clicks and displaying the appropriate information.
But such combinations are complex to implement, and we soon found that a formal
method was necessary in order to handle all possible cases, and even to commu-
nicate among ourselves. We thus generalised the use of the framework described
in the previous section. Here the set of multimodal events is limited to two: a
combined click (a classical click done with both hands simultaneously) and a dou-
ble combined click (a classical double click done with both hands simultaneously).
However, the approach presented aims at being much more generic as we are cur-
rently working on composition techniques in order to describe other multimodal
interaction level events, and to build them for other input devices.

The use ofPetri nets allows us to describe two-handed interaction as an extension
to traditional interaction. The presence of two similar devices is represented by the
presence of two tokens in the same Petri net: this technique is known as folding
and is the basis of an early extension to basic Petri nets called coloured Petri
nets [Jensen 81]. For that reason, in Figure 4 the two pointers (possibly fingers)
are represented by a grey and a black token. Places and transitions are added to
model the interaction level events produced in reaction to combined actions on the
devices. In the case of combined clicks, the extension to the model of Figure 3 is
represented in the greyed out region of Figure 4. Two places were added and the
transitions CC and CDC (which feature double incoming arcs and double outgoing
arcs) detect the occurrences of combined clicks and combined double-clicks. For
instance, a combined click occurs when two tokens reach place Comb Click at
nearly the same time.

The Petri net in Figure 4 is currently in the state when the user has pressed and
released each pointer. This is described by two tokens in the place Comb Click, thus
enabling the transition with two arcs that will produce the CC event. The need for
the click events to be temporally close is represented by the other output transition
of the place Comb Click, which consumes tokens according to the duration of their
stay in that place. These black transitions correspond to timed transitions, which
means that after being enabled they wait for a given amount of time before being
fired. This modelling has been made possible thanks to the easy quantitative time
modelling in Petri nets. This kind of Petri net is known as timed Petri nets and
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further information about their functionalities can be found in [Palanque 95b].
As there is one token for each device it is important to be sure that an event

occurring on a given device is associated to the corresponding token in the model.
This is done by associating criteria to transitions. For example, at the initial state
the user can press the button on each device. The criterion associated to the only
available transition will select the token corresponding to the device currently used
by the user and then the transition will remove the selected token from the place
Idle and put it in the place Down. An example of easy representation of this kind
of criteria is to use colours as the tokens have to be differentiated. However, as the
production of CC and CDC events is related to quantitative temporal evolution of
the model the expressive power of Coloured Petri nets is not sufficient.

5. Implementing an example: an editor for building automata

The aim of this section is to show on a simple example how the formal framework
presented above can be used in real applications. The example we use is graphical
editor for drawing automata, extended with two-handed input capabilities, that we
developed as a test-bed for two-handed interaction styles. Though we are currently
working on two-handed interaction from a usability point of view, we will here focus
on very simple interaction techniques for the sake of clarity. We also provide more
details on the implementation of our framework.

5.1. The example
The first step when designing an automaton consists in drawing the skeleton of

the automaton. To do so, the editor provides users with two basic objects: states
(represented by circles) and transitions (depicted by labelled arcs). It also features
functions to manipulate these objects: add, move, delete, and edit.

The sample editor we have built is shown in Figure 5. It features a working
area, where the automaton is built and displayed, and a set of buttons for three
of the functions: create, move, and delete. Editing the contents of a transition
is performed by double-clicking on its graphical representation, which opens a
transition editor (not presented here). As an example of two-handed interaction,
let us consider a cooperation of two hands (or rather two fingers). An example
of such cooperation consists in the creation of a transition between two states
by clicking on a state, then nearly simultaneously on another. In that case the
transition is automatically created from the state that has been clicked first to the
other one. The double click and the two-handed manipulations in this editor have
been implemented using the Petri net model for the management of multimodal
aspects presented in section 4 of this paper.

5.2. Implementation
Our implementation of the model is like traditional interpreted implementations

of Petri nets [Feldbrudge 93] where arcs, places and transitions are stored in lists.
Depending on the current marking, the only active criteria are those corresponding
to transitions that might potentially be fired. Criteria are implemented through



an event subscription mechanism, so this means that the model will only receive
events that are meaningful according to the current state.

Referring to Figure 4 for instance, if both tokens are present in the Idle place, the
net is only sensitive to button-down events and does not receive any information
regarding other kinds of events. Then, when one of the transition fires and the
token moves from the Idle place to the Down place, the net unsubscribes to button-
down events from the device corresponding to the token that moved, and subscribes
to button-up and move events.

Figure 5. The editor for designing automata

This approach based on an interpretation of the Petri net a run-time has two
important consequences on the characteristics of the net, regarding the choice and
specialisation of behaviours:

a graphical object is able to ’choose’ a behaviour (by inheritance in our ap-
proach). In user interfaces for instance, a window does not have the same
behaviour as a menu button: when a user grabs a window, this window should
always be attached to the mouse pointer and all mouse drag events should be
redirected to it, whereas a menu button should not grab all events event if the
button-down was performed on it. A set of different "standard" behaviours
would be proposed by graphical toolkits so that developers would just have to
pick a behaviour and, if needed, modify it as suggested below.

the Petri net can be ’customised’, which means that developers or even end-
users can easily change the interpretation of events from devices according to
their needs. These modifications primarily concern the parameters of the net,
such as time delays or movement tolerance if any, but also the net structure
itself. Even if these dynamic changes are not fully understood, we believe
that this may be possible and useful if assisting users in this task.



6. Related work

A lot of work has been devoted to the formal specification of interactive systems.
This work has been done at different levels of abstraction from higher level such
as sequencing of windows, sequencing of interaction objects triggering within a
dialogue window, to elementary behaviour of a single interaction object. A large
part of the results obtained have been applied to ’indirect manipulation interfaces’,
i.e. interfaces controlled throughmenus, buttons and dialogue boxes. Less research
has been devoted to highly interactive interfaces featuring direct manipulation or
animation.

Figure 6 presents a summary of the related work in the formal specification of
interaction. This table does not represent more theoretical work on interactive sys-
tems such as [Duke 93, Harrison 90, Dix 91] in which the main point is to address
properties of interactive systems rather than their inner behaviour.

The figure is organised as follows. Work located in the left column corresponds to
work on indirect manipulation systems. Work located in the right column concerns
highly interactive systems. The three rows correspond to the grain of dialogue
taken into account. The lower row is related to the finest grain of dialogue (the
behaviour of interaction objects themselves) while the upper one concerns higher
grain of dialogue (such as the sequencing of local dialogues). The work presented
in [Stasko 89] is in dashed lines because it only concerns animation and not inter-
action in applications. The work presented in this paper is located in the lower
right box of Figure 6 as it concerns multimodal interactive systems with direct
manipulation facilities.

7. Conclusion

We have shown in this paper how novel primitives for event description can be
used as the basis of a formal model of low level interaction in direct manipulation
interfaces. We have also shown how the same formalism, based on Petri nets, can
be used to describe multimodal interaction in a way that allows the reuse of well
known interaction styles to design new ones. This work has been integrated to
the Xtv toolkit [Beaudouin-Lafon 90], and is currently used to experiment with the
design and evaluation of two-handed interaction styles at the University of Toronto.

This works opens a whole set of new questions and perspectives. It suggests a
more general event-based model of interactive applications, where physical events
would successively be translated into more and more abstract events until they
are caught by the functional core. In such a model, even the internal behaviour
of widgets would be specified formally, thus allowing formal verification of the
whole behaviour of an interface, and possibly performance evaluations within the
GOMS methodology. This works also calls for its integration into a graphical direct
manipulation interface editor such as Whizz’Ed [Esteban 95]. We are currently
working on methods that would help the construction of complex behaviours from
basic ones in such an editor. We are also working on the merging of this model
with the data-flow model of Whizz [Chatty 92], so as to span as widely as possible
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the spectrum of user interfaces behaviours, from simple callbacks to continuous
phenomena such as animation.
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Stéphane Chatty, Patrick Girard, et Stéphane Sire. Vers un support
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Philippe Palanque et Rémi Bastide. Formal specification and verifi-
cation of cscw using the interactive cooperative object formalism. Pro-
ceedings of the Human-Computer Interaction (HCI’95), pages 213–231,
1995.

[Palanque 95b]
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Animation. Thèse de Doctorat, Brown University, 1989.

[Van Biljon 88]
W. Van Biljon. Extending petri nets for specifying man-machine di-
alogues. International Journal on Man-Machine Studies, 28:437–455,
1988.

[Wasserman 85]
A. I. Wasserman. Extending state transition diagrams for the specifi-
cation of human-computer interaction. IEEE Transactions on Software
Engineering, SE-11:699–713, Août 1985.


